Effect of Various Drying Methods on Physicochemical and Bioactive Properties of Quince Fruit (Cydonia oblonga Mill.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
- Physicochemical properties
2.2.1. Dry Matter Content
2.2.2. Water Activity (aw)
2.2.3. pH
2.2.4. Total Acidity (TA)
2.2.5. Soluble Solids Content (°Brix)
2.2.6. Instrumental Color Measurement
- Bioactive properties
2.2.7. The Content of Selected Carotenoids
2.2.8. The Content of Selected Flavonoids and Phenolic Acids
2.2.9. Tannin Content
2.2.10. Preparation of Extracts for Determination of Total Polyphenol Content and Antioxidant Activity
2.2.11. Total Polyphenol Content
2.2.12. Antioxidant Activity
2.2.13. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Quince Fruit Fresh and Dried by Various Methods
3.2. Bioactive Properties of Fresh and Dried by Various Methods Quince
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Postman, J. Cydonia oblonga: The unappreciated quince. Arnoldia 2009, 67, 2–9. [Google Scholar]
- Hodun, G. Pigwa pospolita. Działkowiec 2008, 10, 38–39. (In Polish) [Google Scholar]
- Wojdyło, A.; Oszmiański, J.; Bielicki, P. Polyphenolic composition, antioxidant activity, and polyphenol oxidase (PPO) activity of quince (Cydonia oblonga Miller) varieties. J. Agric. Food Chem. 2013, 61, 2762–2772. [Google Scholar] [CrossRef] [PubMed]
- Hodun, G. Pigwa pospolita. Działkowiec 1999, 10, 30–31. (In Polish) [Google Scholar]
- Lim, T.K. Cydonia oblonga. In Edible Medicinal and Non-Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2012; Volume 1, pp. 371–380. [Google Scholar] [CrossRef]
- Sarwa, A. Wielka encyklopedia roślin leczniczych; Armoryka: Sandomierz, Poland, 2013; pp. 154–156. (In Polish) [Google Scholar]
- Ponder, A.; Hallmann, E. Comparative evaluation of the nutritional value and the content of bioactive compounds in the fruit of individual species of chaenomeles and quince. World Sci. News 2017, 73, 101–108. [Google Scholar]
- Monka, A.; Grygorieva, O.; Chlebo, P.; Brindza, J. Morphological and antioxidant characteristics of quince (Cydonia oblonga Mill.) and chinese quince fruit (Pseudocydonia sinensis Schneid.). Slovak. J. Food Sci. 2014, 8, 333–340. [Google Scholar] [CrossRef]
- Tatari, M.; Abdollahi, H. Evaluation of vegetative and reproductive characteristics of some quince (Cydonia Oblonga Mill.) genotypes from central regions of Iran. Int. J. Fruit Sci. 2021, 21, 945–954. [Google Scholar] [CrossRef]
- Rodríguez-Guisado, I.; Hernández, F.; Melgarejo, P.; Legua, P.; Martínez, R.; Martínez, J.J. Chemical, morphological and organoleptical characterisation of five Spanish quince tree clones (Cydonia oblonga Miller). Sci. Hortic. 2009, 122, 491–496. [Google Scholar] [CrossRef]
- Silva, B.M.; Andrade, P.B.; Martins, R.C.; Valentão, P.; Ferreres, F.; Seabra, R.M.; Ferreira, M.A. Quince (Cydonia oblonga Miller) fruit characterization using principal component analysis. J. Agric. Food Chem. 2005, 53, 111–122. [Google Scholar] [CrossRef]
- Radovic, A.; Nikolic, D.; Milatovic, D.; Djurovic, D.; Trajkovic, J. Investigation of pollen morphological characteristics in some quince (Cydonia oblonga Mill.) cultivars. Turk. J. Agric. For. 2016, 40, 441–449. [Google Scholar] [CrossRef]
- Milić, D.; Vukoje, V.; Sredojević, Z. Production characteristics and economic aspects of quince production. J. Process. Energy Agric. 2010, 14, 36–39. [Google Scholar]
- Ashraf, M.U.; Muhammad, G.; Hussain, M.A.; Bukhari, S.N.A. Cydonia oblonga M. A medicinal plant rich in phytonutrients for phaemaceuticals. Front. Pharmacol. 2016, 7, 163. [Google Scholar] [CrossRef] [PubMed]
- Hanan, E.; Sharma, V.; Ahmad, F.J. Nutritional composition, phytochemistry and medicinal use of quince (Cydonia oblonga Miller) with emphasis on its processed and fortified food products. Int. J. Food Process. Technol. 2020, 11, 831. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. The medical importance of Cydonia oblonga-A review. IOSR J. Pharm. 2016, 6, 87–99. [Google Scholar]
- Al-Zughbi, I.; Krayem, M. Quince fruit Cydonia oblonga Mill nutritional composition, antioxidative properties, health benefits and consumers preferences towards some industrial quince products: A review. Food Chem. 2022, 393, 133362. [Google Scholar] [CrossRef]
- Mirmohammadlu, M.; Hosseini, S.H.; Kamalinejad, M.; Gavgani, M.; Noubarani, M.; Eskandaria, M.R. Hypolipidemic, hepatoprotective and renoprotective effects of Cydonia Oblonga Mill. fruit in streptozotocin-induced diabetic rats. Iran J. Pharm. Res. 2015, 14, 1207–1214. [Google Scholar]
- Ashrafi, H.; Ghabili, K.; Alihemmati, A.; Jouyban, A.; Shoja, M.M.; Aslanabadi, S.; Adl, F.H.; Ghavimi, H.; Hajhosseini, L. The effect of quince leaf (Cydonia Oblonga Miller) decoction on testes in hypercholesterolemic rabbits: A Pilot Study. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 277–282. [Google Scholar] [CrossRef]
- Magalhães, A.S.; Silva, B.M.; Pereira, J.A.; Andrade, P.B.; Valentão, P.; Carvalho, M. Protective effect of quince (Cydonia oblonga Miller) fruit against oxidative hemolysis of human erythrocytes. Food Chem. Toxicol. 2009, 47, 1372–1377. [Google Scholar] [CrossRef]
- Vaez, H.; Hamidi, S.; Arami, S. Potential of Cydonia oblonga leaves in cardiovascular disease. Hypothesis 2014, 12, 356. [Google Scholar] [CrossRef]
- Shinomiya, F.; Hamauzu, Y.; Kawahara, T. Anti-allergic effect of a hot-water extract of quince (Cydonia oblonga). Biosci. Biotechnol. Biochem. 2009, 73, 1773–1778. [Google Scholar] [CrossRef]
- Herrera-Rocha, K.M.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; González-Laredo, R.F.; Larrosa-Pérez, M.; Moreno-Jiménez, M.R. Phenolic acids and flavonoids in acetonic extract from quince (Cydonia oblonga Mill.): Nutraceuticals with antioxidant and anti-inflammatory potential. Molecules 2022, 27, 2462. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.; Silva, B.M.; Silva, R.; Valenta, P.; Andrade, P.B.; Bastos, L. First report on Cydonia oblonga Miller anticancer potential: Differential antiproliferative effect against human kidney and colon cancer cells. Agric. Food Chem. 2010, 58, 3366–3370. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, S.; Gallicchio, M.; Fiorentino, A.; Fischer, A.; Meyer, U.; Stintzing, F.C. Antioxidant properties and cytotoxic effects on human cancer cell lines of aqueous fermented and lipophilic quince (Cydonia oblonga Mill.) preparations. Food Chem. Toxicol. 2012, 50, 4130–4135. [Google Scholar] [CrossRef]
- Al-Khazraji, S. Phytochemical screening and antibacterial activity of the crude extract of Cydonia Oblonga seeds. Glob. Adv. Res. J. Microbiol. 2013, 2, 137–140. [Google Scholar]
- Legua, P.; Serrano, M.; Melgarejo, P.; Valero, D.; Martínez, J.J.; Martínez, R.; Hernández, F. Quality parameters, biocompounds and antioxidant activity in fruits of nine quince (Cydonia oblonga Miller) accessions. Sci. Hortic. 2013, 154, 61–65. [Google Scholar] [CrossRef]
- Mir, S.A.; Masoodi, F.A.; Gani, A.; Ganaie, S.A.; Reyaz, U.; Wani, S.M. Evaluation of antioxidant properties of methanolic extracts from different fractions of quince (Cydonia oblonga Miller). Adv. Biomed. Pharm. 2015, 2, 1–6. [Google Scholar] [CrossRef]
- Mir, S.A.; Wani, S.M.; Wani, T.A.; Ahmad, M.; Gani, A.; Masoodi, F.A.; Nazir, A. Comparative evaluation of the proximate composition and antioxidant properties of processed products of quince (Cydonia oblonga Miller). Int. Food Res. J. 2016, 23, 816–821. [Google Scholar]
- Rasheed, M.; Hussain, I.; Rafiq, S.; Hayat, I.; Qayyum, A.; Ishaq, S.; Awan, M.S. Chemical composition and antioxidant activity of quince fruit pulp collected from different locations. Int. J. Food Prop. 2018, 21, 2320–2327. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Rocchetti, G.; Zengin, G.; Ak, G.; Saber, F.R.; Montesano, D.; Lucini, L. The UHPLC-QTOF-MS phenolic profiling and activity of Cydonia oblonga Mill. reveals a promising nutraceutical potential. Foods 2021, 10, 1230. [Google Scholar] [CrossRef]
- Essafi-Benkhadir, K.; Refai, A.; Riahi, I.; Fattouch, S.; Karoui, H.; Essafi, M. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-κB, p38MAPK and Akt inhibition. Biochem. Biophys. Res. Commun. 2012, 418, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.M.; Andrade, P.B.; Ferreres, F.; Domingues, A.L.; Seabra, R.M.; Ferreira, M.A. Phenolic profile of quince fruit (Cydonia oblonga Miller) (pulp and peel). J. Agric. Food Chem. 2002, 50, 4615–4618. [Google Scholar] [CrossRef]
- Sharma, R.; Joshi, V.K.; Rana, J.C. Nutritional composition and processed products of Quince (Cydonia oblonga Mill.). Indian J. Nat. Prod. Resour. 2011, 2, 354–357. [Google Scholar]
- Silva, B.M.; Andrade, P.B.; Ferreres, F.; Seabra, R.M.; Beatriz, M.; Oliveira, M.B.P.P.; Ferreira, M.A. Composition of quince (Cydonia oblonga Miller) seeds: Phenolics, organic acids and free amino acids. Nat. Prod. Res. 2005, 19, 275–281. [Google Scholar] [CrossRef]
- Rop, O.; Balík, J.; Řezníček, V.; Juríková, T.; Škardová, P.; Salaš, P.; Kramářová, D. Chemical characteristics of fruits of some selected quince (Cydonia oblonga Mill.) cultivars. Czech J. Food Sci. 2011, 29, 65–73. [Google Scholar] [CrossRef]
- Manzoor, M.; Anwar, F.; Saari, N.; Ashraf, M. Variations of antioxidant characteristics and mineral contents in pulp and peel of different apple (Malus domestica Borkh.) cultivars from Pakistan. Molecules 2012, 17, 390–407. [Google Scholar] [CrossRef]
- Hegedűs, A.; Stefanovits-Bányai, N.P.É. A review of nutritional value and putative health—Effects of quuince (Cydonia oblonga Mill.) fruit. Int. J. Hortic. Sci. 2013, 19, 29–32. [Google Scholar] [CrossRef]
- Stojanović, B.T.; Mitić, S.M.; Stojanović, G.S.; Mitić, M.N.; Kostić, D.A.; Paunović, D.D.; Arsić, B.B.; Pavlović, A.N. Phenolic profiles and metal ions analyses of pulp and peel of fruits and seeds of quince (Cydonia oblonga Mill.). Food Chem. 2017, 232, 466–475. [Google Scholar] [CrossRef]
- Costa, R.M.; Magalhães, A.S.; Pereira, J.A.; Andrade, P.B.; Valentão, P.; Carvalho, M.; Silva, B.M. Evaluation of free radical-scavenging and antihemolytic activities of quince (Cydonia oblonga) leaf: A comparative study with green tea (Camellia sinensis). Food Chem. Toxicol. 2009, 47, 860–865. [Google Scholar] [CrossRef]
- Khoubnasabjafari, M.; Jouyban, A. A review of phytochemistry and bioactivity of quince (Cydonia oblonga Mill.). J. Med. Plants Res. 2011, 5, 3577–3594. [Google Scholar] [CrossRef]
- Sood, S.; Bhardwaj, M. Nutritional evaluation of quince fruit and its products. J. Krishi. Vigyan. 2015, 3, 67–69. [Google Scholar] [CrossRef]
- Sabir, S.; Qureshi, R.; Arshad, M.; Amjad, M.S.; Fatima, S.; Masood, M.; Saboon; Chaudhari, S.K. Pharmacognostic and clinical aspects of Cydonia oblonga: A review. Asian Pac. J. Trop. Dis. 2015, 5, 850–855. [Google Scholar] [CrossRef]
- Mohebbi, S.; Naserkheil, M.; Kamalinejad, M.; Hosseini, S.H.; Noubarani, M.; Mirmohammadlu, M.; Eskandari, M.R.L. Antihyperglycemic activity of quince (Cydonia oblonga Mill.) fruit extract and its fractions in the rat model of diabetes. Int. Pharm. Acta 2019, 2, 2–7. [Google Scholar] [CrossRef]
- Silva, B.M.; Andrade, P.B.; Mendes, G.C.; Seabra, R.M.; Ferreira, M.A. Study of the organic acids composition of quince (Cydonia oblonga Miller) fruit and jam. J. Agric. Food Chem. 2002, 50, 2313–2317. [Google Scholar] [CrossRef]
- Silva, B.M.; Andrade, P.B.; Gonçalves, A.C.; Seabra, R.M.; Oliveira, M.B.; Ferreira, M.A. Influence of jam processing upon the contents of phenolics, organic acids and free amino acids in quince fruit (Cydonia oblonga Miller). Eur. Food Res. Technol. 2004, 218, 385–389. [Google Scholar] [CrossRef]
- Silva, B.M.; Andrade, P.B.; Martins, R.C.; Seabra, R.M.; Ferreira, M.A. Principal component analysis as tool of characterization of quince (Cydonia oblonga Miller) jam. Food Chem. 2006, 94, 504–512. [Google Scholar] [CrossRef]
- Curi, P.N.; Coutinho, G.; Matos, M.; Pio, R.; Albergaria, F.C.; Souza, V.R. Characterization and marmelade processing potential of quince cultivars cultivated in tropical regions. Rev. Bras. Frutic. 2018, 40, e986. [Google Scholar] [CrossRef]
- Bikić, S.; Bukurov, M.; Babić, M.; Pavkov, I.; Radojčin, M. Rheological behavior of quince (Cydonia oblonga) puree. J. Process Energy Agric. 2012, 16, 155–161. [Google Scholar]
- Carbonell-Barrachina, A.A.; Szychowski, P.J.; Vásquez, M.V.; Hernández, F.; Wojdyło, A. Technological aspects as the main impact on quality of quince liquors. Food Chem. 2015, 167, 387–395. [Google Scholar] [CrossRef]
- Tateo, F.; Bononi, M. Headspace-SPME analysis of volatiles from quince whole fruits. J. Essential. Oil Res. 2010, 22, 416–418. [Google Scholar] [CrossRef]
- Anvar, A.; Nasehi, B.; Noshad, M.; Barzegar, H. Improvement of physicochemical and nutritional quality of sponge cake fortified with microwave-air dried quince pomace. Iran Food Sci. Technol. Res. J. 2019, 15, 69–78. [Google Scholar]
- Salehi, F.; Kashaninejad, M. The effect of quince powder on rheological properties of batter and physico-chemical and sensory properties of sponge cake. J. Food Biosci. Technol. 2017, 7, 1–8. [Google Scholar]
- Salehi, F.; Kashaninejad, M. Texture profile analysis and stress relaxation characteristics of quince sponge cake. J. Food Meas. Charact. 2018, 12, 1203–1210. [Google Scholar] [CrossRef]
- Trigueros, L.; Pérez-Alvarez, J.A.; Viuda-Martos, M.; Sendra, E. Production of low-fat yogurt with quince (Cydonia oblonga Mill.) scalding water. LWT-Food Sci. Technol. 2011, 44, 1388–1395. [Google Scholar] [CrossRef]
- Gheisari, H.R.; Abhari, K.H. Drying method effects on the antioxidant activity of quince (Cydonia oblonga Miller) tea. Acta Sci. Pol. Technol. Aliment. 2014, 13, 129–134. [Google Scholar] [CrossRef]
- Baltacioglu, C. Optimization of microwave and air-drying conditions of quince (Cydonia oblonga Miller) using response surface methodology. Ital. J. Food Sci. 2015, 27, 1–7. [Google Scholar] [CrossRef]
- Munaza, B. Optimization of drying Conditions for Development of Value Added Products from Quince (Cydonia oblonga Miller); Shere-Kashmir University of Agricultural Sciences and Technology of Jammu: Jammu, India, 2018. [Google Scholar]
- Elmizadeh, A.; Shahedi, M.; Hamdami, N. Comparison of electrohydrodynamic and hot-air drying of the quince slices. Innov. Food Sci. Emerg. Technol. 2017, 43, 130–135. [Google Scholar] [CrossRef]
- Izmi, N.; Polat, A. Freeze and convective drying of quince (Cydonia oblonga Miller.): Effects on drying kinetics and quality attributes. Heat. Mass. Transfer. 2019, 55, 1317–1326. [Google Scholar] [CrossRef]
- Gaidhani, K.A.; Harwalkar, M.; Bhambere, D.; Nirgude, P.S. Lyophilization/freeze drying–a review. World J. Pharm. Res. 2015, 4, 516–543. [Google Scholar]
- Turkiewicz, I.P.; Wojdyło, A.; Lech, K.; Tkacz, K.; Nowicka, P. Influence of different drying methods on the quality of Japanese quince fruit. LWT 2019, 114, 108416. [Google Scholar] [CrossRef]
- Gulcin Yildiz, G.; Izli, G. The effect of ultrasound pretreatment on quality attributes of freeze-dried quince slices: Physical properties and bioactive compounds. J. Food Process Eng. 2019, 42, e13223. [Google Scholar] [CrossRef]
- Akman, H.E.; Boyar, I.; Gozlekci, S.; Saracoglu, O.; Ertekin, C. Effects of convective drying of quince fruit (Cydonia oblonga) on color, antioxidant activity and phenolic compounds under various fruit juice dipping pre-treatments. Agriculture 2022, 12, 1224. [Google Scholar] [CrossRef]
- AOAC. International Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Polish Standard PN-EN 12147:2000; Fruit and Vegetable Juices—Determination of Titratable Acidity. Polish Committee for Standardization. Department of Standardization Publishing: Warsaw, Poland, 2000.
- Polish Standard PN-EN 12143:2000; Determination of the Content of Soluble Substances—Refractometric Method. Polish Committee for Standardization. Department of Standardization Publishing: Warsaw, Poland, 2000.
- Ponder, A.; Kulik, K.; Hallmann, E. Occurrence and determination of carotenoids and polyphenols in different paprika powders from organic and conventional production. Molecules 2021, 26, 2980. [Google Scholar] [CrossRef]
- Hallmann, E.; Kazimierczak, R.; Marszałek, K.; Drela, N.; Kiernozek, E.; Toomik, P.; Matt, D.; Luik, A.; Rembiałkowska, E. The nutritive value of organic and conventional white cabbage (Brassica oleracea L. var. capitata) and anti-apoptotic activity in gastric adenocarcinoma cells of sauerkraut juice produced therof. J. Agric. Food Chem. 2017, 65, 8171–8183. [Google Scholar]
- Ciszewska, R.; Przeszlakowska, N.; Sykut, A.; Szynal, J. A Guide to Practicing Plant Biochemistry; Agricultural University in Lublin: Lublin, Poland, 1975; pp. 126–129. [Google Scholar]
- Singleton, V.L.; Rossi, J.A.J. Colorimetry of total phenolics with phosphomolybdic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Sadowska, A.; Świderski, F.; Rakowska, R.; Hallmann, E. Comparison of quality and microstructure of chokeberry powders prepared by different drying methods, including innovative fluidised bed jet milling and drying. Food Sci. Biotechnol. 2019, 28, 1073–1081. [Google Scholar] [CrossRef]
- Sadowska, A.; Świerski, F.; Hallmann, E.; Świąder, K. Assessment of chokeberry powders quality obtained using an innovative fluidized-bed jet milling and drying method with pre-drying compared with convection drying. Foods 2021, 10, 292. [Google Scholar] [CrossRef]
- Moon, K.M.; Kwon, E.B.; Lee, B.; Kim, C.Y. Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules 2020, 25, 2754. [Google Scholar] [CrossRef]
- Coimbra, M.A.; Nunes, C.; Cunha, P.R.; Guiné, R. Amino acid profile and Maillard compounds of sun-dried pears. Relation with the reddish brown colour of the dried fruits. Eur. Food Res. Technol. 2011, 233, 637. [Google Scholar] [CrossRef]
- Szychowski, P.J.; Munera-Picazo, S.; Szumny, A.; Ángel, A.; Carbonell-Barrachina, Á.A.; Hernández, F. Quality parameters, bio-compounds, antioxidant activity and sensory attributes of Spanish quinces (Cydonia oblonga Miller). Sci. Hortic. 2014, 165, 163–170. [Google Scholar] [CrossRef]
- Wojdyło, A.; Teleszko, M.; Oszmiański, J. Antioxidant property and storage stability of quince juice phenolic compounds. Food Chem. 2014, 152, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Oszmiański, J.; Teleszko, M.; Sokół-Łętowska, A. Composition and quantification of major polyphenolic compounds, antioxidant activity and colour properties of quince and mixed quince jams. Int. J. Food Sci. Nutr. 2013, 64, 749–756. [Google Scholar] [CrossRef]
- Pałacha, Z. Aktywność wody ważny parametr trwałości żywności. Przemysł Spożywczy 2008, 4, 22–26. (In Polish) [Google Scholar]
- Verma, V.; Singh, Z.; Yadav, N. Maillard reaction and effect of various factor on the formation of Maillard products and its impact on processed food products. In Research Trends in Food Technology and Nutrition; Sharma, P., Ed.; AkiNik Publications: New Delhi, India, 2019; pp. 65–90. [Google Scholar]
- Guiné, R.P.F.; Barroca, M.J. Quantification of browning kinetics and colour change for quince (Cydonia oblonga Mill.) exposed to atmospheric conditions. Agric. Eng. Int. CIGR J. 2014, 16, 285–298. [Google Scholar]
- Sadowska, A.; Świderski, F.; Hallmann, E. Bioactive, physicochemical and sensory properties as well as microstructure of organic strawberry powders obtained by various drying methods. Appl. Sci. 2020, 10, 4706. [Google Scholar] [CrossRef]
- Siol, M.; Sadowska, A.; Król, K.; Najman, K. Bioactive and physicochemical properties of exotic fruit seed powders: Mango (Mangefiera indica L.) and rambutan (Nephelium lappaceum L.) obtained by various drying methods. Appl. Sci. 2022, 12, 4995. [Google Scholar] [CrossRef]
- Djilali, A.B.; Mehraz, R.; Bouacem, K.; Benseddik, A.; Moualek, I.; Nabiev, M.; Benzara, A. Bioactive substances of Cydonia oblonga fruit: Insecticidal effect of tannins on Tribuliumm confusum. Int. J. Fruit Sci. 2021, 21, 721–731. [Google Scholar] [CrossRef]
- Radebe, N.; Rode, K.; Pizzi, A.; Giovando, S.; Pasch, H. MALDI-TOF-CID for the microstructre elucidation of polymeric hydrolysable tannins. J. Appl. Polym. Sci. 2013, 128, 97107. [Google Scholar] [CrossRef]
- Sieniawska, E.; Baj, T. Chapter 10—Tannins. Pharmacognosy 2017, 10, 199–232. [Google Scholar] [CrossRef]
Parameter | Fresh | Conv-50 | Conv-70 | Freeze-Dried |
---|---|---|---|---|
Dry matter (%) | 18.60 ± 0.16 a | 86.99 ± 0.11 b | 87.20 ± 0.39 b | 98.58 ± 0.18 c |
Water activity (aw) | 0.9857 ± 0.00 d | 0.2633 ± 0.00 c | 0.2133 ± 0.00 b | 0.1352 ± 0.00 a |
pH | 4.19 ± 0.03 | - | - | - |
Total acidity (g/100 g) | 0.26 ± 0.00 a | 1.65 ± 0.01 b | 1.83 ± 0.04 c | 1.87 ± 0.01 c |
°Brix (%) | 12.50 ± 0.50 | - | - | - |
Color Parameter | Fresh | Conv-50 | Conv-70 | Freeze-Dried |
---|---|---|---|---|
L* (lightness) | 82.11 ± 3.48 c | 59.21 ± 1.31 b | 56.31 ± 1.46 a | 91.72 ± 0.22 d |
a* (redness) | 11.54 ± 0.59 d | 9.02 ± 0.86 c | 8.53 ± 0.18 b | −1.37 ± 0.16 a |
b* (yellowness) | 58.76 ± 2.01 d | 35.27 ± 0.50 c | 34.55 ± 0.10 b | 33.12 ± 0.59 a |
Carotenoids | Fresh | Conv-50 | Conv-70 | Freeze-Dried |
---|---|---|---|---|
Lutein (mg/100 g) | 3.55 ± 0.06 a | 9.62 ± 0.15 c | 8.88 ± 0.19 b | 13.57 ± 0.21 d |
Zeaxanthin (mg/100 g) | 1.39 ± 0.00 a | 5.56 ± 0.00 b | 5.56 ± 0.00 b | 5.57 ± 0.00 b |
Chlorophyll a (mg/100 g) | 14.22 ± 0.13 a | 39.31 ± 0.46 c | 35.72 ± 0.24 b | 57.88 ± 0.22 d |
Chlorophyll b (mg/100 g) | 12.22 ± 0.16 a | 36.68 ± 1.05 c | 33.40 ± 0.62 b | 49.23 ± 0.37 d |
β-carotene (mg/100 g) | 13.61 ± 0.00 a | 54.00 ± 0.00 b | 54.32 ± 0.00 b | 54.42 ± 0.01 b |
Flavonoids | Fresh | Conv-50 | Conv-70 | Freeze-Dried |
---|---|---|---|---|
Catechin (mg/100 g) | 3.33 ± 0.09 b | 3.10 ± 0.03 ab | 2.95 ± 0.02 a | 13.39 ± 0.28 c |
Epigallocatechin (mg/100 g) | 8.04 ± 0.05 a | 14.96 ± 0.61 c | 10.89 ± 0.23 b | 30.69 ± 0.62 d |
Rutoside-3-O-quercetin (mg/100 g) | 4.60 ± 0.26 a | 19.11 ± 1.04 d | 15.98 ± 0.39 b | 17.34 ± 0.25 c |
Quercetin (mg/100 g) | 0.95 ± 0.01 a | 2.74 ± 0.02 c | 2.34 ± 0.06 b | 3.87 ± 0.01 d |
Phenolic Acids | Fresh | Conv-50 | Conv-70 | Freeze-Dried |
---|---|---|---|---|
Gallic acid (mg/100 g) | 1.10 ± 0.02 a | 5.17 ± 0.15 b | 4.68 ± 0.05 b | 17.68 ± 0.17 c |
Chlorogenic acid (mg/100 g) | 14.47 ± 0.14 a | 45.34 ± 1.41 c | 39.20 ± 0.38 b | 244.12 ± 7.85 d |
Caffeic acid (mg/100 g) | 0.61 ± 0.00 a | 3.79 ± 0.10 b | 3.50 ± 0.06 b | 9.83 ± 0.15 c |
p-coumaric (mg/100 g) | 0.39 ± 0.00 a | 6.73 ± 0.08 bc | 6.22 ± 0.37 b | 7.19 ± 0.36 c |
Ferulic acid (mg/100 g) | 0.31 ± 0.00 a | 1.92 ± 0.05 b | 1.81 ± 0.12 b | 4.85 ± 0.07 c |
Bioactive Compounds | Fresh | Conv-50 | Conv-70 | Freeze-Dried |
---|---|---|---|---|
Tannins (g/100 g) | 3.64 ± 0.06 a | 5.08 ± 0.04 b | 6.85 ± 0.61 c | 9.74 ± 0.05 d |
Total polyphenols (mg GAE/100 g) | 364.53 ± 3.76 c | 220.15 ± 2.30 a | 287.87 ± 7.11 b | 976.16 ± 11.48 d |
Antioxidant activity (µM TEAC/100 g) | 520.78 ± 8.56 c | 426.08 ± 9.92 a | 467.94 ± 2.18 b | 1478.08 ± 6.24 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najman, K.; Adrian, S.; Hallmann, E.; Sadowska, A.; Buczak, K.; Waszkiewicz-Robak, B.; Szterk, A. Effect of Various Drying Methods on Physicochemical and Bioactive Properties of Quince Fruit (Cydonia oblonga Mill.). Agriculture 2023, 13, 446. https://doi.org/10.3390/agriculture13020446
Najman K, Adrian S, Hallmann E, Sadowska A, Buczak K, Waszkiewicz-Robak B, Szterk A. Effect of Various Drying Methods on Physicochemical and Bioactive Properties of Quince Fruit (Cydonia oblonga Mill.). Agriculture. 2023; 13(2):446. https://doi.org/10.3390/agriculture13020446
Chicago/Turabian StyleNajman, Katarzyna, Sylwia Adrian, Ewelina Hallmann, Anna Sadowska, Krzysztof Buczak, Bożena Waszkiewicz-Robak, and Arkadiusz Szterk. 2023. "Effect of Various Drying Methods on Physicochemical and Bioactive Properties of Quince Fruit (Cydonia oblonga Mill.)" Agriculture 13, no. 2: 446. https://doi.org/10.3390/agriculture13020446
APA StyleNajman, K., Adrian, S., Hallmann, E., Sadowska, A., Buczak, K., Waszkiewicz-Robak, B., & Szterk, A. (2023). Effect of Various Drying Methods on Physicochemical and Bioactive Properties of Quince Fruit (Cydonia oblonga Mill.). Agriculture, 13(2), 446. https://doi.org/10.3390/agriculture13020446