Towards a Low-Cost Comprehensive Process for On-Farm Precision Experimentation and Analysis †
(This article belongs to the Section Agricultural Systems and Management)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
- Step 1A: first, a database management system was required to facilitate the storage and organization of ecological field-specific data.
- Step 1B: the development of on-farm experiments was implemented to assess the ecological relationship between the crop, the environment, and the agronomic input of interest.
- Step 3: on-farm data and data from open-source data repositories were aggregated together on a grid across each field to create analysis-ready datasets for ecological modeling.
- Step 4: statistical and machine learning models that characterize the ecological interactions among crop responses, the environment (topographic, weather, and edaphic features), and experimentally varied agronomic inputs were trained with data aggregated from on-farm and internet-available open sources, such as remote sensing data from satellites.
- Step 5A: Simulations were uniquely used to predict the probability of outcomes under spatial and temporal variable conditions to generate agronomic input recommendations while considering uncertainty in future weather and economic conditions. Historic weather data were sampled to emulate potentially anomalous futures given that weather conditions were used as independent variables in the crop response functions [25].
- Step 5B: based on predetermined goals and modeled crop responses across simulations, optimized input rates were identified on a site-specific basis.
- Step 5C: management outcomes, ranging from farmers’ traditionally selected rates to site-specific optimized rates, were evaluated and presented to farmers and crop managers as a probabilistic output, crucially leaving decisions about future management in the hands of the farmers themselves.
- Step 6: Part of the field was then prescribed the newly selected optimization strategy, and part was left in experimental blocks for continued understanding of the temporal variation seen across years. Over time, areas reserved for experimental blocks were reduced to increase field optimization and farmer profit.
2.2. Step 1A—Database Management Preparation
2.3. Step 1B—Experimentation
2.4. Step 2—Data Collection
2.5. Step 3—Data Aggregation
2.6. Step 4—Data Analysis
2.7. Step 5A—Optimization
2.8. Step 5B—Simulation
2.9. Step 5C—Evaluation
2.10. Step 6—Decision Making
3. Results
3.1. Application of On-Farm Precision Experimentation in Conventional Wheat Systems
3.2. Application of On-Farm Precision Experimentation in Organic Systems
3.3. Application of On-Farm Precision Experimentation for Improving Agronomic Modeling
3.4. Application of On-Farm Precision Experimentation for Conservation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a Cultivated Planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- National Institute of Food and Agriculture (NIFA). Sustainable Agriculture. 2022. Available online: https://nifa.usda.gov/topic/sustainable-agriculture (accessed on 8 February 2022).
- Antle, J.M.; Capalbo, S.M. Agriculture as a Managed Ecosystem: Policy Implications. J. Agric. Resour. Econ. 2002, 27, 1–15. [Google Scholar]
- Antle, J.M.; Valdivia, R.O. Trade-off Analysis of Agri-Food Systems for Sustainable Research and Development. Q Open 2021, 1, qoaa005. [Google Scholar] [CrossRef]
- Duff, H.; Hegedus, P.B.; Loewen, S.; Bass, T.; Maxwell, B.D. Precision Agroecology. Sustainability 2022, 14, 106. [Google Scholar] [CrossRef]
- Kanter, D.R.; Musumba, M.; Wood, S.L.R.; Palm, C.; Antle, J.; Balvanera, P.; Dale, V.H.; Havlik, P.; Kline, K.L.; Scholes, R.J.; et al. Evaluating Agricultural Trade-Offs in the Age of Sustainable Development. Agric. Syst. 2018, 163, 73–88. [Google Scholar] [CrossRef]
- Schimmelpfennig, D.; Lowenberg-DeBoer, J. Farm Types and Precision Agriculture Adoption: Crops, Regions, Soil Variability, and Farm Size. SSRN Electron. J. 2020, 1–38. [Google Scholar] [CrossRef]
- West, P.C.; Gerber, J.S.; Engstrom, P.M.; Mueller, N.D.; Brauman, K.A.; Carlson, K.M.; Cassidy, E.S.; Johnston, M.; Macdonald, G.K.; Ray, D.K.; et al. Leverage Points for Improving Global Food Security and the Environment. Food Secur. 2014, 345, 325–328. [Google Scholar] [CrossRef] [Green Version]
- Robert, P. Characterization of soil conditions at the field level for soil specific management. Geoderma 1993, 60, 57–72. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I. Agroecology and the Reconstruction of a Post-COVID-19 Agriculture. J. Peasant Stud. 2020, 47, 881–898. [Google Scholar] [CrossRef]
- Daum, T. Farm Robots: Ecological Utopia or Dystopia? Trends Ecol. Evol. 2021, 36, 774–777. [Google Scholar] [CrossRef]
- Cook, S.; Evans, F. An On-Farm Experimental philosophy for farmer-centric innovation. In Proceedings of the 14th International Conference on Precision Agriculture, Montreal, QC, Canada, 24–27 June 2018. [Google Scholar]
- Luschei, E.C.; Van Wychen, L.R.; Maxwell, B.D.; Bussan, A.J.; Buschena, D.; Goodman, D. Implementing and conducting on-farm weed research with the use of GPS. Weed Sci. 2001, 49, 536–542. [Google Scholar] [CrossRef]
- Lacoste, M.; Cook, S.; Mcnee, M.; Gale, D.; Ingram, J.; Bellon-maurel, V.; Macmillan, T.; Sylvester-bradley, R.; Kindred, D.; Bramley, R.; et al. On-Farm Experimentation to Transform Global Agriculture. Nat. Food 2022, 3, 11–18. [Google Scholar] [CrossRef]
- Hegedus, P.B.; Maxwell, B.D. Rationale for Field-Specific on-Farm Precision Experimentation. Agric. Ecosyst. Environ. 2022, 338, 108088. [Google Scholar] [CrossRef]
- Trevisan, R.G.; Bullock, D.S.; Martin, N.F. Spatial Variability of Crop Responses to Agronomic Inputs in On-Farm Precision Experimentation. Precis. Agric. 2021, 22, 342–363. [Google Scholar] [CrossRef]
- Cook, S.; Cock, J.; Oberthür, T.; Fisher, M. On-Farm Experimentation. Better Crops 2004, 97, 17–20. [Google Scholar]
- Maxwell, B.D.; Luschei, E.C. Justification for Site-Specific Weed Management Based on Ecology and Economics. Weed Sci. 2005, 53, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Kyveryga, P.M. On-Farm Research: Experimental Approaches, Analytical Frameworks, Case Studies, and Impact. Agron. J. 2019, 111, 2633–2635. [Google Scholar] [CrossRef] [Green Version]
- Bullock, D.S.; Mieno, T.; Hwang, J. The Value of Conducting On-Farm Field Trials Using Precision Agriculture Technology: A Theory and Simulations. Precis. Agric. 2020, 21, 1027–1044. [Google Scholar] [CrossRef]
- Prost, L.; Martin, G.; Ballot, R.; Benoit, M. Key research challenges to supporting farm transitions to agroecology in advanced economies. A review. Agron. Sustain. Dev. 2023, 43, 11. [Google Scholar] [CrossRef]
- Capmourteres, V.; Adams, J.; Berg, A.; Fraser, E.; Swanton, C.; Anand, M. Precision Conservation Meets Precision Agriculture: A Case Study from Southern Ontario. Agric. Sys. 2018, 167, 176–185. [Google Scholar] [CrossRef]
- McBratney, A.; Whelan, B.; Ancev, T.; Bouma, J. Future Directions of Precision Agriculture. Precis. Agric. 2005, 6, 7–23. [Google Scholar] [CrossRef]
- Hegedus, P.B.; Maxwell, B.D. Constraint of Data Availability on the Predictive Ability of Crop Response Models Developed from On-farm Experimentation. In Proceedings of the 15th International Conference on Precision Agriculture, Minneapolis, MN, USA, 28 June 2022. [Google Scholar]
- Bullock, D.S.; Boerngen, M.; Tao, H.; Maxwell, B.; Luck, J.D.; Shiratsuchi, L.; Puntel, L.; Martin, N.F. The Data-Intensive Farm Management Project: Changing Agronomic Research through on-Farm Precision Experimentation. Agron. J. 2019, 111, 2736–2746. [Google Scholar] [CrossRef] [Green Version]
- Hegedus, P.B.; Maxwell, B.D.; Mieno, T. Assessing performance of empirical models for forecasting crop responses to variable fertilizer rates using on-farm precision experimentation. Precis. Agric. 2022, 1–28. [Google Scholar] [CrossRef]
- Peerlinck, A.; Sheppard, J.; Pastorino, J.; Maxwell, B.D. Optimal Design of Experiments for Precision Agriculture Using a Genetic Algorithm. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019. [Google Scholar]
- Rzewnicki, P.E.; Thompson, R.; Lesoing, G.W.; Elmore, R.W.; Francis, C.A.; Parkhurst, A.M.; Moomaw, R.S. On-Farm Experiment Designs and Implications for Locating Research Sites. Am. J. Altern. Agric. 1988, 3, 168–173. [Google Scholar] [CrossRef]
- Gauci, A.; Fulton, J.P.; Linsey, A.; Shearer, A.; Barker, D.; Hawkins, E. Limitations of Yield Monitor Data to Support Field-scale Research. In Proceedings of the 15th International Conference on Precision Agriculture, Minneapolis, MN, USA, 28 June 2022. [Google Scholar]
- Lawrence, P.G.; Rew, L.J.; Maxwell, B.D. A Probabilistic Bayesian Framework for Progressively Updating Site-Specific Recommendations. Precis. Agric. 2015, 16, 275–296. [Google Scholar] [CrossRef]
- Whitlock, C.; Cross, W.; Maxwell, B.; Silverman, N.; Wade, A. 2017 Montana Climate Assessment. Bozeman and Missoula MT: Montana State University and University of Montana, Montana Institute on Ecosystems. 2017, 318. Available online: https://montanaclimate.org/chapter/title-page (accessed on 15 September 2020).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Fritsch, M.; Lischke, H.; Meyer, K.M. Scaling Methods in Ecological Modelling. Methods Ecol. Evol. 2020, 11(11), 1368–1378. [Google Scholar] [CrossRef]
- Blöschl, G.; Sivapalan, M. Scale Issues in Hydrological Modelling: A Review. Hydrol. Process. 1995, 9, 251–290. [Google Scholar] [CrossRef]
- Paccioretti, P.; Bruno, C.; Gianinni Kurina, F.; Córdoba, M.; Bullock, D.S.; Balzarini, M. Statistical Models of Yield in On-Farm Precision Experimentation. Agron. J. 2021, 113, 4916–4929. [Google Scholar] [CrossRef]
- Anselin, L.; Bongiovanni, R.; Lowenberg-DeBoer, J. A Spatial Econometric Approach To The Economics of Site-Specific Nitrogen Management. Am. J. Agric. Econ. 2004, 86, 675–687. [Google Scholar] [CrossRef]
- Thöle, H.; Richter, C.; Ehlert, D. Strategy of Statistical Model Selection for Precision Farming On-Farm Experiments. Precis. Agric. 2013, 14, 434–449. [Google Scholar] [CrossRef]
- Yin, X.; Goudriaan, J.; Lantinga, E.A.; Vos, J.; Spiertz, H.J. A Flexible Sigmoid Function of Determinate Growth. Ann. Bot. 2003, 91, 361–371. [Google Scholar] [CrossRef]
- Peerlinck, A.; Sheppard, J.; Senecal, J. AdaBoost with Neural Networks for Yield and Protein Prediction in Precision Agriculture. In Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019. [Google Scholar]
- Morales, G.; Sheppard, J.; Peerlinck, A.; Hegedus, P.B.; Maxwell, B.D. Generation of Site-Specific Nitrogen Response Curves for Winter Wheat using Deep Learning. In Proceedings of the 15th International Conference on Precision Agriculture, Minneapolis, MN, USA, 28 June 2022. [Google Scholar]
- Morales, G.; Sheppard, J.; Hegedus, P.B.; Maxwell, B.D. Improved Yield Prediction of Winter Wheat Using a Novel Two-Dimensional Deep Regression Neural Network Trained via Remote Sensing. Sensors 2023, 23, 489. [Google Scholar] [CrossRef]
- Tanaka, T.S.T.; Kakimoto, S.; Mieno, T.; Bullock, D.S. Comparison between spatial predictor variables for machine learning in site-specific yield response modeling based on simulation study of on-farm precision experimentation. In Proceedings of the 253rd Meeting of the Crop Science Society of Japan, Online, 25 March 2022. [Google Scholar] [CrossRef]
- Asaduzzaman Noor, M.; Sheppard, J.; Yaw, S. Mixing Grain to Improve Profitability in Winter Wheat using Evolutionary Algorithms. SN Comput. Sci. J. 2022, 3, 172. [Google Scholar] [CrossRef]
- Sigler, W.A.; Ewing, S.A.; Jones, C.A.; Payn, R.A.; Miller, P.; Maneta, M. Water and Nitrate Loss from Dryland Agricultural Soils Is Controlled by Management, Soils, and Weather. Agric. Ecosyst. Environ. 2020, 304, 107158. [Google Scholar] [CrossRef]
- Jones, C. Soil Acidification: A Growing Concern for Montana Farmers; Montana Natural Resources Conservation Service: Bozeman, MT, USA, 2018. [Google Scholar]
- Hegedus, P.B.; Ewing, S.E.; Jones, C.; Maxwell, B.D. Using spatially variable nitrogen application and crop responses to evaluate crop nitrogen use efficiency. Nutr. Cycl. Agroecosyst. 2022. preprint. [Google Scholar] [CrossRef]
- Peerlinck, A.; Sheppard, J. Addressing sustainability in precision agriculture via multi-objective factored evolutionary algorithms. In Proceedings of the 14th Metaheuristics International Conference, Syracuse, Italy, 11 July 2014. [Google Scholar]
- Hegedus, P.B.; Maxwell, B.D.; Ewing, S.E.; Bekkerman, A. Development and evaluation of site-specific optimized nitrogen fertilizer management based on maximized profit and minimization of pollution. Precis. Agric. 2022. in preparation. [Google Scholar]
- Loewen, S.; Maxwell, B.D. Precision Application of Seeding Rates for Weed and Nitrogen Management in Organic Grain Systems. In Proceedings of the 15th International Conference on Precision Agriculture, Minneapolis, MN, USA, 28 June 2022. [Google Scholar]
- Duff, H.; Maxwell, B.D. Ecological Refugia As a Precision Conservation Practice in Agricultural Systems. In Proceedings of the 15th International Conference on Precision Agriculture, Minneapolis, MN, USA, 28 June 2022. [Google Scholar]
- Gurr, G.M.; Wratten, S.D.; Luna, J.M. Basic and Applied Ecology Multi-Function Agricultural Biodiversity: Pest Management and Other Benefits. Basic Appl. Ecol. 2003, 4, 107–116. [Google Scholar] [CrossRef]
- Isaacs, R.; Tuell, J.; Fiedler, A.; Gardiner, M.; Landis, D. Maximizing Arthropod Mediated Ecosystem Services in Agricultural Landscapes: The Role of Native Plants. Front. Ecol. Environ. 2009, 7, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Landis, D. Designing Agricultural Landscapes for Biodiversity Based Ecosystem Services. Appl. Ecol. 2017, 18, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pierpaoli, E.; Carli, G.; Pignatti, E.; Canavari, M. Drivers of Precision Agriculture Technologies Adoption: A Literature Review. Procedia Technol. 2013, 8, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Lindblom, J.; Lundström, C.; Ljung, M.; Jonsson, A. Promoting sustainable intensification in precision agriculture: Review of decision support systems development and strategies. Precis. Agric. 2017, 18, 309–331. [Google Scholar] [CrossRef] [Green Version]
- Gobbo, S.; Morari, F.; Ferrise, R.; De Antoni Migliorati, M.; Furlan, L.; Sartori, L. Evaluation of different crop model-based approaches for variable rate nitrogen fertilization in winter wheat. Precis. Agric. 2021, 21, 2185–2208. [Google Scholar]
- Anwar, M.R.; Liu, D.L.; Macadam, I.; Kelly, G. Adapting Agriculture to Climate Change: A Review. Theor. Appl. Climatol. 2013, 113, 225–245. [Google Scholar] [CrossRef]
- Bullock, G.; Bullock, D.S. Quadratic and quadratic-plus-plateau models for predicting optimal nitrogen rate of corn: A comparison. Agron. J. 1994, 86, 191–195. [Google Scholar] [CrossRef]
- Watkins, K.B.; Hignight, J.A.; Norman, R.J.; Roberts, T.L.; Slaton, N.A.; Wilson, C.E.; Frizzell, D.L. Comparison of economic optimum nitrogen rates for rice in Arkansas. Agron. J. 2010, 102, 1099–1108. [Google Scholar] [CrossRef]
- Kablan, L.A.; Chabot, V.; Mailloux, A.; Bouchard, M.-E.; Fontaine, D.; Bruulsema, T. Variability in corn yield response to nitrogen fertilizer in eastern Canada. Agron. J. 2017, 109, 2231–2242. [Google Scholar] [CrossRef] [Green Version]
- Pham, X.; Stack, M. How Data Analytics Is Transforming Agriculture. Bus. Horiz. 2018, 61, 125–133. [Google Scholar] [CrossRef]
- Sykuta, M.E. Big Data in Agriculture: Property Rights, Privacy and Competition in Ag Data Services. Int. Food Agribus. Manag. Rev. 2016, 19, 57–74. [Google Scholar]
- Sawers, P. Linux Foundation Launches Open Source Agriculture Infrastructure Project. Venture Beat. Available online: https://venturebeat.com/2021/05/05/linux-foundation-launches-open-source-agriculture-infrastructure-project/ (accessed on 27 March 2022).
- Haas, C.A.; Frimpong, E.A.; Karpanty, S.M. Ecosystems and Ecosystem-Based Management. In The Sciences and Art of Adaptive Management: Innovating for Sustainable Agriculture and Natural Resources Management; Moore, K.M., Ed.; Soil and Water Conservation Society: Ankeny, IA, USA, 2009; pp. 106–142. [Google Scholar]
- Wyeth, P. Sustainable Agriculture and Natural Resource Management in Farm Enterprise Systems. In The Sciences and Art of Adaptive Management: Innovating for Sustainable Agriculture and Natural Resources Management; Moore, K.M., Ed.; Soil and Water Conservation Society: Ankeny, IA, USA, 2009; pp. 60–77. [Google Scholar]
- Mueller, J.P.; Finney, D.; Hepperly, P. The Field System. In The Sciences and Art of Adaptive Management: Innovating for Sustainable Agriculture and Natural Resources Management; Moore, K.M., Ed.; Soil and Water Conservation Society: Ankeny, IA, USA, 2009; pp. 25–59. [Google Scholar]
Data Type | Data Sources | Resolution | Years Collected | Description |
---|---|---|---|---|
Normalized Difference Vegetation Index (NDVI) | Landsat 5/7/8 | 30 m | L5: 1999–2011 L7: 2012–2013 L8: 2014–present | Landsat is an ongoing USGS and NASA collaboration. Bands (NIR, red) L5/L7: B4 (NIR) and B3 (red) L8: B5 (NIR) and B4 (red) |
Normalized Difference Water Index (NDWI) | Landsat 5/7/8 | 30 m | L5: 1999–2011 L7: 2012–2013 L8: 2014–present | Landsat is an ongoing USGS and NASA collaboration. Bands (NIR, MIR) L5/L7: B2 (MIR) and B4 (NIR) L8: B2 (MIR) and B5 (NIR) |
Elevation | USGS NED | ~10 m (1/3 arc second), ~23 m (3/4 arc second) | 1999–present | USGS National Elevation Dataset. Measured in meters. |
Aspect | USGS NED | ~10 m (1/3 arc second), 30 m | 1999–present | Direction the surface faces, function of neighboring elevations, in radians, and also calculated for each E/W and N/S direction as cosine and sine. |
Slope | USGS NED | ~10 m (1/3 arc second), 30 m | 1999–present | Rate of change in height from neighboring cells. Measured in degrees. |
Topographic Position Index (TPI) | USGS NED | ~10 m (1/3 arc second), 30 m | 1999–present | Measure of divots and low spots as a function of neighboring elevation. |
Precipitation | DaymetV3 | 1 km | 1999–present | Estimates from the NASA Oak Ridge National Laboratory (ORNL). Measured in mm. |
Growing Degree Days (GDDs) | DaymetV3 | 1 km | 1999–present | Estimates from the NASA Oak Ridge National Laboratory (ORNL). |
Bulk Density | OpenLandMap | 250 m | 1999–present | Soil bulk density (fine earth) 10 × kg/m3 averaged over 6 standard depths (0, 0.1, 0.3, 0.6, 1, and 2 m). |
Clay Content | OpenLandMap | 250 m | 1999–present | Clay content in % (kg/kg) averaged over 6 standard depths (0, 0.1, 0.3, 0.6, 1, and 2 m). |
Sand Content | OpenLandMap | 250 m | 1999–present | Sand content in % (kg/kg) averaged over 6 standard depths (0, 0.1, 0.3, 0.6, 1, and 2 m). |
pH (phw) | OpenLandMap | 250 m | 1999–present | Soil pH in H2O averaged over 6 standard depths (0, 0.1, 0.3, 0.6, 1, and 2 m). |
Water Content | OpenLandMap | 250 m | 1999–present | Soil water content (volumetric %) for 33 kPa and 1500 kPa suctions predicted and averaged over 6 standard depths (0, 0.1, 0.3, 0.6, 1, and 2 m). |
Carbon Content | OpenLandMap | 250 m | 1999–present | Soil organic carbon content in × 5 g/kg averaged over 6 standard depths (0, 0.1, 0.3, 0.6, 1, and 2 m). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hegedus, P.B.; Maxwell, B.; Sheppard, J.; Loewen, S.; Duff, H.; Morales-Luna, G.; Peerlinck, A. Towards a Low-Cost Comprehensive Process for On-Farm Precision Experimentation and Analysis. Agriculture 2023, 13, 524. https://doi.org/10.3390/agriculture13030524
Hegedus PB, Maxwell B, Sheppard J, Loewen S, Duff H, Morales-Luna G, Peerlinck A. Towards a Low-Cost Comprehensive Process for On-Farm Precision Experimentation and Analysis. Agriculture. 2023; 13(3):524. https://doi.org/10.3390/agriculture13030524
Chicago/Turabian StyleHegedus, Paul B., Bruce Maxwell, John Sheppard, Sasha Loewen, Hannah Duff, Giorgio Morales-Luna, and Amy Peerlinck. 2023. "Towards a Low-Cost Comprehensive Process for On-Farm Precision Experimentation and Analysis" Agriculture 13, no. 3: 524. https://doi.org/10.3390/agriculture13030524
APA StyleHegedus, P. B., Maxwell, B., Sheppard, J., Loewen, S., Duff, H., Morales-Luna, G., & Peerlinck, A. (2023). Towards a Low-Cost Comprehensive Process for On-Farm Precision Experimentation and Analysis. Agriculture, 13(3), 524. https://doi.org/10.3390/agriculture13030524