Evaluating the Classification of Freeze-Dried Slices and Cubes of Red-Fleshed Apple Genotypes Using Image Textures, Color Parameters, and Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Freeze-Drying
2.3. Image Analysis and Color Measurements of Freeze-Dried Red-Fleshed Apple Slices and Cubes
2.3.1. Image Acquisition and Processing
2.3.2. Color Measurements
2.4. Statistical Analysis
3. Results and Discussion
3.1. Fresh Fruit Quality
3.2. Classification Results Based on Selected Image Texture Parameters of Sliced Sample Images
3.3. Classification Results Based on Selected Image Textures and Color Parameters of Sliced Sample Images
3.4. Classification Results Based on Selected Texture Parameters of Cube Sample Images
3.5. Classification Results Based on Selected Image Textures and Color Parameters of Cube Sample Images
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, B.; Jiang, S.; Wang, Y.; Xu, J.; Xu, M.; Sun, X.; Zhu, J.; Zhang, Y. Red-Fleshed Apple Anthocyanin Extract Reduces Furan Content in Ground Coffee, Maillard Model System, and Not-from-Concentrate Apple Juice. Foods 2021, 10, 2423. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.; Dussling, S.; Scansani, S.; Bach, P.; Ludwig, M.; Steingass, C.B.; Will, F.; Schweiggert, R. Comparative Evaluation of Juices from Red-Fleshed Apples after Production with Different Dejuicing Systems and Subsequent Storage. Molecules 2022, 27, 2459. [Google Scholar] [CrossRef] [PubMed]
- Catalán, Ú.; Pedret, A.; Yuste, S.; Rubió, L.; Piñol, C.; Sandoval-Ramírez, B.A.; Companys, J.; Foguet, E.; Herrero, P.; Canela, N.; et al. Red-Fleshed Apples Rich in Anthocyanins and White-Fleshed Apples Modulate the Aorta and Heart Proteome in Hypercholesterolaemic Rats: The AppleCOR Study. Nutrients 2022, 14, 1047. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, X.; Wang, Y.; Xu, J.; Jiang, S.; Zhang, Y. MdMKK9-Mediated the Regulation of Anthocyanin Synthesis in Red-Fleshed Apple in Response to Different Nitrogen Signals. Int. J. Mol. Sci. 2022, 23, 7755. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, C.; Liang, D.; Zou, Y.; Li, P.; Ma, F. Phenolic compounds and antioxidant activity in red-fleshed apples. J. Funct. Foods 2015, 18, 1086–1094. [Google Scholar] [CrossRef]
- Juhart, J.; Medic, A.; Veberic, R.; Hudina, M.; Jakopic, J.; Stampar, F. Phytochemical Composition of Red-Fleshed Apple Cultivar ‘Baya Marisa’ Compared to Traditional, White-Fleshed Apple Cultivar ‘Golden Delicious’. Horticulturae 2022, 8, 811. [Google Scholar] [CrossRef]
- Joshi, A.P.K.; Rupasinghe, H.P.V.; Khanizadeh, S. Impact of drying processes on bioactive phenolics, vitamin c and antioxidant capacity of red-fleshed apple slices. J. Food Process. Preserv. 2011, 35, 453–457. [Google Scholar] [CrossRef]
- Konopacka, D.; Seroczynska, A.; Korzeniewska, A.; Jesionkowska, K.; Niemirowicz-Szczytt, K.; Płocharski, W. Studies on the usefulness of Cucurbita maxima for the production of ready-to-eat dried vegetable snacks with a high carotenoid content. LWT - Food Sci. Technol. 2010, 43, 302–309. [Google Scholar] [CrossRef]
- Kidoń, M.; Grabowska, J. Bioactive compounds, antioxidant activity, and sensory qualities of red-fleshed apples dried by different methods. LWT - Food Sci. Technol. 2021, 136, 110302. [Google Scholar] [CrossRef]
- Yuste, S.; Macià, A.; Motilva, M.J.; Prieto-Diez, N.; Rubió, L. Thermal and non-thermal processing of red-fleshed apple: How are (poly)phenol composition and bioavailability affected? Food Funct. 2020, 11, 10436–10447. [Google Scholar] [CrossRef]
- Wojdyło, A.; Lech, K.; Nowicka, P. Effects of Different Drying Methods on the Retention of Bioactive Compounds, On-Line Antioxidant Capacity and Color of the Novel Snack from Red-Fleshed Apples. Molecules 2020, 25, 5521. [Google Scholar] [CrossRef]
- Davies, E.R. Machine vision in the food industry. In Robotics and Automation in the Food Industry; Elsevier: Amsterdam, The Netherlands, 2013; pp. 75–110. [Google Scholar] [CrossRef]
- Sun, D.W. Computer Vision Technology for Food Quality Evaluation, 2nd ed.; Academic Press: Cambridge, MA, USA, 2016; ISBN 9780128025994. [Google Scholar]
- Zheng, C.; Sun, D.-W. 2.2 Computer Vision for Quality Control. In Optical Monitoring of Fresh and Processed Agricultural Crops, 1st ed.; Zude, M., Ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Alpaydin, E. Introduction to Machine Learning, 4th ed.; MIT Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Sarker, I.H. Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Gulzar, Y. Fruit Image Classification Model Based on MobileNetV2 with Deep Transfer Learning Technique. Sustainability 2023, 15, 1906. [Google Scholar] [CrossRef]
- Mamat, N.; Othman, M.F.; Abdulghafor, R.; Alwan, A.A.; Gulzar, Y. Enhancing Image Annotation Technique of Fruit Classification Using a Deep Learning Approach. Sustainability 2023, 15, 901. [Google Scholar] [CrossRef]
- Suryawanshi, Y.; Patil, K.; Chumchu, P. VegNet: Dataset of vegetable quality images for machine learning applications. Data Brief 2022, 45, 108657. [Google Scholar] [CrossRef]
- Ropelewska, E.; Sabanci, K.; Aslan, M.F. The Use of Digital Color Imaging and Machine Learning for the Evaluation of the Effects of Shade Drying and Open-Air Sun Drying on Mint Leaf Quality. Appl. Sci. 2023, 13, 206. [Google Scholar] [CrossRef]
- Ropelewska, E. Distinguishing lacto-fermented and fresh carrot slice images using the Multilayer Perceptron neural network and other machine learning algorithms from the groups of Functions, Meta, Trees, Lazy, Bayes and Rules. Eur. Food Res. Technol. 2022, 248, 2421–2429. [Google Scholar] [CrossRef]
- Ropelewska, E.; Sabanci, K.; Aslan, M.F. The Changes in Bell Pepper Flesh as a Result of Lacto-Fermentation Evaluated Using Image Features and Machine Learning. Foods 2022, 11, 2956. [Google Scholar] [CrossRef]
- Ropelewska, E.; Wrzodak, A. The Use of Image Analysis and Sensory Analysis for the Evaluation of Cultivar Differentiation of Freeze-Dried and Lacto-Fermented Beetroot (Beta vulgaris L.). Food Anal. Methods 2022, 15, 1026–1041. [Google Scholar] [CrossRef]
- Nazari, L.; Khazaei, A.; Ropelewska, E. Prediction of tannin, protein, and total phenolic content of grain sorghum using image analysis and machine learning. Cereal Chem. 2022, 99, 843–849. [Google Scholar] [CrossRef]
- Ropelewska, E.; Szwejda-Grzybowska, J. Relationship of Textures from Tomato Fruit Images Acquired Using a Digital Camera and Lycopene Content Determined by High-Performance Liquid Chromatography. Agriculture-Basel 2022, 12, 1495. [Google Scholar] [CrossRef]
- Aggarwal, S.; Gupta, S.; Gupta, D.; Gulzar, Y.; Juneja, S.; Alwan, A.A.; Nauman, A. An Artificial Intelligence-Based Stacked Ensemble Approach for Prediction of Protein Subcellular Localization in Confocal Microscopy Images. Sustainability 2023, 15, 1695. [Google Scholar] [CrossRef]
- Fernandez, L.; Castillero, C.; Aguilera, J. An application of image analysis to dehydration of apple discs. J. Food Eng. 2005, 67, 185–193. [Google Scholar] [CrossRef]
- Rutkowski, K.P.; Michalczuk, B.; Konopacki, P. Nondestructive determination of ‘golden delicious’ apple quality and harvest maturity. J. Fruit Ornam. Plant Res. 2008, 16, 39–52. [Google Scholar]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A. Mazda—A software for texture analysis. In Proceedings of the 2007 International Symposium on Information Technology Convergence (ISITC 2007), Jeonju, Korea, 23–24 November 2007; pp. 245–249. [Google Scholar]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda—A software package for image texture analysis. Computer Methods and Programs in Biomedicine 2009, 94, 66–76. [Google Scholar] [CrossRef]
- Strzelecki, M.; Szczypiński, P.; Materka, A.; Klepaczko, A. A software tool for automatic classification and segmentation of 2D/3D medical images. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2013, 702, 137–140. [Google Scholar] [CrossRef]
- Ropelewska, E. The use of seed texture features for discriminating different cultivars of stored apples. J. Stored Prod. Res. 2020, 88, 101668. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E. Data mining: Practical machine learning tools and techniques, 2nd ed.; Elsevier: San Francisco, CA, USA, 2005; p. 525. [Google Scholar]
- Bouckaert, R.R.; Frank, E.; Hall, M.; Kirkby, R.; Reutemann, P.; Seewald, A.; Scuse, D. WEKA manual for version 3-9-1; University of Waikato: Hamilton, New Zealand, 2016. [Google Scholar]
- Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench—Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.; Morgan Kaufmann Publishers: Burlington, MA, USA, 2016. [Google Scholar]
- Ropelewska, E.; Szwejda-Grzybowska, J. A comparative analysis of the discrimination of pepper (Capsicum annuum L.) based on the cross-section and seed textures determined using image processing. J. Food Process Eng. 2021, 44, e13694. [Google Scholar] [CrossRef]
- Matysiak, B.; Ropelewska, E.; Wrzodak, A.; Kowalski, A.; Kaniszewski, S. Yield and quality of romaine lettuce at different daily light integral in an indoor controlled environment. Agronomy 2022, 12, 1026. [Google Scholar] [CrossRef]
- Sturm, B.; Hofacker, W.C.; Hensel, O. Optimizing the drying parameters for hot-air–dried apples. Dry. Technol. 2012, 30, 1570–1582. [Google Scholar] [CrossRef]
- Sampson, D.J.; Chang, Y.K.; Rupasinghe, H.V.; Zaman, Q.U. A dual-view computer-vision system for volume and image texture analysis in multiple apple slices drying. J. Food Eng. 2014, 127, 49–57. [Google Scholar] [CrossRef]
- Raponi, F.; Moscetti, R.; Chakravartula, S.S.N.; Fidaleo, M.; Massantini, R. Monitoring the hot-air drying process of organically grown apples (cv. Gala) using computer vision. Biosyst. Eng. 2022, 223, 1–13. [Google Scholar] [CrossRef]
- Tharwat, A.; Gaber, T.; Ibrahim, A.; Hassanien, A.E. Linear discriminant analysis: A detailed tutorial. AI Commun. 2017, 30, 169–190. [Google Scholar] [CrossRef]
- Landwehr, N.; Hall, M.; Frank, E. Logistic model trees. Machine learning 2005, 59, 161–205. [Google Scholar] [CrossRef]
- Rehman, T.U.; Mahmud, M.S.; Chang, Y.K.; Jin, J.; Shin, J. Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Comput. Electron. Agr. 2019, 156, 585–605. [Google Scholar] [CrossRef]
- Osako, Y.; Yamane, H.; Lin, S.Y.; Chen, P.A.; Tao, R. Cultivar discrimination of litchi fruit images using deep learning. Sci. Hortic. 2020, 269, 109360. [Google Scholar] [CrossRef]
Apple Genotype | Date | Average Fruit Weight (g) | Starch Index (1–10) | IEC (ppm) | Firmness (N) | TSS (%) | TA (%) |
---|---|---|---|---|---|---|---|
‘Alex Red’ | 31 August 2022 | 106 | 6.0 | 0.10 | 79.8 | 10.47 | 1.51 |
‘Trinity’ | 31 August 2022 | 119 | 7.3 | 0.11 | 73.5 | 10.60 | 1.52 |
‘314’ | 12 September 2022 | 128 | 8.0 | 1.95 | 55.7 | 12.87 | 1.30 |
‘602’ | 12 September 2022 | 89 | 6.7 | 0.20 | 103.6 | 13.27 | 1.30 |
LSD | 14 | 1.9 | 1.53 | 19.82 | 0.64 | 0.10 |
Algorithm | Predicted Class | Actual Class | Overall Accuracy (%) | |||
---|---|---|---|---|---|---|
‘Alex Red’ | ‘Trinity’ | ‘314’ | ‘602’ | |||
LDA (Functions) | 92 | 6 | 1 | 1 | ‘Alex Red’ | 90.25 |
7 | 90 | 0 | 3 | ‘Trinity’ | ||
3 | 1 | 88 | 8 | ‘314’ | ||
0 | 0 | 9 | 91 | ‘602’ | ||
IBk (Lazy) | 83 | 8 | 4 | 5 | ‘Alex Red’ | 85.25 |
10 | 90 | 0 | 0 | ‘Trinity’ | ||
4 | 0 | 84 | 12 | ‘314’ | ||
1 | 1 | 14 | 84 | ‘602’ | ||
LogitBoost (Meta) | 83 | 7 | 7 | 3 | ‘Alex Red’ | 85.50 |
4 | 93 | 0 | 3 | ‘Trinity’ | ||
5 | 0 | 78 | 17 | ‘314’ | ||
1 | 4 | 7 | 88 | ‘602’ | ||
LMT (Trees) | 90 | 6 | 4 | 0 | ‘Alex Red’ | 89.50 |
2 | 95 | 0 | 3 | ‘Trinity’ | ||
5 | 1 | 87 | 7 | ‘314’ | ||
3 | 2 | 9 | 86 | ‘602’ | ||
Bayes Net (Bayes) | 83 | 7 | 6 | 4 | ‘Alex Red’ | 84.75 |
10 | 86 | 3 | 1 | ‘Trinity’ | ||
4 | 0 | 84 | 12 | ‘314’ | ||
3 | 0 | 11 | 86 | ‘602’ |
Algorithm | Actual Class | TP Rate | FP Rate | Precision | F-Measure | MCC | ROC Area | PRC Area |
---|---|---|---|---|---|---|---|---|
LDA (Functions) | ‘Alex Red’ | 0.920 | 0.033 | 0.902 | 0.911 | 0.881 | 0.987 | 0.967 |
‘Trinity’ | 0.900 | 0.023 | 0.928 | 0.914 | 0.886 | 0.986 | 0.949 | |
‘314’ | 0.880 | 0.033 | 0.898 | 0.889 | 0.852 | 0.981 | 0.957 | |
‘602’ | 0.910 | 0.040 | 0.883 | 0.897 | 0.862 | 0.987 | 0.961 | |
IBk (Lazy) | ‘Alex Red’ | 0.830 | 0.050 | 0.847 | 0.838 | 0.785 | 0.890 | 0.745 |
‘Trinity’ | 0.900 | 0.030 | 0.909 | 0.905 | 0.873 | 0.935 | 0.843 | |
‘314’ | 0.840 | 0.060 | 0.824 | 0.832 | 0.775 | 0.890 | 0.732 | |
‘602’ | 0.840 | 0.057 | 0.832 | 0.836 | 0.781 | 0.892 | 0.739 | |
LogitBoost (Meta) | ‘Alex Red’ | 0.830 | 0.033 | 0.892 | 0.860 | 0.817 | 0.962 | 0.923 |
‘Trinity’ | 0.930 | 0.037 | 0.894 | 0.912 | 0.882 | 0.986 | 0.964 | |
‘314’ | 0.780 | 0.047 | 0.848 | 0.813 | 0.755 | 0.946 | 0.886 | |
‘602’ | 0.880 | 0.077 | 0.793 | 0.834 | 0.777 | 0.964 | 0.896 | |
LMT (Trees) | ‘Alex Red’ | 0.900 | 0.033 | 0.900 | 0.900 | 0.867 | 0.980 | 0.961 |
‘Trinity’ | 0.950 | 0.030 | 0.913 | 0.931 | 0.908 | 0.979 | 0.953 | |
‘314’ | 0.870 | 0.043 | 0.870 | 0.870 | 0.827 | 0.965 | 0.928 | |
‘602’ | 0.860 | 0.033 | 0.896 | 0.878 | 0.838 | 0.976 | 0.899 | |
Bayes Net (Bayes) | ‘Alex Red’ | 0.830 | 0.057 | 0.830 | 0.830 | 0.773 | 0.953 | 0.896 |
‘Trinity’ | 0.860 | 0.023 | 0.925 | 0.891 | 0.858 | 0.984 | 0.962 | |
‘314’ | 0.840 | 0.067 | 0.808 | 0.824 | 0.763 | 0.945 | 0.896 | |
‘602’ | 0.860 | 0.057 | 0.835 | 0.847 | 0.796 | 0.970 | 0.889 |
Algorithm | Predicted Class | Actual Class | Overall Accuracy (%) | |||
---|---|---|---|---|---|---|
‘Alex Red’ | ‘Trinity’ | ‘314’ | ‘602’ | |||
LDA (Functions) | 93 | 5 | 1 | 1 | ‘Alex Red’ | 91.25 |
6 | 92 | 0 | 2 | ‘Trinity’ | ||
2 | 2 | 89 | 7 | ‘314’ | ||
0 | 0 | 9 | 91 | ‘602’ | ||
IBk (Lazy) | 81 | 9 | 4 | 6 | ‘Alex Red’ | 85.75 |
6 | 94 | 0 | 0 | ‘Trinity’ | ||
4 | 0 | 79 | 17 | ‘314’ | ||
1 | 1 | 9 | 89 | ‘602’ | ||
LogitBoost (Meta) | 91 | 5 | 3 | 1 | ‘Alex Red’ | 86.00 |
10 | 88 | 1 | 1 | ‘Trinity’ | ||
8 | 2 | 80 | 10 | ‘314’ | ||
5 | 1 | 9 | 85 | ‘602’ | ||
LMT (Trees) | 90 | 4 | 4 | 2 | ‘Alex Red’ | 89.75 |
2 | 94 | 2 | 2 | ‘Trinity’ | ||
4 | 1 | 87 | 8 | ‘314’ | ||
2 | 1 | 9 | 88 | ‘602’ | ||
Bayes Net (Bayes) | 82 | 7 | 6 | 5 | ‘Alex Red’ | 85.50 |
8 | 89 | 2 | 1 | ‘Trinity’ | ||
5 | 0 | 85 | 10 | ‘314’ | ||
2 | 0 | 12 | 86 | ‘602’ |
Algorithm | Actual Class | TP Rate | FP Rate | Precision | F-Measure | MCC | ROC Area | PRC Area |
---|---|---|---|---|---|---|---|---|
LDA (Functions) | ‘Alex Red’ | 0.930 | 0.027 | 0.921 | 0.925 | 0.900 | 0.987 | 0.970 |
‘Trinity’ | 0.920 | 0.023 | 0.929 | 0.925 | 0.900 | 0.985 | 0.956 | |
‘314’ | 0.890 | 0.033 | 0.899 | 0.894 | 0.860 | 0.982 | 0.958 | |
‘602’ | 0.910 | 0.033 | 0.901 | 0.905 | 0.874 | 0.986 | 0.930 | |
IBk (Lazy) | ‘Alex Red’ | 0.810 | 0.037 | 0.880 | 0.844 | 0.796 | 0.887 | 0.761 |
‘Trinity’ | 0.940 | 0.033 | 0.904 | 0.922 | 0.895 | 0.953 | 0.865 | |
‘314’ | 0.790 | 0.043 | 0.859 | 0.823 | 0.768 | 0.873 | 0.731 | |
‘602’ | 0.890 | 0.077 | 0.795 | 0.840 | 0.784 | 0.907 | 0.735 | |
LogitBoost (Meta) | ‘Alex Red’ | 0.910 | 0.077 | 0.798 | 0.850 | 0.799 | 0.976 | 0.940 |
‘Trinity’ | 0.880 | 0.027 | 0.917 | 0.898 | 0.865 | 0.973 | 0.942 | |
‘314’ | 0.800 | 0.043 | 0.860 | 0.829 | 0.776 | 0.964 | 0.899 | |
‘602’ | 0.850 | 0.040 | 0.876 | 0.863 | 0.818 | 0.958 | 0.880 | |
LMT (Trees) | ‘Alex Red’ | 0.900 | 0.027 | 0.918 | 0.909 | 0.879 | 0.975 | 0.949 |
‘Trinity’ | 0.940 | 0.020 | 0.940 | 0.940 | 0.920 | 0.984 | 0.971 | |
‘314’ | 0.870 | 0.050 | 0.853 | 0.861 | 0.815 | 0.966 | 0.925 | |
‘602’ | 0.880 | 0.040 | 0.880 | 0.880 | 0.840 | 0.982 | 0.923 | |
Bayes Net (Bayes) | ‘Alex Red’ | 0.820 | 0.050 | 0.845 | 0.832 | 0.778 | 0.963 | 0.918 |
‘Trinity’ | 0.890 | 0.023 | 0.927 | 0.908 | 0.879 | 0.990 | 0.973 | |
‘314’ | 0.850 | 0.067 | 0.810 | 0.829 | 0.771 | 0.952 | 0.904 | |
‘602’ | 0.860 | 0.053 | 0.843 | 0.851 | 0.801 | 0.976 | 0.916 |
Algorithm | Predicted Class | Actual Class | Overall Accuracy (%) | |||
---|---|---|---|---|---|---|
‘Alex Red’ | ‘Trinity’ | ‘314’ | ‘602’ | |||
LDA (Functions) | 75 | 20 | 2 | 3 | ‘Alex Red’ | 74.50 |
23 | 67 | 10 | 0 | ‘Trinity’ | ||
2 | 10 | 72 | 16 | ‘314’ | ||
1 | 4 | 11 | 84 | ‘602’ | ||
IBk (Lazy) | 66 | 22 | 8 | 4 | ‘Alex Red’ | 68.50 |
24 | 69 | 5 | 2 | ‘Trinity’ | ||
6 | 12 | 63 | 19 | ‘314’ | ||
2 | 5 | 17 | 76 | ‘602’ | ||
LogitBoost (Meta) | 76 | 19 | 2 | 3 | ‘Alex Red’ | 71.00 |
24 | 63 | 12 | 1 | ‘Trinity’ | ||
4 | 7 | 69 | 20 | ‘314’ | ||
2 | 3 | 19 | 76 | ‘602’ | ||
LMT (Trees) | 74 | 21 | 2 | 3 | ‘Alex Red’ | 74.75 |
23 | 69 | 7 | 1 | ‘Trinity’ | ||
3 | 9 | 72 | 16 | ‘314’ | ||
4 | 2 | 10 | 84 | ‘602’ | ||
Bayes Net (Bayes) | 75 | 17 | 2 | 6 | ‘Alex Red’ | 71.00 |
21 | 66 | 11 | 2 | ‘Trinity’ | ||
2 | 15 | 60 | 23 | ‘314’ | ||
2 | 1 | 14 | 83 | ‘602’ |
Algorithm | Actual Class | TP Rate | FP Rate | Precision | F-Measure | MCC | ROC Area | PRC Area |
---|---|---|---|---|---|---|---|---|
LDA (Functions) | ‘Alex Red’ | 0.750 | 0.087 | 0.743 | 0.746 | 0.661 | 0.924 | 0.731 |
‘Trinity’ | 0.670 | 0.113 | 0.663 | 0.667 | 0.555 | 0.885 | 0.693 | |
‘314’ | 0.720 | 0.077 | 0.758 | 0.738 | 0.655 | 0.941 | 0.822 | |
‘602’ | 0.840 | 0.063 | 0.816 | 0.828 | 0.769 | 0.969 | 0.927 | |
IBk (Lazy) | ‘Alex Red’ | 0.660 | 0.107 | 0.673 | 0.667 | 0.557 | 0.777 | 0.529 |
‘Trinity’ | 0.690 | 0.130 | 0.639 | 0.663 | 0.546 | 0.780 | 0.518 | |
‘314’ | 0.630 | 0.100 | 0.677 | 0.653 | 0.543 | 0.765 | 0.519 | |
‘602’ | 0.760 | 0.083 | 0.752 | 0.756 | 0.674 | 0.838 | 0.632 | |
LogitBoost (Meta) | ‘Alex Red’ | 0.760 | 0.100 | 0.717 | 0.738 | 0.648 | 0.912 | 0.767 |
‘Trinity’ | 0.630 | 0.097 | 0.685 | 0.656 | 0.549 | 0.888 | 0.739 | |
‘314’ | 0.690 | 0.110 | 0.676 | 0.683 | 0.576 | 0.888 | 0.764 | |
‘602’ | 0.760 | 0.080 | 0.760 | 0.760 | 0.680 | 0.939 | 0.816 | |
LMT (Trees) | ‘Alex Red’ | 0.740 | 0.100 | 0.712 | 0.725 | 0.632 | 0.927 | 0.781 |
‘Trinity’ | 0.690 | 0.107 | 0.683 | 0.687 | 0.581 | 0.904 | 0.717 | |
‘314’ | 0.720 | 0.063 | 0.791 | 0.754 | 0.678 | 0.922 | 0.828 | |
‘602’ | 0.840 | 0.067 | 0.808 | 0.824 | 0.763 | 0.962 | 0.912 | |
Bayes Net (Bayes) | ‘Alex Red’ | 0.750 | 0.083 | 0.750 | 0.750 | 0.667 | 0.926 | 0.777 |
‘Trinity’ | 0.660 | 0.110 | 0.667 | 0.663 | 0.552 | 0.883 | 0.706 | |
‘314’ | 0.600 | 0.090 | 0.690 | 0.642 | 0.535 | 0.856 | 0.716 | |
‘602’ | 0.830 | 0.103 | 0.728 | 0.776 | 0.697 | 0.937 | 0.831 |
Algorithm | Predicted Class | Actual Class | Overall Accuracy (%) | |||
---|---|---|---|---|---|---|
‘Alex Red’ | ‘Trinity’ | ‘314’ | ‘602’ | |||
LDA (Functions) | 75 | 23 | 0 | 2 | ‘Alex Red’ | 77.25 |
23 | 70 | 7 | 0 | ‘Trinity’ | ||
3 | 8 | 76 | 13 | ‘314’ | ||
1 | 1 | 10 | 88 | ‘602’ | ||
IBk (Lazy) | 72 | 19 | 7 | 2 | ‘Alex Red’ | 71.75 |
25 | 68 | 7 | 0 | ‘Trinity’ | ||
7 | 9 | 69 | 15 | ‘314’ | ||
2 | 2 | 18 | 78 | ‘602’ | ||
LogitBoost (Meta) | 81 | 13 | 3 | 3 | ‘Alex Red’ | 80.50 |
11 | 83 | 3 | 3 | ‘Trinity’ | ||
5 | 5 | 76 | 14 | ‘314’ | ||
5 | 0 | 13 | 82 | ‘602’ | ||
LMT (Trees) | 76 | 18 | 6 | 0 | ‘Alex Red’ | 78.25 |
21 | 74 | 5 | 0 | ‘Trinity’ | ||
3 | 5 | 78 | 14 | ‘314’ | ||
2 | 1 | 12 | 85 | ‘602’ | ||
Bayes Net (Bayes) | 85 | 10 | 2 | 3 | ‘Alex Red’ | 80.25 |
13 | 81 | 5 | 1 | ‘Trinity’ | ||
3 | 10 | 69 | 18 | ‘314’ | ||
0 | 2 | 12 | 86 | ‘602’ |
Algorithm | Actual Class | TP Rate | FP Rate | Precision | F-Measure | MCC | ROC Area | PRC Area |
---|---|---|---|---|---|---|---|---|
LDA (Functions) | ‘Alex Red’ | 0.750 | 0.090 | 0.735 | 0.743 | 0.656 | 0.931 | 0.746 |
‘Trinity’ | 0.700 | 0.107 | 0.686 | 0.693 | 0.589 | 0.902 | 0.733 | |
‘314’ | 0.760 | 0.057 | 0.817 | 0.788 | 0.721 | 0.951 | 0.862 | |
‘602’ | 0.880 | 0.050 | 0.854 | 0.867 | 0.822 | 0.979 | 0.947 | |
IBk (Lazy) | ‘Alex Red’ | 0.720 | 0.113 | 0.679 | 0.699 | 0.595 | 0.803 | 0.559 |
‘Trinity’ | 0.680 | 0.100 | 0.694 | 0.687 | 0.584 | 0.790 | 0.552 | |
‘314’ | 0.690 | 0.107 | 0.683 | 0.687 | 0.581 | 0.792 | 0.549 | |
‘602’ | 0.780 | 0.057 | 0.821 | 0.800 | 0.736 | 0.862 | 0.695 | |
LogitBoost (Meta) | ‘Alex Red’ | 0.810 | 0.070 | 0.794 | 0.802 | 0.735 | 0.955 | 0.881 |
‘Trinity’ | 0.830 | 0.060 | 0.822 | 0.826 | 0.767 | 0.956 | 0.896 | |
‘314’ | 0.760 | 0.063 | 0.800 | 0.779 | 0.709 | 0.934 | 0.847 | |
‘602’ | 0.820 | 0.067 | 0.804 | 0.812 | 0.748 | 0.958 | 0.886 | |
LMT (Trees) | ‘Alex Red’ | 0.760 | 0.087 | 0.745 | 0.752 | 0.669 | 0.938 | 0.808 |
‘Trinity’ | 0.740 | 0.080 | 0.755 | 0.747 | 0.664 | 0.919 | 0.777 | |
‘314’ | 0.780 | 0.077 | 0.772 | 0.776 | 0.701 | 0.922 | 0.837 | |
‘602’ | 0.850 | 0.047 | 0.859 | 0.854 | 0.806 | 0.973 | 0.921 | |
Bayes Net (Bayes) | ‘Alex Red’ | 0.850 | 0.053 | 0.842 | 0.846 | 0.794 | 0.964 | 0.865 |
‘Trinity’ | 0.810 | 0.073 | 0.786 | 0.798 | 0.730 | 0.944 | 0.883 | |
‘314’ | 0.690 | 0.063 | 0.784 | 0.734 | 0.655 | 0.936 | 0.839 | |
‘602’ | 0.860 | 0.073 | 0.796 | 0.827 | 0.767 | 0.964 | 0.913 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ropelewska, E.; Kruczyńska, D.E.; Rady, A.M.; Rutkowski, K.P.; Konopacka, D.; Celejewska, K.; Mieszczakowska-Frąc, M. Evaluating the Classification of Freeze-Dried Slices and Cubes of Red-Fleshed Apple Genotypes Using Image Textures, Color Parameters, and Machine Learning. Agriculture 2023, 13, 562. https://doi.org/10.3390/agriculture13030562
Ropelewska E, Kruczyńska DE, Rady AM, Rutkowski KP, Konopacka D, Celejewska K, Mieszczakowska-Frąc M. Evaluating the Classification of Freeze-Dried Slices and Cubes of Red-Fleshed Apple Genotypes Using Image Textures, Color Parameters, and Machine Learning. Agriculture. 2023; 13(3):562. https://doi.org/10.3390/agriculture13030562
Chicago/Turabian StyleRopelewska, Ewa, Dorota E. Kruczyńska, Ahmed M. Rady, Krzysztof P. Rutkowski, Dorota Konopacka, Karolina Celejewska, and Monika Mieszczakowska-Frąc. 2023. "Evaluating the Classification of Freeze-Dried Slices and Cubes of Red-Fleshed Apple Genotypes Using Image Textures, Color Parameters, and Machine Learning" Agriculture 13, no. 3: 562. https://doi.org/10.3390/agriculture13030562
APA StyleRopelewska, E., Kruczyńska, D. E., Rady, A. M., Rutkowski, K. P., Konopacka, D., Celejewska, K., & Mieszczakowska-Frąc, M. (2023). Evaluating the Classification of Freeze-Dried Slices and Cubes of Red-Fleshed Apple Genotypes Using Image Textures, Color Parameters, and Machine Learning. Agriculture, 13(3), 562. https://doi.org/10.3390/agriculture13030562