Oil Cakes of Essential Oil Plants as a Source of Prebiotics for Poultry Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Used Prebiotics and Oil Cakes
- oil cake of big seed false flax (C. sativa)
- oil cake of black cumin (N. sativa)
- oil cake of brown mustard (B. juncea)
- oil cake of spicate lavender (L. angustifolia)
- oil cake and whole plant of blessed milk thistle (S. marianum)
- the whole plant of lesser calamint (C. nepeta)
- oil cake and whole plant of winter savory (S. montana)
2.2. Artificial Intestinal Medium
2.3. Effect of Prebiotics on Microbial Composition
2.4. Influence of Essential Oil Plants on the Microbial Composition
2.5. Antimicrobial Action of Oil Cakes
2.6. Influence of Oil Cakes on the Acid-Forming Properties
2.7. Determining the Amount of Simple Sugars
2.8. Ethical Statement
2.9. Statistical Processing of Data
3. Results
3.1. Modeling of Changes in the Number of Micro-Organisms under the Influence of Prebiotics
3.2. Modeling of Changes in the Number of Micro-Organisms under the Influence of Essential Oil Plants
3.3. Determination of the Mechanism of Influence of Oil Cakes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holscher, H.D. Dietary Fiber and Prebiotics and the Gastrointestinal Microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef]
- Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and Prebiotics in Intestinal Health and Disease: From Biology to the Clinic. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Ricke, S.C. Prebiotics and Alternative Poultry Production. Poult. Sci. 2021, 100, 101174. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.H.T.; Everaert, N.; Bindelle, J. Review on the Effects of Potential Prebiotics on Controlling Intestinal Enteropathogens Salmonella and Escherichia coli in Pig Production. J. Anim. Physiol. Anim. Nutr. 2016, 102, 17–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.; Moore, R.J.; Stanley, D.; Chousalkar, K.K. The Gut Microbiota of Laying Hens and Its Manipulation with Prebiotics and Probiotics to Enhance Gut Health and Food Safety. Appl. Environ. Microbiol. 2020, 86, e00600-20. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.K.; Kumari, I.; Singh, B.; Sharma, K.K.; Tiwari, S.K. Probiotics, Prebiotics and Synbiotics: Safe Options for Next-Generation Therapeutics. Appl. Microbiol. Biotechnol. 2022, 106, 505–521. [Google Scholar] [CrossRef]
- Whisner, C.M.; Castillo, L.F. Prebiotics, Bone and Mineral Metabolism. Calcif. Tissue Int. 2017, 102, 443–479. [Google Scholar] [CrossRef] [Green Version]
- Dinan, T.G.; Cryan, J.F. The Microbiome-Gut-Brain Axis in Health and Disease. Gastroenterol. Clin. N. Am. 2017, 46, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Bello, B.; Mustafa, S.; Tan, J.S.; Ibrahim, T.A.T.; Tam, Y.J.; Ariff, A.B.; Manap, M.Y.; Abbasiliasi, S. Evaluation of the Effect of Soluble Polysaccharides of Palm Kernel Cake as a Potential Prebiotic on the Growth of Probiotics. 3Biotech 2018, 8, 346. [Google Scholar] [CrossRef]
- Faseleh Jahromi, M.; Shokryazdan, P.; Idrus, Z.; Ebrahimi, R.; Bashokouh, F.; Liang, J.B. Modulation of Immune Function in Rats Using Oligosaccharides Extracted from Palm Kernel Cake. BioMed Res. Int. 2017, 2017, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Foo, R.Q.; Jahromi, M.F.; Chen, W.L.; Ahmad, S.; Lai, K.S.; Idrus, Z.; Liang, J.B. Oligosaccharides from Palm Kernel Cake Enhances Adherence Inhibition and Intracellular Clearance of Salmonella Enterica Serovar Enteritidis In Vitro. Microorganisms 2020, 8, 255. [Google Scholar] [CrossRef] [Green Version]
- Abbasiliasi, S.; Tan, J.S.; Bello, B.; Ibrahim, T.A.T.; Tam, Y.J.; Ariff, A.; Mustafa, S. Prebiotic efficacy of coconut kernel cake’s soluble crude polysaccharides on growth rates and acidifying property of probiotic lactic acid bacteria in vitro. Biotechnol. Biotechnol. Equip. 2019, 33, 1216–1227. [Google Scholar] [CrossRef] [Green Version]
- Ozhimkova, E.V.; Sidorov, A.I.; Tikhonov, B.B.; Martirosova, E.I. Prebiotics extraction from Valeriana Officinalis L. extraction cake. In Biochemistry and Biotechnology; Nova Science Publishers: Hauppauge, NY, USA, 2012; p. 113. [Google Scholar]
- Kleigrewe, K.; Haack, M.; Baudin, M.; Ménabréaz, T.; Crovadore, J.; Masri, M.; Beyrer, M.; Andlauer, W.; Lefort, F.; Dawid, C.; et al. Dietary Modulation of the Human Gut Microbiota and Metabolome with Flaxseed Preparations. Int. J. Mol. Sci. 2022, 23, 10473. [Google Scholar] [CrossRef]
- Sergeevna, M.M.; Borisovna, B.A.; Vladimirovich, R.D.; Aleksandrovna, M.T.; Viktorovna, M.E.; Leonidovich, C.M. Composition of the artificial intestinal medium for the study of the microbiota of the caecum of chicken. Patent No. RU 2 772 350 C1, 19 May 2022. [Google Scholar]
- Mazanko, M.S.; Prazdnova, E.V.; Kulikov, M.P.; Maltseva, T.A.; Rudoy, D.V.; Chikindas, M.L. Antioxidant and Antimutagenic Properties of Probiotic Lactobacilli Determined Using LUX-Biosensors. Enzym. Microb. Technol. 2022, 155, 109980. [Google Scholar] [CrossRef]
- Motta, J.P.; Wallace, J.L.; Buret, A.G.; Deraison, C.; Vergnolle, N. Gastrointestinal biofilms in health and disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 314–334. [Google Scholar] [CrossRef]
- Scanes, C.G. (Ed.) Sturkie’s Avian Physiology, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2014; 1056p. [Google Scholar]
- Green, L.H.; Goldman, E. Practical Handbook of Microbiology, 4th ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Chandraju, S.; Venkatesh, R.; Kumar, C.S.C.; Kumar, B.A. Estimation of reducing sugar by acid hydrolysis of sunflower (Helianthus annuus) husk by standard methods. Agric. Sci. 2016, 7, 322–325. [Google Scholar]
- Sittiya, J.; Chimtong, S.; Sriwarcharameta, P. Effects of Crude Oligosaccharide Extract from Agricultural By-Products on the Performance and Gut Development of Broilers. Anim. Biosci. 2023. [Google Scholar] [CrossRef]
- Tufarelli, V.; Ghavami, N.; Nosrati, M.; Rasouli, B.; Kadim, I.T.; Suárez Ramírez, L.; Gorlov, I.; Slozhenkina, M.; Mosolov, A.; Seidavi, A.; et al. The Effects of Peppermint (Mentha Piperita L.) and Chicory (Cichorium Intybus L.) in Comparison with a Prebiotic on Productive Performance, Blood Constituents, Immunity and Intestinal Microflora in Broiler Chickens. Anim. Biotechnol. 2022, 1–7. [Google Scholar] [CrossRef]
- Morgan, N.K.; Wallace, A.; Bedford, M.R.; González-Ortiz, G. Impact of Fermentable Fiber, Xylo-Oligosaccharides and Xylanase on Laying Hen Productive Performance and Nutrient Utilization. Poult. Sci. 2022, 101, 102210. [Google Scholar] [CrossRef]
- Zhou, J.; Fu, Y.; Qi, G.; Dai, J.; Zhang, H.; Wang, J.; Wu, S. Yeast Cell-Wall Polysaccharides Improve Immunity and Attenuate Inflammatory Response via Modulating Gut Microbiota in LPS-Challenged Laying Hens. Int. J. Biol. Macromol. 2023, 224, 407–421. [Google Scholar] [CrossRef]
- Le Bastard, Q.; Chapelet, G.; Javaudin, F.; Lepelletier, D.; Batard, E.; Montassier, E. The Effects of Inulin on Gut Microbial Composition: A Systematic Review of Evidence from Human Studies. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 39, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Ayachandran, M.; Chen, J.; Chung, S.S.M.; Xu, B. A Critical Review on the Impacts of β-Glucans on Gut Microbiota and Human Health. J. Nutr. Biochem. 2018, 61, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qu, Y.; Wang, Y.; Wang, X.; Xu, J.; Zhao, H.; Zheng, D.; Sun, L.; Tai, G.; Zhou, Y.; et al. β-1,6-Glucan from Pleurotus Eryngii Modulates the Immunity and Gut Microbiota. Front. Immunol. 2022, 13, 1944. [Google Scholar] [CrossRef]
- Yang, Q.; Liang, Q.; Balakrishnan, B.; Belobrajdic, D.P.; Feng, Q.-J.; Zhang, W. Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients 2020, 12, 381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, S.H.; Louis, P.; Thomson, J.M.; Flint, H.J. The Role of PH in Determining the Species Composition of the Human Colonic Microbiota. Environ. Microbiol. 2009, 11, 2112–2122. [Google Scholar] [CrossRef]
Prebiotic | LAB | Bifidobacterium | Enterococcus | E. coli | Lactose + |
---|---|---|---|---|---|
Control | 1.8 ± 0.4 × 108 | 108 | 2.3 ± 0.4 × 107 | 1.6 ± 0.4 × 108 | 5.4 ± 0.6 × 107 |
Inulin | 3.5 ± 0.3 × 108 | 109 * | 7.0 ± 0.3 × 107 | 1.1 ± 0.3 × 108 | 10.0 ± 0.3 × 107 |
β-glucan | 4.7 ± 0.2 × 109 * | 107 * | 1.5 ± 0.4 × 106 * | 1.9 ± 0.4 × 106 * | 6.5 ± 1.3 × 106 * |
Oligofructose | 2.7 ± 0.3 × 109 * | 109 * | 8.5 ± 0.4 × 106 * | 0.6 ± 0.2 × 106 * | 3.9 ± 0.9 × 106 * |
Apple fibers | 1.9 ± 0.4 × 108 | 108 | 8.0 ± 0.1 × 106 * | 0.4 ± 0.2 × 108 | 4.3 ± 0.6 × 107 |
Psyllium fibers | 1.1 ± 0.3 × 108 | 108 | 3.2 ± 0.5 × 107 | 1.2 ± 0.3 × 108 | 1.8 ± 0.5 × 107 |
Micro-Organisms | Control | 0.5% | 1% | 2% | 4% |
---|---|---|---|---|---|
Oil Cake of Big Seed False Flax | |||||
24 h | |||||
LAB | 3.2 ± 0.3 × 108 | 2.3 ± 0.2 × 108 | 2.4 ± 0.4 × 108 | 3.2 ± 0.3 × 108 | 3.3 ± 0.3 × 108 |
Bifidobacterium | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Enterococcus | 6.6 ± 0.3 × 107 | 5.6 ± 0.2 × 107 | 6.2 ± 0.3 × 107 | 4.6 ± 0.1 × 106 * | 5.8 ± 0.3 × 106 * |
E. coli | 2.4 ± 0.2 × 107 | 1.5 ± 0.1 × 107 | 1.8 ± 0.2 × 107 | 4.8 ± 0.3 × 107 | 1.2 ± 0.2 × 107 |
lactose + | 6.1 ± 0.2 × 106 | 5.3 ± 0.3 × 106 | 5.8 ± 0.3 × 106 | 2.5 ± 0.2 × 106 | 7.9 ± 0.2 × 106 |
Proteus | 3.1 ± 0.3 × 107 | 1.1 ± 0.2 × 107 | 1.3 ± 0.2 × 107 | - * | - * |
72 h | |||||
LAB | 3.1 ± 0.2 × 108 | 4.7 ± 0.3 × 108 | 2.8 ± 0.2 × 108 | 2.7 ± 0.2 × 108 | 9.7 ± 0.3 × 108 |
Bifidobacterium | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Enterococcus | 4.3 ± 0.2 × 107 | 2.0 ± 0.2 × 107 | 9.0 ± 0.3 × 106 * | 2.7 ± 0.3 × 106 * | 7.9 ± 0.2 × 105 * |
E. coli | 1.0 ± 0.3 × 107 | 2.7 ± 0.3 × 107 | 3.9 ± 0.3 × 107 | 2.2 ± 0.2 × 106 * | 7.1 ± 0.3 × 105 * |
lactose + | 6.1 ± 0.4 × 106 | 9.4 ± 0.5 × 106 | 3.1 ± 0.2 × 106 | 8.8 ± 0.4 × 105 * | 9.4 ± 0.2 × 105 * |
Proteus | 2.6 ± 0.3 × 107 | 2.6 ± 0.2 × 107 | 8.2 ± 0.3 × 106 * | - * | - * |
pH | 6.98 | 7.36 | 6.23 | 5.11 | 4.62 |
Oil Cake of Brown Mustard | |||||
24 h | |||||
LAB | 4.8 ± 0.4 × 108 | 2.2 ± 0.3 × 108 | 4.4 ± 0.4 × 108 | 2.8 ± 0.4 × 108 | 3.3 ± 0.2 × 108 |
Bifidobacterium | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Enterococcus | 2.9 ± 0.3 × 107 | 8.2 ± 0.4 × 107 | 1.8 ± 0.2 × 107 | 1.8 ± 0.3 × 107 | 1.9 ± 0.3 × 107 |
E. coli | 3.4 ± 0.3 × 107 | 2.2 ± 0.1 × 107 | 8.4 ± 0.2 × 106 * | 9.4 ± 0.1 × 106 * | 1.0 ± 0.3 × 105 * |
lactose + | 7.8 ± 0.2 × 106 | 8.7 ± 0.3 × 106 | 2.5 ± 0.2 × 105 * | 1.6 ± 0.1 × 105 * | 5.1 ± 0.2 × 104 * |
Proteus | 4.0 ± 0.2 × 107 | 2.0 ± 0.2 × 107 | 2.5 ± 0.2 × 104 * | - * | - |
72 h | |||||
LAB | 3.7 ± 0.3 × 108 | 6.1 ± 0.3 × 108 | 3.8 ± 0.3 × 108 | 3.5 ± 0.2 × 108 | 4.7 ± 0.3 × 107 * |
Bifidobacterium | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Enterococcus | 3.6 ± 0.3 × 107 | 2.6 ± 0.3 × 107 | 1.9 ± 0.3 × 106 * | 2.8 ± 0.3 × 105 * | 2.1 ± 0.3 × 103 * |
E. coli | 2.7 ± 0.3 × 107 | 3.4 ± 0.2 × 107 | 8.3 ± 0.3 × 106 * | 2.2 ± 0.2 × 105 * | 7.2 ± 0.3 × 105 * |
lactose + | 4.2 ± 0.2 × 106 | 3.1 ± 0.4 × 106 | 3.0 ± 0.1 × 105 * | 8.8 ± 0.4 × 104 * | 1.2 ± 0.1 × 104 * |
Proteus | 2.8 ± 0.3 × 107 | 2.9 ± 0.3 × 107 | - * | - * | - * |
pH | 6.98 | 7.22 | 4.73 | 4.53 | 4.12 |
Oil Cake of Spicate Lavender | |||||
24 h | |||||
LAB | 5.2 ± 0.2 × 108 | 1.1 ± 0.1 × 108 | 9.8 ± 0.4 × 108 | 4.5 ± 0.2 × 108 | 2.0 ± 0.3 × 108 |
Bifidobacterium | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Enterococcus | 5.7 ± 0.3 × 107 | 5.8 ± 0.1 × 107 | 2.4 ± 0.2 × 107 | 8.8 ± 0.3 × 107 | 6.5 ± 0.5 × 107 |
E. coli | 1.8 ± 0.1 × 107 | 2.7 ± 0.1 × 107 | 1.4 ± 0.2 × 107 | 2.9 ± 0.1 × 106 * | 1.8 ± 0.2 × 106 * |
lactose + | 1.0 ± 0.2 × 107 | 1.4 ± 0.3 × 107 | 3.4 ± 0.3 × 107 | 2.4 ± 0.4 × 106 * | 9.3 ± 0.4 × 105 * |
Proteus | 6.6 ± 0.1 × 105 | 6.4 ± 0.2 × 105 | 2.7 ± 0.2 × 104 * | - * | - * |
72 h | |||||
LAB | 4.4 ± 0.1 × 108 | 3.7 ± 0.2 × 108 | 1.0 ± 0.3 × 108 | 3.1 ± 0.4 × 108 | 5.3 ± 0.4 × 108 |
Bifidobacterium | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Enterococcus | 6.6 ± 0.2 × 107 | 4.9 ± 0.3 × 107 | 3.1 ± 0.1 × 106 * | 1.3 ± 0.1 × 106 * | 3.1 ± 0.2 × 105 * |
E. coli | 1.1 ± 0.4 × 107 | 1.4 ± 0.2 × 107 | 2.7 ± 0.3 × 106 * | 1.2 ± 0.3 × 106 * | 1.1 ± 0.2 × 105 * |
lactose + | 4.3 ± 0.1 × 106 | 2.5 ± 0.3 × 106 | 5.2 ± 0.3 × 105 * | 2.9 ± 0.2 × 105 * | 3.3 ± 0.3 × 104 * |
Proteus | 1.7 ± 0.1 × 107 | 4.8 ± 0.2 × 107 | 5.5 ± 0.2 × 103 * | - * | - * |
pH | 7.26 | 6.95 | 6.17 | 5.11 | 4.70 |
Oil Cakes | pH | |||
---|---|---|---|---|
Ligilactobacillus salivarius KL61 | Limosilactobacillus frumenti KL31 | |||
MRS | Intestinal Medium | MRS | Intestinal Medium | |
Control | 3.55 ± 0.22 | 6.89 ± 0.12 | 3.87 ± 0.14 | 7.14 ± 0.15 |
Camelina 1% | 3.68 ± 0.30 | 6.43 ± 0.22 * | 3.94 ± 0.10 | 6.82 ± 0.19 * |
Camelina 2% | 3.34 ± 0.15 | 5.08 ± 0.24 * | 3.92 ± 0.12 | 6.02 ± 0.11 * |
Mustard 1% | 3.45 ± 0.21 | 4.84 ± 0.11 * | 3.81 ± 0.22 | 6.63 ± 0.24 * |
Mustard 2% | 3.37 ± 0.25 | 4.29 ± 0.08 * | 3.90 ± 0.15 | 5.20 ± 0.10 * |
Lavender 1% | 3.58 ± 0.11 | 6.17 ± 0.16 * | 3.79 ± 0.09 | 6.76 ± 0.17 * |
Lavender 2% | 3.55 ± 0.10 | 5.18 ± 0.21 * | 3.85 ± 0.15 | 5.81 ± 0.21 * |
Oil Cake | The Proportion of Simple Sugars in Dry Matter | The Proportion of Simple Sugars in Artificial Intestinal Environment at a Concentration of 1% | The Proportion of Simple Sugars in Artificial Intestinal Environment at a Concentration of 2% |
---|---|---|---|
Big seed false flax | 2.35% | 0.024% | 0.047% |
Brown mustard | 1.85% | 0.019% | 0.037% |
Spicate lavender | 2.50% | 0.025% | 0.050% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazanko, M.; Prazdnova, E.; Statsenko, V.; Bren, A.; Rudoy, D.; Maltseva, T.; Chistyakov, V.; Chikindas, M. Oil Cakes of Essential Oil Plants as a Source of Prebiotics for Poultry Production. Agriculture 2023, 13, 591. https://doi.org/10.3390/agriculture13030591
Mazanko M, Prazdnova E, Statsenko V, Bren A, Rudoy D, Maltseva T, Chistyakov V, Chikindas M. Oil Cakes of Essential Oil Plants as a Source of Prebiotics for Poultry Production. Agriculture. 2023; 13(3):591. https://doi.org/10.3390/agriculture13030591
Chicago/Turabian StyleMazanko, Maria, Evgeniya Prazdnova, Varvara Statsenko, Anzhelica Bren, Dmitry Rudoy, Tatiana Maltseva, Vladimir Chistyakov, and Michael Chikindas. 2023. "Oil Cakes of Essential Oil Plants as a Source of Prebiotics for Poultry Production" Agriculture 13, no. 3: 591. https://doi.org/10.3390/agriculture13030591
APA StyleMazanko, M., Prazdnova, E., Statsenko, V., Bren, A., Rudoy, D., Maltseva, T., Chistyakov, V., & Chikindas, M. (2023). Oil Cakes of Essential Oil Plants as a Source of Prebiotics for Poultry Production. Agriculture, 13(3), 591. https://doi.org/10.3390/agriculture13030591