A Review on Soil Nitrogen Sensing Technologies: Challenges, Progress and Perspectives
Abstract
:1. Introduction
2. Existing Methods
2.1. Methods for Soil Total Nitrogen Determination
2.1.1. Kjeldahl Method
2.1.2. Dumas Method
2.1.3. Spectroscopy-Based Methods
2.1.4. Other Methods
2.2. Methods for Soil Available Nitrogen Determination
2.2.1. Spectrophotometry-Based and Colorimetry-Based Methods
2.2.2. Spectroscopy-Based Methods
2.2.3. Electrochemical-Based Methods
2.2.4. Other Methods
3. Key Problems
3.1. Insufficient Accuracy
3.2. Limited Scenarios
3.3. Poor Versatility
3.4. Unsuitable for Practical Applications
3.5. Low Level of Informatization
3.6. Limitations Due to Soil Variability
4. Future Research Directions
4.1. New Principles, New Equipment, and New Materials
4.2. Optimization of Data Processing and Analysis Methods
4.3. Deep Application of IoT Technology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Giordano, M.; Petropoulos, S.A.; Rouphael, Y. The Fate of Nitrogen from Soil to Plants: Influence of Agricultural Practices in Modern Agriculture. Agriculture 2021, 11, 944. [Google Scholar] [CrossRef]
- Velazquez-Gonzalez, R.S.; Garcia-Garcia, A.L.; Ventura-Zapata, E.; Barceinas-Sanchez, J.D.O.; Sosa-Savedra, J.C. A Review on Hydroponics and the Technologies Associated for Medium-and Small-Scale Operations. Agriculture 2022, 12, 646. [Google Scholar] [CrossRef]
- Yu, X. Research of Near-Infrared Soil Nutrient Content Real-Time Online Detection System And Key Technology. Ph.D. Thesis, Harbin University of Science and Technology, Harbin, China, 2015. [Google Scholar]
- Zhao, Y.; Li, H.; Sun, Z. Correlation Analysis of Cd Pollution in Vegetables and Soils and the Soil Pollution Threshold. Trans. Chin. Soc. Agric. Eng. 2006, 22, 149–153. [Google Scholar]
- Schally, J.L. Industrial Agriculture and Its Harms. In Legitimizing Corporate Harm; Palgrave Macmillan: Cham, Switzerland, 2018; pp. 17–26. [Google Scholar] [CrossRef]
- Wang, Z.; Li, S.; Malhi, S. Effects of Fertilization and Other Agronomic Measures on Nutritional Quality of Crops. J. Sci. Food Agric. 2008, 88, 7–23. [Google Scholar] [CrossRef]
- Zhang, W. Global Pesticide Use: Profile, Trend, Cost/Benefit and More. Proc. Int. Acad. Ecol. Environ. Sci. 2018, 8, 1. [Google Scholar]
- Skorupka, M.; Nosalewicz, A. Ammonia Volatilization from Fertilizer Urea—A New Challenge for Agriculture and Industry in View of Growing Global Demand for Food and Energy Crops. Agriculture 2021, 11, 822. [Google Scholar] [CrossRef]
- Lee, S. Recent Advances on Nitrogen Use Efficiency in Rice. Agronomy 2021, 11, 753. [Google Scholar] [CrossRef]
- Raimi, M.O.; Abiola, I.; Alima, O.; Omini, D.E. Exploring How Human Activities Disturb the Balance of Biogeochemical Cycles: Evidence from the Carbon, Nitrogen and Hydrologic Cycles. Res. World Agric. Econ. 2021, 2, 23–44. [Google Scholar] [CrossRef]
- Hong, W. Rapid Determination Methods and Equipment Developed for Field Soil Properties Using Visible-Near Infrared Spectroscopy. Masters Thesis, Zhejiang University, Hangzhou, China, 2020. [Google Scholar]
- de Vries, W. Impacts of Nitrogen Emissions on Ecosystems and Human Health: A Mini Review. Curr. Opin. Environ. Sci. Health 2021, 21, 100249. [Google Scholar] [CrossRef]
- Brender, J.D. Human Health Effects of Exposure to Nitrate, Nitrite, and Nitrogen Dioxide. In Just Enough Nitrogen: Perspectives on How to Get There for Regions with Too Much and Too Little Nitrogen; Springer: Cham, Switzerland, 2020; pp. 283–294. [Google Scholar] [CrossRef]
- Barthès, B.G.; Brunet, D.; Ferrer, H.; Chotte, J.-L.; Feller, C. Determination of Total Carbon and Nitrogen Content in a Range of Tropical Soils Using near Infrared Spectroscopy: Influence of Replication and Sample Grinding and Drying. J. Infrared Spectrosc. 2006, 14, 341–348. [Google Scholar] [CrossRef]
- Wang, M. Development of Precision Agriculture and Innovation of Engineering Technologies. Trans. Chin. Soc. Agric. Eng. 1999, 15, 1–8. [Google Scholar]
- Zhao, C.; Xue, X.; Wang, X.; Chen, L.; Pan, Y.; Meng, Z. Advance and Prospects of Precision Agriculture Technology System. Trans. Chin. Soc. Agric. Eng. 2003, 19, 7–12. [Google Scholar]
- Kou, H. Summary on the Soil Nitrogen and Study Method. Subtrop. Soil Water Conserv. 2018, 30, 64–67+70. [Google Scholar]
- Lu, S.; Mao, C.; Xiao, H.; Lu, J.; Yue, J. Research Advance in the Determination of Nitrogen in Soil. J. Anhui Agric. Sci. 2014, 42, 5789–5815. [Google Scholar] [CrossRef]
- Han, Y. Research on Near Infrared Predicting Methods of Soil Available Nitrogen Based on Ensemble Learning. Masters Thesis, Anhui Agricultural University, Hefei, China, 2022. [Google Scholar]
- Chen, C. Research on Spectroscopy Based Rapid Measurement Method for Nitrogen Content in Soil and Plants and Sensor Development. Ph.D. Thesis, Shanxi Agricultural University, Taiyuan, China, 2017. [Google Scholar]
- Müller, J. Dumas or Kjeldahl for Reference Analysis; FOSS: Hilleroed, Denmark, 2017. [Google Scholar]
- Sáez-Plaza, P.; Navas, M.J.; Wybraniec, S.; Michałowski, T.; Asuero, A.G. An Overview of the Kjeldahl Method of Nitrogen Determination. Part II. Sample Preparation, Working Scale, Instrumental Finish, and Quality Control. Crit. Rev. Anal. Chem. 2013, 43, 224–272. [Google Scholar] [CrossRef]
- Chen, C.; Fu, J.; Liang, P.; Sun, Y. Researche Progress on Analytical Methods for Total Nitrogen in Soil. Environ. Monit. China 2018, 34, 112–119. [Google Scholar] [CrossRef]
- Sáez-Plaza, P.; Michałowski, T.; Navas, M.J.; Asuero, A.G.; Wybraniec, S. An Overview of the Kjeldahl Method of Nitrogen Determination. Part, I. Early History, Chemistry of the Procedure, and Titrimetric Finish. Crit. Rev. Anal. Chem. 2013, 43, 178–223. [Google Scholar] [CrossRef]
- Domini, C.; Vidal, L.; Cravotto, G.; Canals, A. A Simultaneous, Direct Microwave/Ultrasound-Assisted Digestion Procedure for the Determination of Total Kjeldahl Nitrogen. Ultrason. Sonochem. 2009, 16, 564–569. [Google Scholar] [CrossRef]
- Mason, C.J.; Edwards, M.; Riby, P.G.; Coe, G. The Use of Microwaves in the Acceleration of Digestion and Colour Development in the Determination of Total Kjeldahl Nitrogen in Soil. Analyst 1999, 124, 1719–1726. [Google Scholar] [CrossRef]
- Pasquini, C.; De Faria, L.C. Flow-Injection Determination of Ammonia in Kjeldahl Digests by Gas Diffusion and Conductometry. Anal. Chim. Acta 1987, 193, 19–27. [Google Scholar] [CrossRef]
- Devani, M.B.; Shishoo, C.J.; Shah, S.A.; Suhagia, B.N. Spectrophotometric Method for Microdetermination of Nitrogen in Kjeldahl Digest. J. Assoc. Off. Anal. Chem. 1989, 72, 953–956. [Google Scholar] [CrossRef]
- Tryzell, R.; Karlberg, B. Calibration Methods for Determination of Ammonium and Excess Acid in Kjeldahl Digests by Flow Injection Analysis. Anal. Chim. Acta 1997, 343, 183–190. [Google Scholar] [CrossRef]
- Stewart, J.W.B.; Růžička, J.; Bergamin Filho, H.; Zagatto, E.A. Flow Injection Analysis: Part III. Comparison of Continuous Flow Spectrophotometry and Potentiometry for the Rapid Determination of the Total Nitrogen Content in Plant Digests. Anal. Chim. Acta 1976, 81, 371–386. [Google Scholar] [CrossRef]
- Gao, F.; Chen, S.; Du, X.; Zhou, X.; Wang, X. FOSS Kjeltec 8400 Automatic Kjeldahl Nitrogen Determinator for Determination of Total Nitrogen in Soil. Tianjin Agric. Sci. 2022, 28, 76–80. [Google Scholar]
- Li, G.; Ye, X.; Lv, Z.; Yang, S.; Wen, Y.; Liu, Y.; Wang, H. Comparison of Element Analyzer (Dumas Combustion) and Automated Kjeldahl Analyzer (Kjeldahl Methods) for Determining Total Nitrogen Content in Soils. Soil Fertil. Sci. China 2015, 03, 111–115. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, X.; Zhang, X.; Xie, R.; Xiao, W.; Han, L. Analysis of the Total Nitrogen Content of Crop Residues Determined by Using Kjeldahl and Dumas Methods. Trans. Chin. Soc. Agric. Eng. 2020, 36, 206–214. [Google Scholar]
- Li, S.; Wang, S.; Shi, Z. Prediction of Vertical Distribution of Soil Nitrogen Content in Soil Profile Using Spectral Imaging Technique. Acta Pedol. Sin. 2015, 52, 1014–1023. [Google Scholar]
- Song, X. Estimation Technology of Soil Total Nitrogen and Its Influence Mechanism Based on Hyperspectral Inversion. Master’s Thesis, Shandong Agricultural University, Taian, China, 2020. [Google Scholar]
- Molin, J.P.; Tavares, T.R. Sensor Systems for Mapping Soil Fertility Attributes: Challenges, Advances, and Perspectives in Brazilian Tropical Soils. Eng. Agric. 2019, 39, 126–147. [Google Scholar] [CrossRef] [Green Version]
- Morellos, A.; Pantazi, X.-E.; Moshou, D.; Alexandridis, T.; Whetton, R.; Tziotzios, G.; Wiebensohn, J.; Bill, R.; Mouazen, A.M. Machine Learning Based Prediction of Soil Total Nitrogen, Organic Carbon and Moisture Content by Using VIS-NIR Spectroscopy. Biosyst. Eng. 2016, 152, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, M.; Ji, R.; Wang, M.; Zheng, L. Comparison of Soil Total Nitrogen Content Prediction Models Based on Vis-NIR Spectroscopy. Sensors 2020, 20, 7078. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, J.; Du, Y. Combining Multivariate Method and Spectral Variable Selection for Soil Total Nitrogen Estimation by Vis–NIR Spectroscopy. Arch. Agron. Soil Sci. 2021, 67, 1665–1678. [Google Scholar] [CrossRef]
- Mukherjee, S.; Laskar, S. Vis–NIR-Based Optical Sensor System for Estimation of Primary Nutrients in Soil. J. Opt. 2019, 48, 87–103. [Google Scholar] [CrossRef]
- Qi, H.; Arnon, K.; Li, S. Predicting Soil Available Nitrogen with Field Spectra Corrected by Y-Gradient General Least Square Weighting. Spectrosc. Spectr. Anal. 2018, 38, 171–175. [Google Scholar]
- Qu, N.; Zhu, M.; Dou, S. Application of Near-and Mid-Infrared Diffuse Reflectance Spectroscopic Techniques in Soil Analysis. J. Instrum. Anal. 2015, 31, 120–126. [Google Scholar]
- Xie, H.T.; Yang, X.M.; Drury, C.F.; Yang, J.Y.; Zhang, X.D. Predicting Soil Organic Carbon and Total Nitrogen Using Mid-and near-Infrared Spectra for Brookston Clay Loam Soil in Southwestern Ontario, Canada. Can. J. Soil Sci. 2011, 91, 53–63. [Google Scholar] [CrossRef]
- Burton, L.; Jayachandran, K.; Bhansali, S. The “Real-Time” Revolution for in Situ Soil Nutrient Sensing. J. Electrochem. Soc. 2020, 167, 037569. [Google Scholar] [CrossRef]
- Li, M.; Xia, X.; Zhu, Q.; Liu, H.; Huang, D.; Wang, G. Method for Detecting Soil Total Nitrogen Content and Characteristic Optimization Based on Pyrolysis and Electronic Nose. Trans. Chin. Soc. Agric. Eng. 2021, 37, 73–84. [Google Scholar]
- Xu, X.; Du, C.; Ma, F.; Shen, Y.; Wu, K.; Liang, D.; Zhou, J. Detection of Soil Organic Matter from Laser-Induced Breakdown Spectroscopy (LIBS) and Mid-Infrared Spectroscopy (FTIR-ATR) Coupled with Multivariate Techniques. Geoderma 2019, 355, 113905. [Google Scholar] [CrossRef]
- Chen, C.; Dong, D.; Li, Z.; Wang, X. A Novel Soil Nutrient Detection Method Based on Combined ATR and DRIFT Mid-Infrared Spectra. Anal. Methods 2017, 9, 528–533. [Google Scholar] [CrossRef]
- Xing, Z.; Du, C.; Zeng, Y.; Ma, F.; Zhou, J. Characterizing Typical Farmland Soils in China Using Raman Spectroscopy. Geoderma 2016, 268, 147–155. [Google Scholar] [CrossRef]
- Li, K.; Zhao, Y.; Yuan, X.; Zhao, H.; Wang, Z.; Li, S.; Malhi, S.S. Comparison of Factors Affecting Soil Nitrate Nitrogen and Ammonium Nitrogen Extraction. Commun. Soil Sci. Plant Anal. 2012, 43, 571–588. [Google Scholar] [CrossRef]
- Dorich, R.A.; Nelson, D.W. Direct Colorimetric Measurement of Ammonium in Potassium Chloride Extracts of Soils. Soil Sci. Soc. Am. J. 1983, 47, 833–836. [Google Scholar] [CrossRef]
- Kempers, A.J.; Zweers, A. Ammonium Determination in Soil Extracts by the Salicylate Method. Commun. Soil Sci. Plant Anal. 1986, 17, 715–723. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Xing, W.; Tang, L. Progress in Soil Available Nitrogen, Phosphorus and Potassium Analysis: A Review. Chin. J. Soil Sci. 2003, 483–488. [Google Scholar]
- Li, Y.; Zhang, M.; Zheng, J.; Pan, L.; Kong, P.; Lei, Z. Design and Experiment of Prototype Soil Pretreatment Device for ISE-Based Soil Nitrate-Nitrogen Detection. Trans. Chin. Soc. Agric. Eng. 2017, 33, 120–125. [Google Scholar]
- Lu, B.; Wang, X.; He, K.; Hu, C.; Gao, X.; Tang, X. Design and Test of Near Infrared Detecting Instrument for Available Nitrogen in Coco-Peat Substrate. Trans. Chin. Soc. Agric. Mach. 2022, 53, 316–324. [Google Scholar]
- Xing, Z.; Du, C.; Tian, K.; Ma, F.; Shen, Y.; Zhou, J. Application of FTIR-PAS and Raman Spectroscopies for the Determination of Organic Matter in Farmland Soils. Talanta 2016, 158, 262–269. [Google Scholar] [CrossRef]
- Qin, R.; Zhang, Y.; Ren, S.; Nie, P. Rapid Detection of Available Nitrogen in Soil by Surface-Enhanced Raman Spectroscopy. Int. J. Mol. Sci. 2022, 23, 10404. [Google Scholar] [CrossRef]
- Guerrero, A.; De Neve, S.; Mouazen, A.M. Current Sensor Technologies for in Situ and On-Line Measurement of Soil Nitrogen for Variable Rate Fertilization: A Review. Adv. Agron. 2021, 168, 1–38. [Google Scholar] [CrossRef]
- Du, S.; Pan, Q.; Cao, S. Development of Soil Nitrate-Nitrogen Detection Device with Multiple Parameters Based on ISE. Trans. Chin. Soc. Agric. Mach. 2017, 48, 277–283+301. [Google Scholar]
- Ren, H.; Zhang, M.; Kong, P.; Li, Y.; Pu, P.; Zhang, L. Prediction of Soil Nitrate-Nitrogen Based on Sensor Fusion. Trans. Chin. Soc. Agric. Mach. 2015, 46, 96–101. [Google Scholar]
- Zhang, L. Study on Fast Determination of Soil Available Macronutrients Based on Ion-Selective Electrodes. Ph.D. Thesis, China Agricultural University, Beijing, China, 2015. [Google Scholar]
- Kulkarni, Y.; Warhade, K.K.; Bahekar, S. Primary Nutrients Determination in the Soil Using UV Spectroscopy. Int. J. Emerg. Eng. Res. Technol. 2014, 2, 198–204. [Google Scholar]
- Norman, R.J.; Stucki, J.W. The Determination of Nitrate and Nitrite in Soil Extracts by Ultraviolet Spectrophotometry. Soil Sci. Soc. Am. J. 1981, 45, 347–353. [Google Scholar] [CrossRef]
- Yeshno, E.; Arnon, S.; Dahan, O. Real-Time Monitoring of Nitrate in Soils as a Key for Optimization of Agricultural Productivity and Prevention of Groundwater Pollution. Hydrol. Earth Syst. Sci. 2019, 23, 3997–4010. [Google Scholar] [CrossRef] [Green Version]
- Saha, U.K.; Sonon, L.; Biswas, B.K. A Comparison of Diffusion-Conductimetric and Distillation-Titration Methods in Analyzing Ammonium-and Nitrate-Nitrogen in the KCl-Extracts of Georgia Soils. Commun. Soil Sci. Plant Anal. 2018, 49, 63–75. [Google Scholar] [CrossRef]
- Searle, P.L. The Berthelot or Indophenol Reaction and Its Use in the Analytical Chemistry of Nitrogen. A Review. Analyst 1984, 109, 549–568. [Google Scholar] [CrossRef]
- Hinds, A.A.; Lowe, L.E. Application of the Berthelot Reaction to the Determination of Ammonium-N in Soil Extracts and Soil Digests. Commun. Soil Sci. Plant Anal. 1980, 11, 469–475. [Google Scholar] [CrossRef]
- Saghir, N.S.; Mulvancy, R.L.; Azam, F. Determination of Nitrogen by Microdiffusion in Mason Jars. I. Inorganic Nitrogen in Soil Extracts. Commun. Soil Sci. Plant Anal. 1993, 24, 1745–1762. [Google Scholar] [CrossRef]
- Li, S. Studies on the Indices of Soil Nitrogen Supplying Capacities I. Evaluation of Some Methods for Determining Mineralized and Mineralizable Nitrogen in Soils. Acta Pedol. Sin. 1990, 27, 233–240. [Google Scholar]
- Volkov, D.S.; Rogova, O.B.; Proskurnin, M.A. Photoacoustic and Photothermal Methods in Spectroscopy and Characterization of Soils and Soil Organic Matter. Photoacoustics 2020, 17, 100151. [Google Scholar] [CrossRef]
- Holman, J.B.; Shi, Z.; Fadahunsi, A.A.; Li, C.; Ding, W. Advances on Microfluidic Paper-Based Electroanalytical Devices. Biotechnol. Adv. 2023, 63, 108093. [Google Scholar] [CrossRef]
- Baumbauer, C.L.; Goodrich, P.J.; Payne, M.E.; Anthony, T.; Beckstoffer, C.; Toor, A.; Silver, W.; Arias, A.C. Printed Potentiometric Nitrate Sensors for Use in Soil. Sensors 2022, 22, 4095. [Google Scholar] [CrossRef] [PubMed]
- Simonne, E.H.; Mills, H.A.; Jones Jr, J.B.; Smittle, D.A.; Hussey, C.G. A Comparison of Analytical Methods for Nitrogen Analysis in Plant Tissues. Commun. Soil Sci. Plant Anal. 1994, 25, 943–954. [Google Scholar] [CrossRef]
- Li, G.; Lü, Z.; Bao, W.; Wen, Y.; An, Y.; Liu, Y.; Han, Y.; Wang, H. Determination of Nitrogen Release from Slow and Controlled-Release Fertilizers by Dumas Process Using TOC/TN Analyzer. Trans. Chin. Soc. Agric. Eng. 2014, 30, 275–280. [Google Scholar]
- Zhang, M.; Kong, P.; Li, Y.; Ren, H.; Pu, P.; Zhang, L. Prediction Model of Soil NO-3-N Concentration Based on Extreme Learning Machine. Trans. Chin. Soc. Agric. Mach. 2016, 47, 93–99. [Google Scholar]
- Fayose, T.; Thomas, E.; Radu, T.; Dillingham, P.; Ullah, S.; Radu, A. Concurrent Measurement of Nitrate and Ammonium in Water and Soil Samples Using Ion-selective Electrodes: Tackling Sensitivity and Precision Issues. Anal. Sci. Adv. 2021, 2, 279–288. [Google Scholar] [CrossRef]
- Lu, X.; Pan, L.; Li, Y.; Chen, M.; Liu, G.; Zhang, M. Comprison of Detection Models for Soil Nitrate Concentration Based on ISE. Trans. Chin. Soc. Agric. Mach. 2021, 52, 297–303. [Google Scholar]
- Du, S.; Cao, S.; Pan, Q.; Zhu, Y. Interference Factors and Measurement Model of Soil Nitrate-Nitrogen Detection Based on Electrode Method. Trans. Chin. Soc. Agric. Mach. 2016, 47, 171–179. [Google Scholar]
- Zhao, Q.; Wang, L.; Guo, W.; Chen, X.; Nie, M.; Jia, D. Construction and Verification of On-Line Calibrating and Measuring System about Nitrate N in Hydroponic Nutrient Solution. Trans. Chin. Soc. Agric. Mach. 2018, 49, 203–209. [Google Scholar]
- Zhao, Y.; Liu, Y.; Sun, Z.; Chang, C.; Zhao, Y.; Liu, W. Design of the Detection System for the In-Situ Measurement of Soil Nitrate-Nitrogen Contents. Trans. Chin. Soc. Agric. Eng. 2022, 38, 115–123. [Google Scholar]
- Morgan, C.L.; Waiser, T.H.; Brown, D.J.; Hallmark, C.T. Simulated in Situ Characterization of Soil Organic and Inorganic Carbon with Visible Near-Infrared Diffuse Reflectance Spectroscopy. Geoderma 2009, 151, 249–256. [Google Scholar] [CrossRef]
- Chen, J. Study on Migration of Soil Total Nitrogen and Organic Matter Near-Infrared Spectroscopy Analysis Model. Master’s Thesis, Shandong University, Jinan, China, 2020. [Google Scholar]
- Fan, P.; Li, X.; Lv, M.; Wu, N.; Liu, Y. Vis-NIR Model Transfer of Total Nitrogen between Different Soils. Spectrosc. Spectr. Anal. 2018, 38, 3210–3214. [Google Scholar]
- Antonacci, A.; Arduini, F.; Moscone, D.; Palleschi, G.; Scognamiglio, V. Nanostructured (Bio) Sensors for Smart Agriculture. TrAC Trends Anal. Chem. 2018, 98, 95–103. [Google Scholar] [CrossRef]
- Pyingkodi, M.; Thenmozhi, K.; Nanthini, K.; Karthikeyan, M.; Palarimath, S.; Erajavignesh, V.; Kumar, G.B.A. Sensor Based Smart Agriculture with IoT Technologies: A Review. In Proceedings of the 2022 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 25–27 January 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–7. [Google Scholar]
- Lavanya, G.; Rani, C.; GaneshKumar, P. An Automated Low Cost IoT Based Fertilizer Intimation System for Smart Agriculture. Sustain. Comput. Inform. Syst. 2020, 28, 100300. [Google Scholar]
- More, A.; Mouria, A.; Panchal, N.; Bathe, K. Soil Analysis Using Iot. In Proceedings of the 2nd International Conference on Advances in Science & Technology (ICAST), Mumbai, India, 8–9 April 2019. [Google Scholar]
- Pal, A.; Dubey, S.K.; Goel, S. IoT Enabled Microfluidic Colorimetric Detection Platform for Continuous Monitoring of Nitrite and Phosphate in Soil. Comput. Electron. Agric. 2022, 195, 106856. [Google Scholar] [CrossRef]
- Patil, V.K.; Jadhav, A.; Gavhane, S.; Kapare, V. IoT Based Real Time Soil Nutrients Detection. In Proceedings of the 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 5–7 March 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 737–742. [Google Scholar]
- Nath, S.; Dey, A.; Das, P.; Mohapatra, D.; Sing, J.K.; Sarkar, S.K. Application of Soil Sensors for Maximizing Productivity Using IoT Framework. In Proceedings of the 2022 IEEE VLSI Device Circuit and System (VLSI DCS), Kolkata, India, Piscataway, NJ, USA, 26–27 February 2022; pp. 220–224. [Google Scholar]
- Sun, J.; Abdulghani, A.M.; Imran, M.A.; Abbasi, Q.H. IoT Enabled Smart Fertilization and Irrigation Aid for Agricultural Purposes. In Proceedings of the 2020 International Conference on Computing, Networks and Internet of Things, Sanya, China, 24–26 April 2020; pp. 71–75. [Google Scholar]
- Rossel, R.A.V.; Bouma, J. Soil Sensing: A New Paradigm for Agriculture. Agric. Syst. 2016, 148, 71–74. [Google Scholar] [CrossRef]
- Nawar, S.; Corstanje, R.; Halcro, G.; Mulla, D.; Mouazen, A.M. Delineation of Soil Management Zones for Variable-Rate Fertilization: A Review. Adv. Agron. 2017, 143, 175–245. [Google Scholar] [CrossRef]
- Ozhikandathil, J.; Badilescu, S.; Packirisamy, M. Polymer Composite Optically Integrated Lab on Chip for the Detection of Ammonia. J. Electrochem. Soc. 2018, 165, B3078. [Google Scholar] [CrossRef] [Green Version]
- Kodaira, M.; Shibusawa, S. Mobile Proximal Sensing with Visible and Near Infrared Spectroscopy for Digital Soil Mapping. Soil Syst. 2020, 4, 40. [Google Scholar] [CrossRef]
- Dotto, A.C.; Dalmolin, R.S.D.; ten Caten, A.; Grunwald, S. A Systematic Study on the Application of Scatter-Corrective and Spectral-Derivative Preprocessing for Multivariate Prediction of Soil Organic Carbon by Vis-NIR Spectra. Geoderma 2018, 314, 262–274. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Lv, M.; Zou, Y.; Fan, P. Calibration Transfer of Soil Total Carbon and Total Nitrogen between Two Different Types of Soils Based on Visible-near-Infrared Reflectance Spectroscopy. J. Spectrosc. 2018, 2018, 8513215. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, X.; Jin, Y.; Gu, X.; Feng, H.; Wang, C. Quantitative Retrieval of Water Content in Winter Wheat Leaves Based on Continuous Wavelet Transform. J. Triticeae Crop 2020, 40, 503–509. [Google Scholar]
- Liu, Y.; Yang, H.; Xiong, Z.; Liang, H.; Fang, G. Study on Near-Infrared Calibration Model Transfer for Lignin Content in Pulpwood. Trans. China Pulp Pap. 2019, 34, 43–49. [Google Scholar]
- Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision Support Systems for Agriculture 4.0: Survey and Challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
- Lindblom, J.; Lundström, C.; Ljung, M.; Jonsson, A. Promoting Sustainable Intensification in Precision Agriculture: Review of Decision Support Systems Development and Strategies. Precis. Agric. 2017, 18, 309–331. [Google Scholar] [CrossRef] [Green Version]
- Li, T. Cloud-Based Decision Support and Automation for Precision Agriculture in Orchards. IFAC-PapersOnLine 2016, 49, 330–335. [Google Scholar] [CrossRef]
Method Name | Estimation Substance | Processing Time | Robustness | Cost | Accuracy | Detection Limit | Specificity | Service Life | Portability | Ease of Use | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
Spectrophotometry-based Methods | Nitrate Only | Moderate | Moderate | Moderate | Very high | Moderate–High | Very high | Short–medium | Low | Low | [49,50,51,52] |
Visible-Near-Infrared Spectroscopy | Both | Very fast | High | Moderate | Moderate–High | Moderate | High | Very long | High | Moderate | [20] |
Mid-Infrared Spectroscopy | Both | Fast | Moderate | High | High | Moderate–High | High | Very long | High | Moderate | [20,36] |
Attenuated Total Reflectance Spectroscopy | Both | Slow | Low | Moderate–High | High | Moderate | Moderate | Very long | Low–Moderate | Moderate | [53,54] |
Raman Spectroscopy | Both | Fast | Low–Moderate | High | Moderate–High | Moderate | Moderate | Short–Medium | Very low | Very low | [44,48,55,56] |
Ion-Sensitive Field Effect Transistor | Nitrate Only | Moderate | Moderate–High | Low | High | Moderate | Moderate | Medium | Very high | Moderate–High | [44,57] |
Ion-Selective Electrode | Nitrate Only | Moderate | Moderate–High | Low–Moderate | Moderate–High | Moderate | Moderate | Medium | Very high | Moderate–High | [36,53,58,59,60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Cai, H.; Chen, S.; Pi, J.; Zhao, L. A Review on Soil Nitrogen Sensing Technologies: Challenges, Progress and Perspectives. Agriculture 2023, 13, 743. https://doi.org/10.3390/agriculture13040743
Liu J, Cai H, Chen S, Pi J, Zhao L. A Review on Soil Nitrogen Sensing Technologies: Challenges, Progress and Perspectives. Agriculture. 2023; 13(4):743. https://doi.org/10.3390/agriculture13040743
Chicago/Turabian StyleLiu, Jun, Haotian Cai, Shan Chen, Jie Pi, and Liye Zhao. 2023. "A Review on Soil Nitrogen Sensing Technologies: Challenges, Progress and Perspectives" Agriculture 13, no. 4: 743. https://doi.org/10.3390/agriculture13040743
APA StyleLiu, J., Cai, H., Chen, S., Pi, J., & Zhao, L. (2023). A Review on Soil Nitrogen Sensing Technologies: Challenges, Progress and Perspectives. Agriculture, 13(4), 743. https://doi.org/10.3390/agriculture13040743