Effects of Dietary Intervention Using Spirulina at Graded Levels on Productive Performance and Physiological Status of Quail Birds Reared under Elevated Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spirulina Analysis
2.2. Birds and Experimental Design
2.3. Productive Performance
2.4. Slaughter Performance
2.5. Physiological Traits
2.6. Stress Measurements
2.7. Immunological Parameters
2.8. Statistical Analysis
3. Results
3.1. Productive Performance
3.2. Slaughter Performance
3.3. Physiological Traits
3.4. Stress Measurements
3.5. Immunological Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baer, J.; Lansford, R.; Cheng, K. Japanese Quail as a Laboratory Animal Model. In Laboratory Animal Medicine: Third Edition; Fox, J.G., Anderson, L.C., Otto, G.M., Pritchett-Corning, K.R., Whary, M.T., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 1087–1108. ISBN 9780124095274. [Google Scholar]
- Huss, D.; Poynter, G.; Lansford, R. Japanese Quail (Coturnix japonica) as a Laboratory Animal Model. Lab. Anim. 2008, 37, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Ramankevich, A.; Wengerska, K.; Rokicka, K.; Drabik, K.; Kasperek, K.; Ziemiańska, A.; Batkowska, J. Environmental Enrichment as Part of the Improvement of the Welfare of Japanese Quails. Animals 2022, 12, 1963. [Google Scholar] [CrossRef] [PubMed]
- Genchev, A.; Mihaylova, G.; Ribarski, S.; Pavlov, A.; Kabakchiev, M. Meat Quality and Composition in Japanese Quails. Trakia J. Sci. 2008, 66, 72–82. [Google Scholar]
- Sahin, N.; Tuzcu, M.; Orhan, C.; Onderci, M.; Eroksuz, Y.; Sahin, K. The Effects of Vitamin C and E Supplementation on Heat Shock Protein 70 Response of Ovary and Brain in Heat-Stressed Quail. Br. Poult. Sci. 2009, 50, 259–265. [Google Scholar] [CrossRef]
- Lara, L.J.; Rostagno, M.H. Impact of Heat Stress on Poultry Production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef] [Green Version]
- Alzarah, M.I.; Althobiati, F.; Abbas, A.O.; Mehaisen, G.M.K.; Kamel, N.N. Citrullus Colocynthis Seeds: A Potential Natural Immune Modulator Source for Broiler Reared under Chronic Heat Stress. Animals 2021, 11, 1951. [Google Scholar] [CrossRef]
- Kamel, N.N.; Ahmed, A.M.H.; Mehaisen, G.M.K.; Mashaly, M.M.; Abass, A.O. Depression of Leukocyte Protein Synthesis, Immune Function and Growth Performance Induced by High Environmental Temperature in Broiler Chickens. Int. J. Biometeorol. 2017, 61, 1637–1645. [Google Scholar] [CrossRef]
- Shi, D.; Bai, L.; Qu, Q.; Zhou, S.; Yang, M.; Guo, S.; Li, Q.; Liu, C. Impact of Gut Microbiota Structure in Heat-Stressed Broilers. Poult. Sci. 2019, 98, 2405–2413. [Google Scholar] [CrossRef]
- Quinteiro-Filho, W.M.; Rodrigues, M.V.; Ribeiro, A.; Ferraz-de-Paula, V.; Pinheiro, M.L.; Sá, L.R.M.; Ferreira, A.J.P.; Palermo-Neto, J. Acute Heat Stress Impairs Performance Parameters and Induces Mild Intestinal Enteritis in Broiler Chickens: Role of Acute Hypothalamic-Pituitary-Adrenal Axis Activation. J. Anim. Sci. 2012, 90, 1986–1994. [Google Scholar] [CrossRef]
- Deng, W.; Dong, X.F.; Tong, J.M.; Zhang, Q. The Probiotic Bacillus Licheniformis Ameliorates Heat Stress-Induced Impairment of Egg Production, Gut Morphology, and Intestinal Mucosal Immunity in Laying Hens. Poult. Sci. 2012, 91, 575–582. [Google Scholar] [CrossRef]
- Attia, Y.A.; Abd El, A.E.-H.E.; Abedalla, A.A.; Berika, M.A.; Al-Harthi, M.A.; Kucuk, O.; Sahin, K.; Abou-Shehema, B.M. Laying Performance, Digestibility and Plasma Hormones in Laying Hens Exposed to Chronic Heat Stress as Affected by Betaine, Vitamin C, and/or Vitamin E Supplementation. Springerplus 2016, 5, 1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Otaibi, M.I.M.; Abdellatif, H.A.M.; Al-Huwail, A.K.A.; Abbas, A.O.; Mehaisen, G.M.K.; Moustafa, E.S. Hypocholesterolemic, Antioxidative, and Anti-Inflammatory Effects of Dietary Spirulina platensisis Supplementation on Laying Hens Exposed to Cyclic Heat Stress. Animals 2022, 12, 2759. [Google Scholar] [CrossRef]
- Abbas, A.O.; Alaqil, A.A.; Mehaisen, G.M.K.; El Sabry, M.I. Effect of Organic Selenium-Enriched Yeast on Relieving the Deterioration of Layer Performance, Immune Function, and Physiological Indicators Induced by Heat Stress. Front. Vet. Sci. 2022, 9, 880790. [Google Scholar] [CrossRef] [PubMed]
- González-Zapata, F.A.; Sanginés-García, J.R.; Piñero-Vázquez, T.; Velázquez-Madrazo, P.A.; Itzá-Ortíz, M.F.; Bello-Pérez, E.V.; Chay-Canul, A.J.; Aguilar-Urquizo, E. Performance of Turkeys in Enrichment Environment with Perches and Outdoor Access under Tropical Conditions. Braz. J. Poult. Sci. 2022, 24, 1–8. [Google Scholar] [CrossRef]
- Farghly, M.F.A.; Alagawany, M.; Abd El-Hack, M.E. Feeding Time Can Alleviate Negative Effects of Heat Stress on Performance, Meat Quality and Health Status of Turkey. Br. Poult. Sci. 2017, 59, 205–210. [Google Scholar] [CrossRef]
- Akdemir, F.; Sahin, N.; Orhan, C.; Tuzcu, M.; Sahin, K.; Hayirli, A. Chromium-Histidinate Ameliorates Productivity in Heat-Stressed Japanese Quails through Reducing Oxidative Stress and Inhibiting Heat-Shock Protein Expression. Br. Poult. Sci. 2015, 56, 247–254. [Google Scholar] [CrossRef]
- Sahin, N.; Akdemir, F.; Tuzcu, M.; Hayirli, A.; Smith, M.O.; Sahin, K. Effects of Supplemental Chromium Sources and Levels on Performance, Lipid Peroxidation and Proinflammatory Markers in Heat-Stressed Quails. Anim. Feed. Sci. Technol. 2010, 159, 143–149. [Google Scholar] [CrossRef]
- Caurez, C.L.; Olo, C.F. Laying Performance of Japanese Quail (Coturnix coturnix japonica) Supplemented with Zinc, Vitamin C and E Subjected to Long Term Heat Stress. In Proceedings of the International Conference on Agriculture and Biotechnology, Stockholm, Sweden, 15–16 July 2013; Volume 12, pp. 58–63. [Google Scholar]
- Mehaisen, G.M.K.; Ibrahim, R.M.; Desoky, A.A.; Safaa, H.M.; El-Sayed, O.A.; Abass, A.O. The Importance of Propolis in Alleviating the Negative Physiological Effects of Heat Stress in Quail Chicks. PLoS ONE 2017, 12, e0186907. [Google Scholar] [CrossRef] [Green Version]
- Mehaisen, G.M.K.; Desoky, A.A.; Sakr, O.G.; Sallam, W.; Abass, A.O. Propolis Alleviates the Negative Effects of Heat Stress on Egg Production, Egg Quality, Physiological and Immunological Aspects of Laying Japanese Quail. PLoS ONE 2019, 14, e0214839. [Google Scholar] [CrossRef] [Green Version]
- Sahin, K.; Onderci, M.; Sahin, N.; Gursu, M.F.; Khachik, F.; Kucuk, O. Effects of Lycopene Supplementation on Antioxidant Status, Oxidative Stress, Performance and Carcass Characteristics in Heat-Stressed Japanese Quail. J. Therm. Biol. 2006, 31, 307–312. [Google Scholar] [CrossRef]
- Imik, H.; Aydemir Atasever, M.; Koc, M.; Atasever, M.; Ozturan, K. Effect of Dietary Supplementation of Some Antioxidants on Growth Performance, Carcass Composition and Breast Meat Characteristics in Quails Reared under Heat Stress. Czech J. Anim. Sci. 2010, 55, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.O.; Alaqil, A.A.; Mehaisen, G.M.K.; Kamel, N.N. Effect of Dietary Blue-Green Microalgae Inclusion as a Replacement to Soybean Meal on Laying Hens’ Performance, Egg Quality, Plasma Metabolites, and Hematology. Animals 2022, 12, 2816. [Google Scholar] [CrossRef] [PubMed]
- Anvar, A.A.; Nowruzi, B. Bioactive Properties of Spirulina: A Review. Microb. Bioact. 2021, 4, 134–142. [Google Scholar] [CrossRef]
- Mohan, A.; Misra, N.; Srivastav, D.; Umapathy, D.; Kumar, S. Spirulina-The Nature’s Wonder: A Review. Sch. J. Appl. Med. Sci. (SJAMS) 2014, 2, 1334–1339. [Google Scholar]
- Sherif, K.; Dorra, T.; El-Wardany, I.; Mahmoud, A. Effect Of Dietary Azolla And Spirulina On Performance Of Japanese Quails. J. Anim. Poult. Prod. 2022, 13, 51–57. [Google Scholar] [CrossRef]
- Boiago, M.M.; Dilkin, J.D.; Kolm, M.A.; Barreta, M.; Souza, C.F.; Baldissera, M.D.; dos Santos, I.D.; Wagner, R.; Tavernari, F.d.C.; da Silva, M.L.B.; et al. Spirulina platensis in Japanese Quail Feeding Alters Fatty Acid Profiles and Improves Egg Quality: Benefits to Consumers. J. Food Biochem. 2019, 43, e12860. [Google Scholar] [CrossRef]
- Hajati, H.; Zaghari, M. Effects of Spirulina platensis on Growth Performance, Carcass Characteristics, Egg Traits and Immunity Response of Japanese Quails. Iran. J. Appl. Anim. Sci. 2019, 9, 347–357. [Google Scholar]
- Cheong, D.S.W.; Kasim, A.; Sazili, A.Q.; Omar, H.; Teoh, J.Y. Effect of Supplementing Spirulina on Live Performance, Carcass Composition and Meat Quality of Japanese Quail. Walailak J. Sci. Technol. (WJST) 2015, 13, 77–84. [Google Scholar]
- Coskun, Z.K.; Kerem, M.; Gurbuz, N.; Omeroglu, S.; Pasaoglu, H.; Demirtas, C.; Lortlar, N.; Salman, B.; Pasaoglu, O.T.; Turgut, H.B. The Study of Biochemical and Histopathological Effects of Spirulina in Rats with TNBS-Induced Colitis. Bratisl. Lek. Listy 2011, 112, 235–243. [Google Scholar]
- Shokri, H.; Khosravi, A.; Taghavi, M. Efficacy of Spirulina platensis on Immune Functions in Cancer Mice with Systemic Candidiasis. J. Mycol. Res. 2014, 1, 7–13. [Google Scholar]
- Şahan, A. Determination of Some Haematological and Non-Specific Im-Mune Parameters in Nile Tilapia (Oreochromis niloticus, L., 1758) Fed with Spirulina (Spirulina platensis) Added Diets. J. Aquac. Eng. Fish. Res. 2015, 1, 133–139. [Google Scholar] [CrossRef]
- Gad, A.S.; Khadrawy, Y.A.; El-Nekeety, A.A.; Mohamed, S.R.; Hassan, N.S.; Abdel-Wahhab, M.A. Antioxidant Activity and Hepatoprotective Effects of Whey Protein and Spirulina in Rats. Nutrition 2011, 27, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Elbaz, A.M.; Ahmed, A.M.H.; Abdel-Maqsoud, A.; Badran, A.M.M.; Abdel-Moneim, A.M.E. Potential Ameliorative Role of Spirulina platensis in Powdered or Extract Forms against Cyclic Heat Stress in Broiler Chickens. Environ. Sci. Pollut. Res. 2022, 29, 45578–45588. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, E.S.; Alsanie, W.F.; Gaber, A.; Kamel, N.N.; Alaqil, A.A.; Abbas, A.O. Blue-Green Algae (Spirulina platensis) Alleviates the Negative Impact of Heat Stress on Broiler Production Performance and Redox Status. Animals 2021, 11, 1243. [Google Scholar] [CrossRef]
- Hajati, H.; Zaghari, M.; Oliveira, H.C. Arthrospira (Spirulina) Platensis Can Be Considered as a Probiotic Alternative to Reduce Heat Stress in Laying Japanese Quails. Braz. J. Poult. Sci. 2020, 22, 1–8. [Google Scholar] [CrossRef]
- AOAC Association of Official Analysis Chemists International. Official Methods of Analysis of AOAC International, 18th ed.; AOAC: Washington, DC, USA, 2005; ISBN 0935584544. [Google Scholar]
- Seghiri, R.; Kharbach, M.; Essamri, A. Functional Composition, Nutritional Properties, and Biological Activities of Moroccan Spirulina Microalga. J. Food Qual. 2019, 2019, 3707219. [Google Scholar] [CrossRef] [Green Version]
- Moukette Moukette, B.; Constant Anatole, P.; Nya Biapa, C.P.; Njimou, J.R.; Ngogang, J.Y. Free Radicals Quenching Potential, Protective Properties against Oxidative Mediated Ion Toxicity and HPLC Phenolic Profile of a Cameroonian Spice: Piper Guineensis. Toxicol. Rep. 2015, 2, 792–805. [Google Scholar] [CrossRef] [Green Version]
- NRC. Nutrient Requirements of Poultry, 19th ed.; The National Academies Press: Washington, DC, USA, 1994; ISBN 978-0-309-04892-7. [Google Scholar]
- Havlík, P.; Valin, H.; Herrero, M.; Obersteiner, M.; Schmid, E.; Rufino, M.C.; Mosnier, A.; Thornton, P.K.; Böttcher, H.; Conant, R.T.; et al. Climate Change Mitigation through Livestock System Transitions. Proc. Natl. Acad. Sci. USA 2014, 111, 3709–3714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawab, A.; Ibtisham, F.; Li, G.; Kieser, B.; Wu, J.; Liu, W.; Zhao, Y.; Nawab, Y.; Li, K.; Xiao, M.; et al. Heat Stress in Poultry Production: Mitigation Strategies to Overcome the Future Challenges Facing the Global Poultry Industry. J. Therm. Biol. 2018, 78, 131–139. [Google Scholar] [CrossRef]
- Vercese, F.; Garcia, E.; Sartori, J.; Pontes, S.A.d.P.; Faitarone, A.; Berto, D.; Molino, A.d.B.; Pelícia, K. Performance and Egg Quality of Japanese Quails Submitted to Cyclic Heat Stress. Braz. J. Poult. Sci. 2012, 14, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Huff, G.R.; Huff, W.E.; Wesley, I.V.; Anthony, N.B.; Satterlee, D.G. Response of Restraint Stress-Selected Lines of Japanese Quail to Heat Stress and Escherichia Coli Challenge. Poult. Sci. 2013, 92, 603–611. [Google Scholar] [CrossRef]
- Lu, Q.; Wen, J.; Zhang, H. Effect of Chronic Heat Exposure on Fat Deposition and Meat Quality in Two Genetic Types of Chicken. Poult. Sci. 2007, 86, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Ren, M.; Ren, K.; Jin, Y.; Yan, M. Heat Stress Impacts on Broiler Performance: A Systematic Review and Meta-Analysis. Poult. Sci. 2020, 99, 6205–6211. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Yin, Q.; Xiong, Y.; Li, J.; Liu, D. Characterization of Heat Stress Affecting the Growth Performance, Blood Biochemical Profile, and Redox Status in Male and Female Broilers at Market Age. Trop. Anim. Health Prod. 2020, 52, 3833–3841. [Google Scholar] [CrossRef] [PubMed]
- Wasti, S.; Sah, N.; Mishra, B. Impact of Heat Stress on Poultry Health and Performances, and Potential Mitigation Strategies. Animals 2020, 10, 1266. [Google Scholar] [CrossRef]
- Abdel-Moneim, A.M.E.; Shehata, A.M.; Mohamed, N.G.; Elbaz, A.M.; Ibrahim, N.S. Synergistic Effect of Spirulina platensis and Selenium Nanoparticles on Growth Performance, Serum Metabolites, Immune Responses, and Antioxidant Capacity of Heat-Stressed Broiler Chickens. Biol. Trace Elem. Res. 2022, 200, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Kolluri, G.; Marappan, G.; Yadav, A.S.; Kumar, A.; Mariappan, A.K.; Tyagi, J.S.; Rokade, J.J.; Govinthasamy, P. Effects of Spirulina (Arthrospira platensis) as a Drinking Water Supplement during Cyclical Chronic Heat Stress on Broiler Chickens: Assessing Algal Composition, Production, Stress, Health and Immune-Biochemical Indices. J. Therm. Biol. 2022, 103, 103100. [Google Scholar] [CrossRef]
- Tavernari, F.D.C.; Roza, L.F.; Surek, D.; Sordi, C.; Silva, M.L.B.D.; Albino, L.F.T.; Migliorini, M.J.; Paiano, D.; Boiago, M.M. Apparent Metabolisable Energy and Amino Acid Digestibility of Microalgae Spirulina platensis as an Ingredient in Broiler Chicken Diets. Br. Poult. Sci. 2018, 59, 562–567. [Google Scholar] [CrossRef]
- Alwaleed, E.A.; El-Sheekh, M.; Abdel-Daim, M.M.; Saber, H. Effects of Spirulina platensis and Amphora Coffeaeformis as Dietary Supplements on Blood Biochemical Parameters, Intestinal Microbial Population, and Productive Performance in Broiler Chickens. Environ. Sci. Pollut. Res. 2021, 28, 1801–1811. [Google Scholar] [CrossRef]
- Alaqil, A.A.; Abbas, A.O. The Effects of Dietary Spirulina platensis is on Physiological Responses of Broiler Chickens Exposed to Endotoxin Stress. Animals 2023, 13, 363. [Google Scholar] [CrossRef]
- Khan, S.; Mobashar, M.; Mahsood, F.K.; Javaid, S.; Abdel-Wareth, A.A.; Ammanullah, H.; Mahmood, A. Spirulina Inclusion Levels in a Broiler Ration: Evaluation of Growth Performance, Gut Integrity, and Immunity. Trop. Anim. Health Prod. 2020, 52, 3233–3240. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, W.K.; Wilkinson, D.J.; Phillips, B.E.; Lund, J.N.; Smith, K.; Atherton, P.J. Human Skeletal Muscle Protein Metabolism Responses to Amino Acid Nutrition. Adv. Nutr. 2016, 7, 828S–838S. [Google Scholar] [CrossRef] [Green Version]
- Vahdatpour, T.; Nikpiran, H. Effects of Protexin®, Fermacto® and Combination of Them on Blood Enzymes and Performance of Japanese Quails (Coturnix japonica). Ann. Biol. Res. 2011, 2, 283–291. [Google Scholar]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver Enzyme Alteration: A Guide for Clinicians. CMAJ Can. Med. Assoc. J. 2005, 172, 367. [Google Scholar] [CrossRef] [Green Version]
- Yadav, D.; Prakash Bhartiya, J.; Kumar Verma, S.; Kumar Nandkeoliar, M. Evaluation of Blood Urea, Creatinine and Uric Acid as Markers of Kidney Functions in Hypertensive Patients: A Prospective Study. Indian J. Basic Appl. Med. Res. 2014, 3, 682. [Google Scholar]
- Jastrebski, S.F.; Lamont, S.J.; Schmidt, C.J. Chicken Hepatic Response to Chronic Heat Stress Using Integrated Transcriptome and Metabolome Analysis. PLoS ONE 2017, 12, e0181900. [Google Scholar] [CrossRef] [Green Version]
- Emami, N.K.; Jung, U.; Voy, B.; Dridi, S. Radical Response: Effects of Heat Stress-Induced Oxidative Stress on Lipid Metabolism in the Avian Liver. Antioxidants 2021, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; He, X.F.; Ma, B.B.; Zhang, L.; Li, J.L.; Jiang, Y.; Zhou, G.H.; Gao, F. Increased Fat Synthesis and Limited Apolipoprotein B Cause Lipid Accumulation in the Liver of Broiler Chickens Exposed to Chronic Heat Stress. Poult. Sci. 2019, 98, 3695–3704. [Google Scholar] [CrossRef]
- Mirzaie, S.; Zirak-Khattab, F.; Hosseini, S.A.; Donyaei-Darian, H. Effects of Dietary Spirulina on Antioxidant Status, Lipid Profile, Immune Response and Performance Characteristics of Broiler Chickens Reared under High Ambient Temperature. Asian-Australas. J. Anim. Sci. 2018, 31, 556–563. [Google Scholar] [CrossRef]
- Deng, R.; Chow, T.J. Hypolipidemic, Antioxidant and Antiinflammatory Activities of Microalgae Spirulina. Cardiovasc. Ther. 2010, 28, e33–e45. [Google Scholar] [CrossRef] [Green Version]
- Froyen, E. The Effects of Linoleic Acid Consumption on Lipid Risk Markers for Cardiovascular Disease. In Risk Factors for Cardiovascular Disease; Chahine, J., Ed.; IntechOpen: London, UK, 2022. [Google Scholar]
- Quinteiro-Filho, W.M.; Gomes, A.V.S.; Pinheiro, M.L.; Ribeiro, A.; Ferraz-de-Paula, V.; Astolfi-Ferreira, C.S.; Ferreira, A.J.P.; Palermo-Neto, J. Heat Stress Impairs Performance and Induces Intestinal Inflammation in Broiler Chickens Infected with Salmonella Enteritidis. Avian Pathol. 2012, 41, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.R.; Islam, M.R.; Ahmed, I.; Moktadir, A.A.; Nahar, Z.; Islam, M.S.; Shahid, S.F.B.; Islam, S.N.; Islam, M.S.; Hasnat, A. Elevated Serum Levels of Malondialdehyde and Cortisol Are Associated with Major Depressive Disorder: A Case-Control Study. SAGE Open Med. 2018, 6, 205031211877395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.-M.; Liu, L.-P.; Yin, B.; Liu, Y.-Y.; Dong, W.-W.; Gong, S.; Zhang, J.; Tan, J.-H. Heat Stress Decreases Egg Production of Laying Hens by Inducing Apoptosis of Follicular Cells via Activating the FasL/Fas and TNF-α Systems. Poult. Sci. 2020, 99, 6084–6093. [Google Scholar] [CrossRef]
- Agustini, T.W.; Suzery, M.; Sutrisnanto, D.; Ma’ruf, W.F. Hadiyanto Comparative Study of Bioactive Substances Extracted from Fresh and Dried Spirulina sp. Procedia Environ. Sci. 2015, 23, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Chu, W.L.; Lim, Y.W.; Radhakrishnan, A.K.; Lim, P.E. Protective Effect of Aqueous Extract from Spirulina platensis against Cell Death Induced by Free Radicals. BMC Complement. Altern. Med. 2010, 10, 53. [Google Scholar] [CrossRef] [Green Version]
- Baxter, M.F.A.; Greene, E.S.; Kidd, M.T.; Tellez-Isaias, G.; Orlowski, S.; Dridi, S. Water Amino Acid-Chelated Trace Mineral Supplementation Decreases Circulating and Intestinal HSP70 and Proinflammatory Cytokine Gene Expression in Heat-Stressed Broiler Chickens. J. Anim. Sci. 2020, 98, skaa049. [Google Scholar] [CrossRef]
- Shini, S.; Huff, G.R.; Shini, A.; Kaiser, P. Understanding Stress-Induced Immunosuppression: Exploration of Cytokine and Chemokine Gene Profiles in Chicken Peripheral Leukocytes. Poult. Sci. 2010, 89, 841–851. [Google Scholar] [CrossRef]
- Xu, Y.; Lai, X.; Li, Z.; Zhang, X.; Luo, Q. Effect of Chronic Heat Stress on Some Physiological and Immunological Parameters in Different Breed of Broilers. Poult. Sci. 2018, 97, 4073–4082. [Google Scholar] [CrossRef]
- Zulkifli, I.; Mysahra, S.A.; Jin, L.Z. Dietary Supplementation of Betaine (Betafin®) and Response to High Temperature Stress in Male Broiler Chickens. Asian-Australas. J. Anim. Sci. 2004, 17, 244–249. [Google Scholar] [CrossRef]
- Omar, A.E.; Al-Khalaifah, H.S.; Osman, A.; Gouda, A.; Shalaby, S.I.; Roushdy, E.M.; Abdo, S.A.; Ali, S.A.; Hassan, A.M.; Amer, S.A. Modulating the Growth, Antioxidant Activity, and Immunoexpression of Proinflammatory Cytokines and Apoptotic Proteins in Broiler Chickens by Adding Dietary Spirulina platensis Phycocyanin. Antioxidants 2022, 11, 991. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Liu, L.; Miron, A.; Klímová, B.; Wan, D.; Kuča, K. The Antioxidant, Immunomodulatory, and Anti-Inflammatory Activities of Spirulina: An Overview. Arch. Toxicol. 2016, 90, 1817–1840. [Google Scholar] [CrossRef] [PubMed]
- Finamore, A.; Palmery, M.; Bensehaila, S.; Peluso, I. Antioxidant, Immunomodulating, and Microbial-Modulating Activities of the Sustainable and Ecofriendly Spirulina. Oxidative Med. Cell. Longev. 2017, 2017, 3247528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshabrawy, O.; Ahmed, M.; Abdel El Deim, M.; Orabi, S.; Abu-Alya, I.; ElBasuni, H. Enhancement Effect of Spirulina platensis Extract on Broiler Chicks’ Growth Performance and Immunity. J. Curr. Vet. Res. 2022, 4, 156–167. [Google Scholar] [CrossRef]
- Li, P.; Yin, Y.L.; Li, D.; Kim, W.S.; Wu, G. Amino Acids and Immune Function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Gottardo, E.T.; Burin Junior, Á.M.; Lemke, B.V.; Silva, A.M.; Busatta Pasa, C.L.; Muller Fernandes, J.I.; Gottardo, E.T.; Burin Junior, Á.M.; Lemke, B.V.; Silva, A.M.; et al. Immune Response in Eimeria Sp. and E. Coli Challenged Broilers Supplemented with Amino Acids. Austral. J. Vet. Sci. 2017, 49, 175–184. [Google Scholar] [CrossRef] [Green Version]
Item | Values (% of DM) 1 |
---|---|
Dry matter (DM) | 94.4 ± 1.7 |
Protein | 56.4 ± 0.5 |
Lipids | 7.2 ± 0.3 |
Carbohydrate | 14.2 ± 0.7 |
Fiber | 0.02 ± 0.004 |
Total ash | 7.5 ± 0.4 |
Energy (kcal) | 436.2 ± 2.6 |
Polyphenolic content (GAE) 2 | 221.3 ± 7.4 |
Flavonoid contents (QE) 3 | 66.8 ± 3.1 |
Total antioxidant activity (IC50, µg/mL) 4 | 29.2 ± 1.1 |
Ingredients (g/kg as Fed) | Starter Diet (1–20 d) | Grower Diets (21–42 d) | |||
---|---|---|---|---|---|
SP0 | SP5 | SP10 | SP15 | ||
Spirulina 1 | 0 | 0 | 5 | 10 | 15 |
Yellow Corn (8.5% CP) | 558 | 595 | 595 | 595 | 595 |
Soybean meal (44% CP) | 324 | 282 | 282 | 282 | 282 |
Gluten meal (62% CP) | 81 | 73 | 73 | 73 | 73 |
Premix 2 | 3 | 3 | 3 | 3 | 3 |
Di-calcium phosphate | 15.8 | 18.5 | 18.5 | 18.5 | 18.5 |
Limestone | 13.1 | 23.1 | 23.1 | 23.1 | 23.1 |
Sodium chloride | 3.4 | 3.5 | 3.5 | 3.5 | 3.5 |
Methionine | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Lysin | 1.2 | 1.4 | 1.4 | 1.4 | 1.4 |
Calculated nutrients (g/kg) | |||||
Crude protein, CP | 241.7 | 221.2 | 223.0 | 226.8 | 229.7 |
Metabolizable energy, kcal | 2915 | 2926 | 2948 | 2969 | 2991 |
Calcium | 8.0 | 10.2 | 10.6 | 11.0 | 11.5 |
Available phosphorus | 4.5 | 5.2 | 5.3 | 5.4 | 5.6 |
Determined nutrients | |||||
Crude protein | 240.2 | 220.8 | 223.6 | 226.5 | 230.5 |
Crude fiber | 33.8 | 32.4 | 32.4 | 32.4 | 32.4 |
Ether extract | 27.6 | 29.4 | 29.4 | 29.4 | 29.4 |
Lysin | 13.0 | 13.5 | 15.9 | 17.3 | 20.2 |
Therionine | 3.1 | 2.8 | 5.5 | 7.3 | 9.7 |
Tryptophan | 2.1 | 1.7 | 2.2 | 2.8 | 3.2 |
Methionine | 5.0 | 6.2 | 7.7 | 8.6 | 9.8 |
Treatment Groups 1 | n | IBW, g | FBW, g | BWG, g | TFI, g | FCR |
---|---|---|---|---|---|---|
Heat stress | ||||||
TN | 20 | 118.9 | 263.6 a | 144.6 a | 498.1 a | 3.49 |
HS | 20 | 119.2 | 250.7 b | 131.5 b | 452.3 b | 3.48 |
SEM | 0.44 | 0.94 | 1.12 | 1.32 | 0.032 | |
p-value | 0.667 | <0.001 | <0.001 | <0.001 | 0.839 | |
Spirulina | ||||||
SP0 | 10 | 119.1 | 229.6 d | 110.6 d | 420.6 d | 3.81 a |
SP5 | 10 | 119.5 | 247.7 c | 128.2 c | 460.4 c | 3.60 b |
SP10 | 10 | 119.2 | 266.3 b | 147.1 b | 490.7 b | 3.34 c |
SP15 | 10 | 118.5 | 284.8 a | 166.3 a | 529.1 a | 3.18 d |
SEM | 0.62 | 1.33 | 1.59 | 1.86 | 0.046 | |
p-value | 0.731 | <0.001 | <0.001 | <0.001 | <0.001 | |
SP—Linear contrast | 0.482 | <0.001 | <0.001 | <0.001 | <0.001 | |
SP—Quadratic contrast | 0.392 | 0.873 | 0.638 | 0.712 | 0.585 | |
Interaction | ||||||
TN × SP0 | 5 | 119.8 | 235.6 | 115.8 | 439.8 | 3.80 |
TN × SP5 | 5 | 119.8 | 253.6 | 133.8 | 485.6 | 3.65 |
TN × SP10 | 5 | 118.9 | 274.8 | 155.9 | 512.7 | 3.29 |
TN × SP15 | 5 | 117.2 | 290.2 | 173.0 | 554.3 | 3.21 |
HS × SP0 | 5 | 118.4 | 223.6 | 105.3 | 401.3 | 3.81 |
HS × SP5 | 5 | 119.2 | 241.9 | 122.7 | 435.1 | 3.55 |
HS × SP10 | 5 | 119.4 | 257.8 | 138.4 | 468.7 | 3.39 |
HS × SP15 | 5 | 119.8 | 279.5 | 159.6 | 503.9 | 3.16 |
SEM | 0.88 | 1.88 | 2.25 | 2.63 | 0.065 | |
p-value | 0.137 | 0.344 | 0.406 | 0.086 | 0.497 |
Treatment Groups 1 | n | LBW, g | CY, % | Liver, % | Gizzard, % | Heart, % | Intestines, % | ABF, % |
---|---|---|---|---|---|---|---|---|
Heat stress | ||||||||
TN | 40 | 247.8 a | 71.49 a | 3.86 a | 2.29 a | 0.93 a | 11.40 a | 1.04 a |
HS | 40 | 224.3 b | 66.99 b | 3.62 b | 2.14 b | 0.79 b | 9.63 b | 0.68 b |
SEM | 2.66 | 0.410 | 0.022 | 0.030 | 0.010 | 0.170 | 0.012 | |
p-value | <0.001 | <0.001 | <0.001 | 0.001 | <0.001 | <0.001 | <0.001 | |
Spirulina | ||||||||
SP0 | 20 | 199.0 d | 66.85 c | 2.67 d | 1.95 d | 0.76 c | 9.78 b | 0.76 c |
SP5 | 20 | 226.3 c | 68.65 b | 3.43 c | 2.11 c | 0.82 b | 10.58 a | 0.81 b |
SP10 | 20 | 242.0 b | 69.85 b | 4.19 b | 2.32 b | 0.85 b | 10.70 a | 0.86 b |
SP15 | 20 | 277.0 a | 71.60 a | 4.66 a | 2.46 a | 0.99 a | 11.02 a | 1.00 a |
SEM | 3.76 | 0.580 | 0.031 | 0.042 | 0.014 | 0.240 | 0.018 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.004 | <0.001 | |
SP—Linear contrast | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.001 | <0.001 | |
SP—Quadratic contrast | 0.307 | 0.966 | <0.001 | 0.803 | 0.003 | 0.317 | 0.013 | |
Interaction | ||||||||
TN × SP0 | 10 | 214.7 | 69.65 | 2.79 | 2.04 | 0.81 d | 10.37 | 0.970 b |
TN × SP5 | 10 | 234.0 | 70.25 | 3.52 | 2.15 | 0.88 b | 11.62 | 1.021 b |
TN × SP10 | 10 | 253.6 | 71.85 | 4.31 | 2.38 | 0.89 b | 11.61 | 1.037 b |
TN × SP15 | 10 | 289.0 | 74.20 | 4.82 | 2.58 | 1.12 a | 12.02 | 1.110 a |
HS × SP0 | 10 | 183.3 | 64.05 | 2.56 | 1.86 | 0.72 e | 9.18 | 0.546 e |
HS × SP5 | 10 | 218.6 | 67.05 | 3.35 | 2.07 | 0.75 e | 9.54 | 0.608 de |
HS × SP10 | 10 | 230.3 | 67.85 | 4.07 | 2.27 | 0.82 cd | 9.78 | 0.676 d |
HS × SP15 | 10 | 265.0 | 69.00 | 4.49 | 2.35 | 0.87 bc | 10.02 | 0.896 c |
SEM | 5.32 | 0.820 | 0.044 | 0.059 | 0.020 | 0.339 | 0.025 | |
p-value | 0.523 | 0.445 | 0.260 | 0.611 | <0.001 | 0.550 | <0.001 |
Treatment Groups 1 | n | TP, g/dL | ALB, g/dL | GLB, g/dL | ALT, U/mL | AST, U/mL | CRT, mg/dL | UA, mg/dL | CH, mg/dL | TG, mg/dL |
---|---|---|---|---|---|---|---|---|---|---|
Heat stress | ||||||||||
TN | 40 | 5.41 a | 2.71 a | 2.71 a | 20.41 b | 26.92 b | 0.53 b | 2.40 b | 150.35 b | 197.04 b |
HS | 40 | 4.54 b | 2.29 b | 2.25 b | 25.40 a | 34.35 a | 0.68 a | 3.04 a | 193.20 a | 260.63 a |
SEM | 0.029 | 0.054 | 0.060 | 0.154 | 0.418 | 0.005 | 0.021 | 1.240 | 1.001 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Spirulina | ||||||||||
SP0 | 20 | 4.15 d | 2.39 bc | 1.78 c | 28.70 a | 35.11 a | 0.81 a | 3.65 a | 194.08 a | 254.61 a |
SP5 | 20 | 4.86 c | 2.24 c | 2.62 b | 23.80 b | 34.82 a | 0.67 b | 3.03 b | 180.24 b | 239.02 b |
SP10 | 20 | 5.06 b | 2.51 b | 2.55 b | 21.57 c | 26.86 b | 0.54 c | 2.44 c | 165.14 c | 221.91 c |
SP15 | 20 | 5.83 a | 2.86 a | 2.97 a | 17.55 d | 25.76 b | 0.39 d | 1.77 d | 147.64 d | 199.80 d |
SEM | 0.041 | 0.077 | 0.085 | 0.218 | 0.591 | 0.007 | 0.029 | 1.754 | 1.416 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Linear contrast | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Quadratic contrast | 0.406 | 0.002 | 0.016 | 0.050 | 0.499 | 0.447 | 0.447 | 0.300 | 0.024 | |
Interaction | ||||||||||
TN × SP0 | 10 | 4.54 | 2.70 | 1.88 | 25.50 c | 30.12 d | 0.72 c | 3.24 c | 173.92 | 230.89 e |
TN × SP5 | 10 | 5.30 | 2.34 | 2.96 | 20.60 e | 32.65 c | 0.57 d | 2.59 d | 160.48 | 210.83 f |
TN × SP10 | 10 | 5.47 | 2.61 | 2.86 | 19.81 ef | 22.65 e | 0.49 e | 2.20 e | 144.43 | 186.66 g |
TN × SP15 | 10 | 6.33 | 3.18 | 3.15 | 15.71 g | 22.25 e | 0.35 g | 1.58 g | 122.57 | 159.78 h |
HS × SP0 | 10 | 3.76 | 2.09 | 1.67 | 31.89 a | 40.10 a | 0.90 a | 4.05 a | 214.24 | 278.33 a |
HS × SP5 | 10 | 4.42 | 2.13 | 2.29 | 27.01 b | 36.98 b | 0.77 b | 3.47 b | 199.99 | 267.20 b |
HS × SP10 | 10 | 4.64 | 2.40 | 2.24 | 23.33 d | 31.07 cd | 0.59 d | 2.67 d | 185.86 | 257.17 c |
HS × SP15 | 10 | 5.33 | 2.53 | 2.79 | 19.38 f | 29.27 d | 0.44 f | 1.97 f | 172.72 | 239.82 d |
SEM | 0.058 | 0.109 | 0.121 | 0.309 | 0.836 | 0.009 | 0.042 | 2.480 | 2.002 | |
p-value | 0.259 | 0.070 | 0.184 | <0.001 | 0.009 | <0.001 | <0.001 | 0.126 | <0.001 |
Treatment Groups 1 | n | CORT, ng/mL | MDA, nmol/mL | IL-β1, pg/mL | TNF-α, pg/mL |
---|---|---|---|---|---|
Heat stress | |||||
TN | 40 | 2.63 b | 1.79 b | 251.27 b | 89.53 b |
HS | 40 | 5.99 a | 4.28 a | 776.98 a | 140.80 a |
SEM | 0.063 | 0.058 | 14.162 | 2.198 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | |
Spirulina | |||||
SP0 | 20 | 4.88 a | 3.24 a | 613.12 a | 123.90 a |
SP5 | 20 | 4.41 b | 3.14 a | 544.00 b | 119.60 a |
SP10 | 20 | 4.12 c | 3.02 a | 488.87 b | 109.55 b |
SP15 | 20 | 3.85 d | 2.74 b | 410.53 c | 107.60 b |
SEM | 0.089 | 0.082 | 20.028 | 3.108 | |
p-value | <0.001 | <0.001 | <0.001 | 0.001 | |
SP—Linear contrast | <0.001 | <0.001 | <0.001 | <0.001 | |
SP—Quadratic contrast | 0.255 | 0.297 | 0.819 | 0.707 | |
Interaction | |||||
TN × SP0 | 10 | 2.74 e | 1.91 c | 261.85 e | 95.40 |
TN × SP5 | 10 | 2.60 e | 1.85 c | 261.21 e | 92.20 |
TN × SP10 | 10 | 2.62 e | 1.70 c | 243.77 e | 84.80 |
TN × SP15 | 10 | 2.57 e | 1.71 c | 238.27 e | 85.70 |
HS × SP0 | 10 | 7.01 a | 4.58 a | 964.38 a | 152.40 |
HS × SP5 | 10 | 6.21 b | 4.44 a | 826.78 b | 147.00 |
HS × SP10 | 10 | 5.61 c | 4.34 a | 733.98 c | 134.30 |
HS × SP15 | 10 | 5.13 d | 3.77 b | 582.79 d | 129.50 |
SEM | 0.126 | 0.116 | 28.324 | 4.396 | |
p-value | <0.001 | 0.031 | <0.001 | 0.446 |
Treatment Groups 1 | n | TWBC, 103/mL | H/L Ratio | TSI | BSI |
---|---|---|---|---|---|
Heat stress | |||||
TN | 40 | 106.15 a | 0.37 b | 5.14 a | 3.27 a |
HS | 40 | 85.38 b | 0.73 a | 2.21 b | 1.37 b |
SEM | 0.962 | 0.004 | 0.037 | 0.036 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | |
Spirulina | |||||
SP0 | 20 | 65.60 d | 0.66 a | 2.69 d | 1.43 d |
SP5 | 20 | 76.40 c | 0.59 b | 2.98 c | 1.67 c |
SP10 | 20 | 111.90 b | 0.54 c | 4.14 b | 2.86 b |
SP15 | 20 | 129.15 a | 0.42 d | 4.91 a | 3.32 a |
SEM | 1.360 | 0.005 | 0.053 | 0.051 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | |
SP—Linear contrast | <0.001 | <0.001 | <0.001 | <0.001 | |
SP—Quadratic contrast | 0.020 | <0.001 | <0.001 | 0.031 | |
Interaction | |||||
TN × SP0 | 10 | 75.80 | 0.46 e | 3.94 d | 2.18 d |
TN × SP5 | 10 | 87.00 | 0.39 f | 4.50 c | 2.58 c |
TN × SP10 | 10 | 122.00 | 0.38 f | 5.57 b | 3.82 b |
TN × SP15 | 10 | 139.80 | 0.27 g | 6.56 a | 4.48 a |
HS × SP0 | 10 | 55.40 | 0.87 a | 1.43 g | 0.67 f |
HS × SP5 | 10 | 65.80 | 0.79 b | 1.46 g | 0.75 f |
HS × SP10 | 10 | 101.80 | 0.69 c | 2.70 f | 1.89 e |
HS × SP15 | 10 | 118.50 | 0.56 d | 3.26 e | 2.16 d |
SEM | 1.923 | 0.007 | 0.074 | 0.072 | |
p-value | 0.989 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nassar, F.S.; Alaqil, A.A.; El-Sayed, D.A.A.; Kamel, N.N.; Abbas, A.O. Effects of Dietary Intervention Using Spirulina at Graded Levels on Productive Performance and Physiological Status of Quail Birds Reared under Elevated Temperatures. Agriculture 2023, 13, 789. https://doi.org/10.3390/agriculture13040789
Nassar FS, Alaqil AA, El-Sayed DAA, Kamel NN, Abbas AO. Effects of Dietary Intervention Using Spirulina at Graded Levels on Productive Performance and Physiological Status of Quail Birds Reared under Elevated Temperatures. Agriculture. 2023; 13(4):789. https://doi.org/10.3390/agriculture13040789
Chicago/Turabian StyleNassar, Farid S., Abdulaziz A. Alaqil, Dalia A. A. El-Sayed, Nancy N. Kamel, and Ahmed O. Abbas. 2023. "Effects of Dietary Intervention Using Spirulina at Graded Levels on Productive Performance and Physiological Status of Quail Birds Reared under Elevated Temperatures" Agriculture 13, no. 4: 789. https://doi.org/10.3390/agriculture13040789