Design and Application of Agricultural Equipment in Tillage Systems
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, Y.C.; Chen, L.W.; Chang, M.Y. A design of an unmanned electric tractor platform. Agriculture 2022, 1, 112. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhou, H.; Lu, Z. A novel 10-parameter motor efficiency model based on I-SA and its comparative application of energy utilisation efficiency in different driving modes for electric tractor. Agriculture 2022, 3, 362. [Google Scholar] [CrossRef]
- Chang, C.L.; Chen, H.W.; Chen, Y.H.; Yu, C.C. Drip-tape-following approach based on machine vision for a two-wheeled robot trailer in strip farming. Agriculture 2022, 3, 428. [Google Scholar] [CrossRef]
- Cheng, Z.; Lu, Z. Regression-Based Correction and I-PSO-Based Optimisation of HMCVT’s Speed Regulating Characteristics for Agricultural Machinery. Agriculture 2022, 5, 580. [Google Scholar] [CrossRef]
- Cheng, Z.; Chen, Y.; Li, W.; Zhou, P.; Liu, J.; Li, L.; Chang, W.; Qian, Y. Optimization design based on I-GA and simulation test verification of 5-stage hydraulic mechanical continuously variable transmission used for tractor. Agriculture 2022, 6, 807. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, Z.; Qian, Y. Research on Wet Clutch Switching Quality in the Shifting Stage of an Agricultural Tractor Transmission System. Agriculture 2022, 8, 1174. [Google Scholar] [CrossRef]
- Li, Y.; Lu, C.; Li, H.; He, J.; Wang, Q.; Huang, S.; Gao, Z.; Yuan, P.; Wei, X.; Zhan, H. Design and experiment of spiral discharge anti-blocking and row-sorting device of wheat no-till planter. Agriculture 2022, 4, 68. [Google Scholar] [CrossRef]
- Geng, Y.; Wang, X.; Zhong, X.; Zhang, X.; Chen, K.; Wei, Z.; Lu, Q.; Cheng, X.; Wei, M. Design and Optimization of a Soil-Covering Device for a Corn No-Till Planter. Agriculture 2022, 8, 1218. [Google Scholar] [CrossRef]
- Yan, D.; Xu, T.; Yu, J.; Wang, Y.; Guan, W.; Tian, Y.; Zhang, N. Test and Simulation Analysis of the Working Process of Soybean Seeding Monomer. Agriculture 2022, 9, 1464. [Google Scholar] [CrossRef]
- Khosravani, A.; Desbiolles, J.M.; Saunders, C.; Ucgul, M.; Fielke, J.M. Prediction of single disc seeding system forces, using a semi-analytical and discrete element method (DEM) considering Rotation Effects. Agriculture 2023, 1, 202. [Google Scholar] [CrossRef]
- Khosravani, A.; Desbiolles, J.M.; Fielke, J.M.; Ucgul, M.; Saunders, C. Prediction of single disc seeding system forces, using a semi-analytical and discrete element method (DEM). Agriculture 2023, 1, 206. [Google Scholar] [CrossRef]
- Li, H.; Fang, L.; Yuan, P.; Lu, W.; Yang, W. A Seedbed Clearing and Shaping Device for Dry Direct-Seeded Rice. Agriculture 2022, 10, 1740. [Google Scholar] [CrossRef]
- Gao, Z.; Lu, C.; Li, H.; He, J.; Wang, Q.; Huang, S.; Li, Y.; Zhan, H. Measurement Method of Collision Restitution Coefficient between Corn Seed and Soil Based on the Collision Dynamics Theory of Mass Point and Fixed Surface. Agriculture 2022, 10, 1611. [Google Scholar] [CrossRef]
- Bilgili, M.E.; Vurarak, Y.; Aybek, A. Determination of Performance of No-Till Seeder and Stubble Cutting Prototype. Agriculture 2023, 2, 289. [Google Scholar] [CrossRef]
- Quan, W.; Wu, M.; Dai, Z.; Luo, H.; Shi, F. Design and Testing of Reverse-Rotating Soil-Taking-Type Hole-Forming Device of Pot Seedling Transplanting Machine for Rapeseed. Agriculture 2022, 3, 319. [Google Scholar] [CrossRef]
- Aikins, K.A.; Ucgul, M.; Barr, J.B.; Awuah, E.; Antille, D.L.; Jensen, T.A.; Desbiolles, J.M. Review of Discrete Element Method Simulations of Soil Tillage and Furrow Opening. Agriculture 2023, 3, 541. [Google Scholar] [CrossRef]
- Cao, S.; Xie, J.; Wang, H.; Yang, Y.; Zhang, Y.; Zhou, J.; Wu, S. Design and Operating Parameters Optimization of the Hook-and-Tooth Chain Rail Type Residual Film Picking Device. Agriculture 2022, 10, 1717. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Wang, X.; Zhao, Y.; Xue, S.; Su, Z. Parameters Optimization and Test of an Arc-Shaped Nail-Tooth Roller-Type Recovery Machine for Sowing Layer Residual Film. Agriculture 2022, 5, 660. [Google Scholar] [CrossRef]
- Wang, H.; Cao, S.; Liu, Y.; Yang, Y.; Meng, X.; Ji, P. Design of Cotton Recovery Device and Operation Parameters Optimization. Agriculture 2022, 9, 1296. [Google Scholar] [CrossRef]
- Han, L.; Yuan, W.; Yu, J.; Jin, J.; Xie, D.; Xi, X.; Zhang, Y.; Zhang, R. Simulation and experiment of spiral soil separation mechanism of compound planter based on discrete element method (DEM). Agriculture 2022, 4, 511. [Google Scholar] [CrossRef]
- Xu, G.; Fang, H.; Song, Y.; Du, W. Optimal Design and Analysis of Cavitating Law for Well-Cellar Cavitating Mechanism Based on MBD-DEM Bidirectional Coupling Model. Agriculture 2023, 1, 142. [Google Scholar] [CrossRef]
- Ucgul, M. Simulating Soil–Disc Plough Interaction Using Discrete Element Method–Multi-Body Dynamic Coupling. Agriculture 2023, 2, 305. [Google Scholar] [CrossRef]
- Pang, J.; Zhang, X.; Lin, X.; Liu, J.; Du, X.; Han, J. Tillage-Depth Verification Based on Machine Learning Algorithms. Agriculture 2023, 1, 130. [Google Scholar] [CrossRef]
- Badgujar, C.; Das, S.; Figueroa, D.M.; Flippo, D. Application of computational intelligence methods in agricultural soil–machine interaction: A review. Agriculture 2023, 2, 357. [Google Scholar] [CrossRef]
- Chang, C.L.; Xie, B.X.; Chung, S.C. Mechanical control with a deep learning method for precise weeding on a farm. Agriculture 2021, 11, 1049. [Google Scholar] [CrossRef]
- Rivero, D.; Botta, G.F.; Antille, D.L.; Ezquerra-Canalejo, A.; Bienvenido, F.; Ucgul, M. Tyre Configuration and Axle Load of Front-Wheel Assist and Four-Wheel Drive Tractors Effects on Soil Compaction and Rolling Resistance under No-Tillage. Agriculture 2022, 11, 1961. [Google Scholar] [CrossRef]
- Acquah, K.; Chen, Y. Soil compaction from wheel traffic under three tillage systems. Agriculture 2022, 2, 219. [Google Scholar] [CrossRef]
- Gulyarenko, A.; Bembenek, M. The Method of Calculating Ploughshares Durability in Agricultural Machines Verified on Plasma-Hardened Parts. Agriculture 2022, 6, 841. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Li, H.; Lu, C.; He, J.; Wang, Q.; Liu, D.; Deng, B.; Zhang, M. Improvement of Straw Throwing Performance of Harvester Based on Matching Header Width. Agriculture 2022, 9, 1291. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ucgul, M.; Chang, C.-L. Design and Application of Agricultural Equipment in Tillage Systems. Agriculture 2023, 13, 790. https://doi.org/10.3390/agriculture13040790
Ucgul M, Chang C-L. Design and Application of Agricultural Equipment in Tillage Systems. Agriculture. 2023; 13(4):790. https://doi.org/10.3390/agriculture13040790
Chicago/Turabian StyleUcgul, Mustafa, and Chung-Liang Chang. 2023. "Design and Application of Agricultural Equipment in Tillage Systems" Agriculture 13, no. 4: 790. https://doi.org/10.3390/agriculture13040790
APA StyleUcgul, M., & Chang, C. -L. (2023). Design and Application of Agricultural Equipment in Tillage Systems. Agriculture, 13(4), 790. https://doi.org/10.3390/agriculture13040790