The Fatty Acid and Mineral Composition of Cobb 500 Broiler Meat Influenced by the Nettle (Urtica dioica) Dietary Supplementation, Broiler Gender and Muscle Portion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stinging Nettle (Urtica dioica) Leaf Meal Preparation
2.2. Animal Management and Experimental Design
- Control group = standard diet.
- Fresh nettle group = standard diet + 3.0% coarse grounded fresh nettle leaves.
- Dry nettle group = standard diet + 0.5% fine grounded dry nettle leaves.
2.3. Fatty Acid Analysis
2.4. Mineral Analysis
2.5. Statistical Analysis
3. Results
3.1. Fatty Acid Composition
3.2. Mineral Composition
4. Discussion
4.1. Fatty Acid Composition
4.2. Mineral Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Regulation (EC), No. 1831/2003 of the European Parliament and of the Council on Additives for Use in Animal Nutrition. Available online: http://extwprlegs1.fao.org/docs/pdf/eur40306original.pdf (accessed on 21 September 2022).
- Guo, F.C.; Williams, B.A.; Kwakkel, R.P.; Li, H.S.; Luo, J.Y.; Verstegen, M.W. Effects of Mushroom and Herb Polysaccharides, as Alternatives for an Antibiotic, on the Cecal Microbial Ecosystem in Broiler Chickens. Poult. Sci. 2004, 83, 175–182. [Google Scholar] [CrossRef]
- Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of Phytogenic Products as Feed Additives for Swine and Poultry. J. Anim. Sci. 2008, 86, E140–E148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alloui, M.N.; Agabou, A.; Alloui, M. Application of Herbs and Phytogenic Feed Additives in Poultryproduction—A Review. Glob. J. Anim. Sci. Res. 2014, 3, 234–243. Available online: http://archives.gjasr.com/index.php/GJASR/article/view/57 (accessed on 16 January 2023).
- Diaz-Sanchez, S.; D’Souza, D.; Biswas, D.; Hanning, I. Botanical Alternatives to Antibiotics for Use in Organic Poultry Production. Poult. Sci. 2015, 94, 1419–1430. [Google Scholar] [CrossRef]
- Živković, V.; Stanković, B.; Radović, Č.; Gogić, M.; Stanojković, A.; Obradović, S.; Stojiljković, N. Garlic as Alternative for Antibiotics in Diet for Growing Pigs. Biotechnol. Anim. Husb. 2019, 35, 281–287. [Google Scholar] [CrossRef]
- Ertas, O.N.; Guler, T.; Çiftci, M.; Dalkilic, B.; Simsek, Ü.G. The Effect of an Essential Oil Mix Derived from Oregano, Clove and Anise on Broiler Performance. Int. J. Poult. Sci. 2005, 4, 879–884. [Google Scholar] [CrossRef]
- Al-Kassie, G.A.M. Influence of Two Plant Extracts Derived from the Thyme and Cinnamon on Broiler Performance. Pakistan Vet. J. 2009, 29, 169–173. Available online: http://pvj.com.pk/pdf-files/29_4/169-173.pdf (accessed on 16 January 2023).
- Modiry, A.; Nobakht, A.; Mehmannavaz, Y. Investigation the Effects Using Different Mixtures of Nettle (Urtica dioica), Menta Pulagum (Oreganum valgare) and Zizaphora (Thymyus valgaris) on Performance and Carcass Traits of Broilers. In Proceedings of the 4th Iranian Congress of Animal Science, Tehran-Karaj, Iran, 20–21 September 2010; pp. 252–254. [Google Scholar]
- Ali, A.H.H. Productive Performance and Immune Response of Broiler Chicks as Affected by Dietary Marjoram Leaves Powder. Egypt. Poult. Sci. 2014, 34, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Yesilbag, D.; Eren, M.; Agel, H.; Kovanlikaya, A.; Balci, F. Effects of Dietary Rosemary, Rosemary Volatile Oil and Vitamin E on Broiler Performance, Meat Quality and Serum Sod Activity. Br. Poult. Sci. 2011, 52, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Mathlouthi, N.; Bouzaienne, T.; Oueslati, I.; Recoquillay, F.; Hamdi, M.; Urdaci, M.; Bergaoui, R. Use of Rosemary, Oregano, and a Commercial Blend of Essential Oils in Broiler Chickens: In Vitro Antimicrobial Activities and Effects on Growth Performance. J. Anim. Sci. 2012, 90, 813–823. [Google Scholar] [CrossRef] [Green Version]
- Puvača, N.; Kostadinović, L.J.; Ljubojević, D.; Lukač, D.; Popović, S.; Dokmanović, B.; Stanaćev, V.S. Effects of Dietary Garlic Addition on Productive Performance and Blood Lipid Profile of Broiler Chickens. Biotechnol. Anim. Husb. 2014, 30, 669–676. [Google Scholar] [CrossRef]
- Mirsaiidi Farahani, M.; Hosseinian, S.A. Effects of Dietary Stinging Nettle (Urtica dioica) on Hormone Stress and Selected Serum Biochemical Parameters of Broilers Subjected to Chronic Heat Stress. Vet. Med. Sci. 2022, 8, 660–667. [Google Scholar] [CrossRef]
- Gülçin, I.; Kufrevioglu, I.; Oktay, M.; Buyukokuroglu, M.E. Antioxidant, Antimicrobial, Antiulcer and Analgesic Activities of Nettle (Urticadioica L.). J. Ethnopharmacol. 2004, 90, 205–215. [Google Scholar] [CrossRef]
- Joshi, B.; Mukhija, M.; Kalia, A. Pharmacognostical review of Urticadioica L. Int. J. Green Pharm. 2014, 8, 201–214. [Google Scholar] [CrossRef]
- Nasiri, S.; Nobakht, A.; Safamehr, A. The Effects of Different Levels of Nettle Urtica dioica L. (Urticaceae) Medicinal Plant in Starter and Grower Feeds on Performance, Carcass Traits, Blood Bochemical and Immunity Parameters of Broilers. Iran. J. Appl. Anim. Sci. 2011, 1, 177–181. Available online: https://ijas.rasht.iau.ir/article_514011.html (accessed on 16 January 2023).
- Rutto, L.K.; Xu, Y.; Ramirez, E.; Brandt, M. Mineral Properties and Dietary Value of Raw and Processed Stinging Nettle (Urtica dioica L.). Int. J. Food Sci. 2013, 2013, 857120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehboob, S.; Ganai, A.M.; Sheikh, G.G.; Khan, A.A.; Ahmad, B.S.; Muhee, A.; Haq, Z. Effect of Herb Urtica dioica as Feed Additive on Carcass Traits and Oxidative Stability of Meat in Broilers. Pharma Innov. J. 2022, 11, 787–791. Available online: https://www.thepharmajournal.com/archives/2022/vol11issue1S/PartL/S-11-1-101-962.pdf (accessed on 16 January 2023).
- Ghasemi, H.A.; Taherpour, K.; Hajkhodadadi, I.; Akhavan-Salamat, H. Comparative Effects of Nettle (Urtica dioica) and Commercial Feed Additives on Productive Performance and Blood Lipid Profile of Broiler Chickens. J. Anim. Sci. Adv. 2014, 4, 633–640. [Google Scholar]
- Nassiri-Asl, M.; Zamansoltani, F.; Abbasi, E.; Daneshi, M.M.; Zangivand, A.A. Effects of Urtica dioica Extract on Lipid Profile in Hypercholesterolemic Rats. Chin. J. Integr. Med. 2009, 7, 428–433. [Google Scholar] [CrossRef]
- Nobakht, A.; Rahimzadeh, M.R.; Mehmannavaz, Y. Investigation the Effects Using Different Levels of Nettle (Urtica dioica), Menta Pulagum (Oreganum valgare) and Zizaphora (Thymyus valgaris) Medicinal Plants in Starter and Grower Periods on Performance and Carcasses Traits of Broilers. In Proceedings of the 4th Iranian Congress of Animal Science, Tehran-Karaj, Iran, 20–21 September 2010; pp. 40–44. [Google Scholar]
- Safamehr, A.; Mirahmadi, M.; Nobakht, A. Effect of Nettle (Urtica dioica) Medicinal Plant on Growth Performance, Immune Responses, and Serum Biochemical Parameters of Broiler Chickens. Intl. Res. J. Appl. Basic Sci. 2012, 3, 721–728. [Google Scholar]
- Bekele, B.; Melesse, A.; Beyan, M.; Berihun, K. The Effect of Feeding Stinging Nettle (Urtica Simensis S.) Leaf Meal on Feed Intake, Growth Performance and Carcass Characteristics of Hubbard Broiler Chickens. Glob. J. Sci. Front. Res. D Agric. Vet. 2015, 15, 1–20. Available online: https://globaljournals.org/GJSFR_Volume15/1-The-Effect-of-Feeding.pdf (accessed on 17 January 2023).
- Keshavarz, M.; Rezaeipour, V.; Asadzadeh, S. Growth Performance, Blood Metabolites, Antioxidant Stability and Carcass Characteristics of Broiler Chickens Fed Diets Containing Nettle (Urtica dioica. L) Powder or Essential Oil. Int. J. Adv. Biol. Biom. Res. 2014, 2, 2553–2561. Available online: http://www.ijabbr.com/article_9120_59912f3ee0751c916dc7377a8be594e7.pdf (accessed on 17 January 2023).
- Loetscher, Y.; Kreuzer, M.; Messikommer, R.E. Oxidative Stability of the Meat of Broilers Supplemented with Rosemary Leaves, Rosehip Fruits, Chokeberry Pomace, and Entire Nettle, and Effects on Performance and Meat Quality. Poult. Sci. 2013, 92, 2938–2948. [Google Scholar] [CrossRef]
- Khosravi, A.; Boldaji, F.; Dastar, B.; Hasani, S. The Use of Some Feed Additives as Growth Promoter in Broilers Nutrition. Int. J. Poult. Sci. 2008, 7, 1095–1099. [Google Scholar] [CrossRef] [Green Version]
- Đukić Stojčić, M.S.; Perić, L.; Levart, A.; Salobir, J. Influence of Rearing System and Nettle Supplementation (Urtica dioica) on the Carcass Traits and Fatty Acid Composition of Redbro Broilers. Eur. Poult. Sci. 2016, 80, 1612–9199. [Google Scholar] [CrossRef]
- Shonte, T.T.; Duodu, K.G.; de Kock, L.H. Effect of Drying Methods on Chemical Composition and Antioxidant Activity of Underutilized Stinging Nettle Leaves. Heliyon 2020, 6, e03938. [Google Scholar] [CrossRef] [PubMed]
- O’Fallon, J.V.; Busboom, J.R.; Nelson, M.L.; Gaskins, C.T. A Direct Method for Fatty Acid Methyl Ester Synthesis: Application to Wet Meat Tissues, Oils, and Feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, J.D.; Enser, M. Factors Influencing Fatty Acids in Meat and the Role of Antioxidants in Improving Meat Quality. Br. J. Nutr. 1997, 78, 49–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enser, M.; Hallett, K.G.; Hewitt, B.; Fursey, A.J.; Wood, J.D.; Harrington, G. Fatty Acid Content and Composition of UK Beef and Lamb Muscle in Relation to Production System and Implications for Human Nutrition. Meat Sci. 1998, 49, 329–341. [Google Scholar] [CrossRef]
- Chen, Y.; Qiao, Y.; Xiao, Y.; Chen, H.; Zhao, L.; Huang, M.; Zhou, G. Differences in Physicochemical and Nutritional Properties of Breast and Thigh Meat from Crossbred Chickens, Commercial Broilers, and Spent Hens. Asian Australas. J. Anim. Sci. 2016, 29, 855–864. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.M.; Pestana, M.J.; Osório, D.; Alfaia, M.C.; Martins, F.C.; Mourato, M.; Gueifão, S.; Rego, M.A.; Coelho, I.; Coelho, D.; et al. Effect of Dietary Laminaria digitata with Carbohydrases on Broiler Production Performance and Meat Quality, Lipid Profile, and Mineral Composition. Animals 2022, 12, 1007. [Google Scholar] [CrossRef] [PubMed]
- Guil-Guerrero, J.L.; Rebolloso-Fuentes, M.M.; Torija Isasa, M.E. Fatty Acids and Carotenoids from Stinging Nettle (Urtica sioica L.). J. Food Compos. Anal. 2003, 16, 111–119. [Google Scholar] [CrossRef]
- Szewczyk, A.; Hanczakowska, E.; Swiatkiewicz, M. The Effect of Nettle (Urtica dioica) Extract on Fattening Performance and Fatty Acid Profile in the Meat and Serum Lipids of Pigs. J. Anim. Feed Sci. 2006, 15, 81–84. [Google Scholar] [CrossRef]
- Hanczajowska, E.; Świątkiewicz, M.; Szewczyk, A. Effect of Dietary Nettle Extract on Pig Meat Quality. Medycyna Wet. 2007, 63, 525–527. Available online: http://www.medycynawet.edu.pl/images/stories/pdf/pdf2007/052007/200705s05250527.pdf (accessed on 17 January 2023).
- Fouad, A.M.; El-Senousey, H.K. Nutritional Factors Affecting Abdominal Fat Deposition in Poultry—A Review. Asia Aust. J. Anim. Sci. 2014, 27, 1057–1068. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.B.B.; Barry-Ryan, C.; Martin-Diana, A.B.B.; Brunton, N.P.P. Effect of Drying Method on the Antioxidant Capacity of Six Lamiaceae Herbs. Food Chem. 2010, 123, 85–91. [Google Scholar] [CrossRef]
- Scollan, N.; Hocquette, J.F.; Nuernberg, K.; Dannenberger, D.; Richardson, I.; Moloney, A. Innovations in Beef Production Systems that Enhance the Nutritional and Health Value of Beef Lipids and their Relationship with Meat Quality. Meat Sci. 2006, 74, 17–33. [Google Scholar] [CrossRef]
- Crespo, N.; Esteve-Garcia, E. Dietary Fatty Acid Profile Modifies Abdominal Fat Deposition in Broiler Chickens. Poult. Sci. 2001, 80, 71–78. [Google Scholar] [CrossRef]
- Baeza, E.; Chartrin, P.; Meteau, K.; Bordeau, T.; Juin, H.; Le Bihan-Duval, E.; Lessire, M.; Berri, C. Effect of Sex and Genotype on Carcass Composition and Nutritional Characteristics of Chicken Meat. Br. Poult. Sci. 2010, 51, 344–353. [Google Scholar] [CrossRef]
- Olomu, J.M.; Baracos, V.E. Influence of Dietary Flaxseed Oil on the Performance, Muscle Protein Deposition, and Fatty Acid Composition of Broiler Chicks. Poult. Sci. 1991, 70, 1403–1411. [Google Scholar] [CrossRef]
- Alasnier, C.; Remignon, H.; Gandemer, G. Lipid Characteristics Associated with Oxidative and Glycolytic Fibres in Rabbit Muscles. Meat Sci. 1996, 43, 213–224. [Google Scholar] [CrossRef]
- De Smet, S.; Raes, K.; Demeyer, D. Meat Fatty Acid Composition as Affected by Fatness and Genetic Factors: A review. Anim. Res. 2004, 53, 81–98. [Google Scholar] [CrossRef] [Green Version]
- Geldenhuys, G.; Hoffman, C.L.; Muller, N. The Fatty Acid, Amino Acid, and Mineral Composition of Egyptian Goose Meat as Affected by Season, Gender, and Portion. Poult. Sci. 2015, 94, 1075–1087. [Google Scholar] [CrossRef]
- Geldenhuys, G.; Hoffman, L.C.; Muller, N. The Effect of Season, Sex, and Portion on the Carcass Characteristics, Ph, Color, and Proximate Composition of Egyptian Goose (Alopochen aegyptiacus) Meat. Poult. Sci. 2013, 92, 3283–3291. [Google Scholar] [CrossRef] [PubMed]
- Barceló-Coblijn, G.; Murphy, E.J. Alpha-Linolenic Acid and its Conversion to Longer Chain n-3 Fatty Acids: Benefits for Human Health and a Role in Maintaining Tissue n-3 Fatty Acid Levels. Prog. Lipid Res. 2009, 48, 355–374. [Google Scholar] [CrossRef]
- Majewska, D.; Jakubowska, M.; Ligocki, M.; Tarasewicz, Z.; Szczerbińska, D.; Karamucki, T.; Sales, J. Physicochemical Characteristics, Proximate Analysis and Mineral Composition of Ostrich Meat as Influenced by Muscle. Food Chem. 2009, 117, 207–211. [Google Scholar] [CrossRef]
- Lombardi-Boccia, G.; Lanzi, S.; Aguzzi, A. Aspects of Meat Quality: Trace Elements and B Vitamins in Raw and Cooked Meats. J. Food Compost. Anal. 2005, 18, 39–46. [Google Scholar] [CrossRef]
- Jameel, R.F. Investigation of Biochemical Blood Parameters, Characteristics for Carcass, and Mineral Composition in Chicken Meat when Feeding on Coriander Seed and Rosemary Leaves. J. Adv. Vet. Anim. Res. 2019, 6, 33–43. [Google Scholar] [CrossRef]
- Adhikari, M.B.; Bajracharya1, A.; Shrestha, K.A. Comparison of Nutritional Properties of Stinging Nettle (Urtica dioica) Flour with Wheat and Barley Flours. Food Sci. Nutr. 2016, 4, 119–124. [Google Scholar] [CrossRef]
- Qayyum, R.; Qamar, H.M.; Khan, S.; Salma, U.; Khan, T.; Shah, A.J. Mechanisms Underlying the Antihypertensive Properties of Urtica dioica. J. Transl. Med. 2016, 14, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhusal, K.K.; Magar, S.K.; Thapa, R.; Lamsal, A.; Bhandari, S.; Maharjan, R.; Shrestha, S.; Shrestha, J. Nutritional and Pharmacological Importance of Stinging Nettle (Urtica dioica L.): A review. Heliyon 2022, 8, e09717. Available online: https://doi.org/10.1016%2Fj.heliyon.2022.e09717 (accessed on 17 January 2023). [CrossRef] [PubMed]
- Yancey, E.; Grobbel, J.; Dikeman, M.; Smith, J.; Hachmeister, K.; Chambers, E.; Gadgil, P.; Milliken, G.; Dressler, E. Effects of Total Iron, Myoglobin, Hemoglobin, and Lipid Oxidation of Uncooked Muscles on Livery Flavor Development and Volatiles of Cooked Beef Steaks. Meat Sci. 2006, 73, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.M.; Choct, M.; Iji, P.A.; Bruerton, K. Trace Mineral Interactions in Broiler Chicken Diets. Br. Poult. Sci. 2010, 51, 109–117. [Google Scholar] [CrossRef] [PubMed]
Ingredient (g/kg) | Starter (0–21 d) | Finisher (22–42 d) |
---|---|---|
Corn | 532 | 593 |
Soybean meal (44% CP) | 310 | 240 |
Soybeans (full fat, extruded) | 80 | 100 |
Soybean oil | 20 | 20 |
Monocalcium phosphate | 20 | 15 |
Limestone | 14 | 11 |
Vitamin + mineral supplement 1 | 10 | 10 |
L-lysine | 4 | 3 |
DL-methionine | 3 | 2 |
L-threonine | 2 | 1 |
Salt | 3 | 3 |
Mycotoxin binder (zeolite) 2 | 2 | 2 |
Total | 1000 | 1000 |
Nutrients and energy level (calculated) | ||
ME (MJ/kg) | 12.5 | 13.0 |
Crude protein (%) | 21.3 | 19.2 |
Crude fat (%) | 5.85 | 6.33 |
Crude fibre (%) | 3.88 | 3.70 |
Lysine, digestible (%) | 1.35 | 1.15 |
Methionine, digestible (%) | 0.62 | 0.50 |
Calcium (%) | 0.96 | 0.83 |
Phosphorus, available (%) | 0.49 | 0.40 |
Fatty Acid | Diet (D) | Gender (G) | Portion (P) | D × G 1 | D × P 2 | G × P 3 | D × G × P 4 |
---|---|---|---|---|---|---|---|
SFA 5 | |||||||
C14:0 | 0.043 | 0.633 | 0.017 | 0.616 | 0.328 | 0.601 | 0.733 |
C15:0 | 0.338 | 0.271 | <0.001 | 0.368 | 0.561 | 0.735 | 0.404 |
C16:0 | 0.093 | 0.001 | <0.001 | 0.015 | 0.724 | 0.743 | 0.231 |
C18:0 | 0.447 | 0.616 | <0.001 | 0.330 | 0.705 | 0.567 | 0.531 |
MUFA 6 | |||||||
C16:1 n-7 | <0.001 | 0.004 | <0.001 | 0.001 | 0.533 | 0.529 | 0.328 |
C17:1 | 0.503 | 0.349 | <0.001 | 0.803 | 0.912 | 0.492 | 0.593 |
C18:1 n-9 | 0.037 | <0.001 | <0.001 | 0.149 | 0.474 | 0.161 | 0.486 |
C18:1 n-11 | 0.313 | 0.585 | <0.001 | 0.101 | 0.534 | 0.694 | 0.992 |
PUFA 7 | |||||||
C18:2 n-6 | 0.004 | 0.000 | <0.001 | 0.033 | 0.664 | 0.541 | 0.892 |
C18:3 n-6 | 0.099 | 0.859 | 0.032 | 0.217 | 0.767 | 0.629 | 0.371 |
C18:3 n-3 | 0.231 | <0.001 | <0.001 | 0.090 | 0.617 | 0.786 | 0.656 |
C20:2 n-6 | 0.012 | 0.611 | 0.005 | 0.294 | 0.087 | 0.927 | 0.755 |
C20:3 n-6 | 0.021 | 0.054 | 0.001 | 0.235 | 0.417 | 0.072 | 0.517 |
C20:4 n-6 | 0.461 | 0.441 | <0.001 | 0.368 | 0.455 | 0.861 | 0.380 |
C22:4 n-6 | 0.868 | 0.940 | <0.001 | 0.992 | 0.907 | 0.950 | 0.414 |
C22:6 n-3 | 0.789 | 0.028 | 0.005 | 0.085 | 0.735 | 0.729 | 0.621 |
Total | |||||||
SFA | 0.183 | 0.004 | <0.001 | 0.106 | 0.780 | 0.924 | 0.445 |
MUFA | <0.001 | <0.001 | <0.001 | 0.152 | 0.455 | 0.298 | 0.994 |
PUFA | <0.001 | <0.001 | 0.004 | 0.006 | 0.656 | 0.639 | 0.490 |
n-6 | <0.001 | <0.001 | 0.039 | 0.013 | 0.605 | 0.608 | 0.321 |
n-3 | 0.249 | <0.001 | <0.001 | 0.014 | 0.721 | 0.692 | 0.496 |
n-6/n-3 8 | 0.036 | 0.005 | <0.001 | 0.285 | 0.421 | 0.277 | 0.212 |
Fatty Acid (%) | Control | Fresh Nettle | Dry Nettle | LSD 2 |
---|---|---|---|---|
C14:0 | 0.69 ± 0.31 ab | 0.63 ± 0.21 a | 0.88 ± 0.22 b | 0.204 |
C16:1 n-7 | 2.42 ± 0.56 a | 2.22 ± 0.64 a | 3.19 ± 1.11 b | 0.419 |
C18:1 n-9 | 23.31 ± 3.21 a | 23.52 ± 2.75 a | 24.58 ± 3.37 b | 1.015 |
C18:2 n-6 | 30.33 ± 3.97 b | 30.93 ± 3.09 b | 27.57 ± 4.41 a | 1.985 |
C20:2 n-6 | 0.36 ± 0.30 ab | 0.54 ± 0.14 b | 0.26 ± 0.26 a | 0.178 |
C20:3 n-6 | 0.42 ± 0.15 ab | 0.49 ± 0.21 b | 0.30 ± 0.23 a | 0.130 |
MUFA 3 | 28.59 ± 3.12 a | 28.50 ± 2.72 a | 31.20 ± 3.90 b | 1.199 |
PUFA 4 | 38.41 ± 3.70 b | 39.51 ± 2.87 b | 35.08 ± 4.78 a | 1.928 |
n-6 | 35.63 ± 3.10 b | 36.54 ± 2.57 b | 32.19 ± 4.15 a | 1.787 |
n-6/n-3 5 | 13.46 ± 2.96 b | 12.28 ± 2.24 ab | 11.83 ± 2.69 a | 1.258 |
Fatty Acid (%) | Male | Female | LSD 2 |
---|---|---|---|
C16:0 | 21.09 ± 2.82 a | 23.22 ± 3.34 b | 1.196 |
C16:1 n-7 | 2.35 ± 0.62 a | 2.87 ± 1.05 b | 0.342 |
C18:1 n-9 | 22.72 ± 2.49 a | 24.89 ± 3.30 b | 0.829 |
C18:2 n-6 | 31.71 ± 3.22 b | 27.51 ± 3.72 a | 1.621 |
C18:3 n-3 | 2.92 ± 0.72 b | 2.35 ± 0.66 a | 0.229 |
C22:6 n-3 | 0.35 ± 0.22 b | 0.20 ± 0.21 a | 0.132 |
SFA 3 | 31.62 ± 4.37 a | 34.11 ± 4.78 b | 1.622 |
MUFA 4 | 28.12 ± 2.64 b | 30.75 ± 3.69 b | 0.979 |
PUFA 5 | 40.20 ± 2.52 b | 35.14 ± 4.07 a | 1.574 |
n-6 | 36.98 ± 2.35 b | 32.59 ± 3.65 a | 1.459 |
n-3 | 3.27 ± 0.68 b | 2.55 ± 0.62 a | 0.258 |
n-6/n-3 6 | 11.76 ± 2.59 a | 13.29 ± 2.58 b | 1.027 |
Fatty Acid (%) | Breast | Drumstick | LSD 2 |
---|---|---|---|
C14:0 | 0.63 ± 0.21 a | 0.84 ± 0.28 b | 0.167 |
C15:0 | 3.23 ± 0.75 b | 1.11 ± 0.23 a | 0.389 |
C16:0 | 24.48 ± 2.62 b | 19.84 ± 1.80 a | 1.196 |
C18:0 | 8.33 ± 0.88 b | 7.27 ± 0.57 a | 0.535 |
C16:1 n-7 | 2.16 ± 0.77 a | 3.06 ± 0.78 b | 0.342 |
C17:1 | 0.63 ± 0.19 b | 0.18 ± 0.14 a | 0.123 |
C18:1 n-9 | 21.27 ± 1.55 a | 26.34 ± 1.90 b | 0.829 |
C18:1 n-11 | 2.48 ± 0.50 b | 1.67 ± 0.64 a | 0.400 |
C18:2 n-6 | 27.58 ± 3.26 a | 31.64 ± 3.76 b | 1.621 |
C18:3 n-6 | 0.08 ± 0.11 a | 0.19 ± 0.18 b | 0.100 |
C18:3 n-3 | 2.05 ± 0.44 a | 3.22 ± 0.45 b | 0.229 |
C20:2 n-6 | 0.49 ± 0.25 b | 0.27 ± 0.23 a | 0.146 |
C20:3 n-6 | 0.50 ± 0.20 b | 0.30 ± 0.18 a | 0.106 |
C20:4 n-6 | 4.50 ± 0.81 b | 2.58 ± 0.49 a | 0.473 |
C22:4 n-6 | 0.86 ± 0.24 b | 0.47 ± 0.22 a | 0.179 |
C22:6 n-3 | 0.37 ± 0.21 b | 0.18 ± 0.19 a | 0.132 |
SFA 3 | 36.67 ± 3.07 b | 29.07 ± 2.29 a | 1.622 |
MUFA 4 | 26.90 ± 2.08 a | 31.96 ± 2.52 b | 0.979 |
PUFA 5 | 36.43 ± 3.94 a | 38.90 ± 4.21 b | 1.574 |
n-6 | 34.01 ± 3.53 a | 35.56 ± 3.91 b | 1.459 |
n-3 | 2.42 ± 0.53 a | 3.40 ± 0.57 b | 0.258 |
n-6/n-3 6 | 14.47 ± 2.24 b | 10.58 ± 1.25 a | 1.027 |
Fatty Acid (%) | Control (C) | Fresh Nettle (F) | Dry Nettle (D) | LSD 2 | |||
---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | ||
C16:0 | 21.23 ± 2.80 a | 23.54 ± 3.84 b | 21.36 ± 3.33 a | 21.14 ± 1.96 a | 20.69 ± 2.79 a | 24.97 ± 3.22 c | 1.196 |
C16:1 n-7 | 2.32 ± 0.62 ab | 2.53 ± 0.52 b | 2.30 ± 0.50 ab | 2.14 ± 0.79 a | 2.43 ± 0.81 ab | 3.95 ± 0.82 c | 0.342 |
C18:2 n-6 | 32.30 ± 3.76 d | 28.36 ± 3.34 b | 31.74 ± 3.27 bc | 30.13 ± 2.97 b | 31.08 ± 3.09 bc | 24.06 ± 1.91 a | 1.621 |
PUFA 3 | 40.84 ± 2.67 d | 35.99 ± 2.99 b | 40.41 ± 3.00 d | 38.61 ± 2.68 c | 39.34 ± 2.03 cd | 30.82 ± 1.59 a | 1.574 |
n-6 | 37.75 ± 1.99 d | 33.50 ± 2.51 b | 37.38 ± 2.69 d | 35.70 ± 2.36 c | 35.82 ± 2.22 c | 28.55 ± 1.13 a | 1.459 |
n-3 | 3.09 ± 0.85 bc | 2.49 ± 0.57 a | 3.20 ± 0.51 c | 2.26 ± 0.64 a | 3.52 ± 0.67 d | 2.90 ± 0.54 b | 0.258 |
Mineral | Diet (D) | Gender (G) | Portion (P) | D × G 1 | D × P 2 | G × P 3 | D × G × P 4 |
---|---|---|---|---|---|---|---|
Na | <0.001 | 0.116 | <0.001 | 0.065 | 0.016 | 0.001 | 0.090 |
Mg | 0.068 | 0.101 | <0.001 | 0.057 | 0.272 | 0.152 | 0.101 |
K | 0.978 | 0.021 | <0.001 | 0.122 | 0.257 | <0.001 | 0.067 |
Ca | 0.017 | 0.007 | 0.026 | 0.516 | 0.126 | 0.002 | 0.143 |
Mn | 0.110 | 0.081 | <0.001 | 0.094 | 0.048 | 0.068 | 0.705 |
Fe | 0.016 | 0.338 | <0.001 | 0.486 | <0.001 | 0.557 | 0.058 |
Zn | 0.032 | 0.099 | <0.001 | 0.860 | 0.002 | 0.004 | 0.811 |
Se | 0.001 | 0.976 | 0.074 | 0.083 | 0.516 | 0.505 | 0.063 |
Mineral (mg/100 g Dry Basis) | Control | Fresh Nettle | Dry Nettle | LSD 2 |
---|---|---|---|---|
Na | 574.81 ± 55.38 a | 570.49 ± 72.16 a | 614.34 ± 64.82 b | 11.156 |
Ca | 71.47 ± 11.44 b | 61.43 ± 6.48 a | 61.52 ± 5.53 a | 7.630 |
Fe | 4.43 ± 0.69 a | 6.23 ± 0.19 b | 6.72 ± 0.44 b | 0.536 |
Zn | 15.56 ± 2.04 a | 17.79 ± 2.11 b | 16.27 ± 3.29 ab | 1.681 |
Se | 0.05 ± 0.00 a | 0.09 ± 0.01 b | 0.10 ± 0.01 b | 0.027 |
Mineral (mg/100 g Dry Basis) | Male | Female | LSD 2 |
---|---|---|---|
K | 3413.41 ± 298.03 a | 3517.04 ± 163.18 b | 42.747 |
Ca | 72.56 ± 9.63 b | 57.05 ± 6.37 a | 6.230 |
Mineral (mg/100 g Dry Basis) | Breast | Drumstick | LSD 2 |
---|---|---|---|
Na | 486.66 ± 40.30 a | 679.77 ± 41.54 b | 9.109 |
Mg | 450.52 ± 11.98 b | 365.13 ± 29.85 a | 6.927 |
K | 3771.77 ± 105.11 b | 3158.68 ± 152.76 a | 42.747 |
Ca | 61.22 ± 17.84 a | 68.39 ± 9.71 b | 6.230 |
Mn | 0.14 ± 0.01 a | 0.20 ± 0.02 b | 0.001 |
Fe | 3.60 ± 0.60 a | 7.99 ± 1.23 b | 0.438 |
Zn | 8.41 ± 0.86 a | 24.60 ± 3.88 b | 1.373 |
Mineral (mg/100 g Dry Basis) | Control | Fresh Nettle | Dry Nettle | LSD 2 | |||
---|---|---|---|---|---|---|---|
Breast | Drumstick | Breast | Drumstick | Breast | Drumstick | ||
Na | 502.38 ± 54.13 a | 647.24 ± 22.75 b | 484.63 ± 20.05 a | 656.35 ± 19.42 b | 502.97 ± 18.50 a | 725.70 ± 30.89 c | 9.109 |
Fe | 4.00 ± 0.68 b | 6.86 ± 0.94 c | 3.38 ± 0.47 a | 8.39 ± 1.12 d | 3.42 ± 0.51 a | 8.22 ± 0.27 d | 0.438 |
Zn | 9.13 ± 0.61 b | 21.79 ± 2.51 c | 8.94 ± 0.16 b | 27.14 ± 4.42 d | 7.48 ± 0.22 a | 25.87 ± 2.85 d | 1.373 |
Mineral (mg/100 g Dry Basis) | Male | Female | LSD 2 | ||
---|---|---|---|---|---|
Breast | Drumstick | Breast | Drumstick | ||
Na | 502.80 ± 37.55 b | 675.06 ± 56.66 c | 470.52 ± 38.13 a | 684.47 ± 20.17 c | 9.109 |
K | 3791.29 ± 96.38 c | 3035.53 ± 78.00 a | 3752.24 ± 115.46 c | 3281.84 ± 96.85 b | 42.747 |
Ca | 74.23 ± 16.61 c | 70.88 ± 7.55 bc | 48.20 ± 4.39 a | 65.90 ± 11.38 b | 6.230 |
Zn | 8.30 ± 0.92 a | 26.61 ± 3.99 c | 8.53 ± 0.82 a | 22.59 ± 2.64 b | 1.373 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanišić, N.; Škrbić, Z.; Petričević, V.; Milenković, D.; Petričević, M.; Gogić, M.; Lukić, M. The Fatty Acid and Mineral Composition of Cobb 500 Broiler Meat Influenced by the Nettle (Urtica dioica) Dietary Supplementation, Broiler Gender and Muscle Portion. Agriculture 2023, 13, 799. https://doi.org/10.3390/agriculture13040799
Stanišić N, Škrbić Z, Petričević V, Milenković D, Petričević M, Gogić M, Lukić M. The Fatty Acid and Mineral Composition of Cobb 500 Broiler Meat Influenced by the Nettle (Urtica dioica) Dietary Supplementation, Broiler Gender and Muscle Portion. Agriculture. 2023; 13(4):799. https://doi.org/10.3390/agriculture13040799
Chicago/Turabian StyleStanišić, Nikola, Zdenka Škrbić, Veselin Petričević, Danijel Milenković, Maja Petričević, Marija Gogić, and Miloš Lukić. 2023. "The Fatty Acid and Mineral Composition of Cobb 500 Broiler Meat Influenced by the Nettle (Urtica dioica) Dietary Supplementation, Broiler Gender and Muscle Portion" Agriculture 13, no. 4: 799. https://doi.org/10.3390/agriculture13040799
APA StyleStanišić, N., Škrbić, Z., Petričević, V., Milenković, D., Petričević, M., Gogić, M., & Lukić, M. (2023). The Fatty Acid and Mineral Composition of Cobb 500 Broiler Meat Influenced by the Nettle (Urtica dioica) Dietary Supplementation, Broiler Gender and Muscle Portion. Agriculture, 13(4), 799. https://doi.org/10.3390/agriculture13040799