Optimizing the Amount of Nitrogen and Seed Inoculation to Improve the Quality and Yield of Soybean Grown in the Southeastern Baltic Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Agronomic Management
2.3. Data Collection
2.4. Chemical Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anwar, F.; Kamal, G.M.; Nadeemb, F.; Shabir, G. Variations of quality characteristics among oils of different soybean varieties. J. King Saud Univ. Sci. 2016, 28, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Carrera, C.S.; Dardanelli, J.L. Water deficit modulates the relationship between temperature and unsaturated fatty acid profile in soybean seed oil. Crop Sci. 2017, 57, 3179–3189. [Google Scholar] [CrossRef]
- James, A.T.; Yang, A. Interactions of protein content and globulin subunit composition of soybean proteins in relation to tofu gel properties. Food Chem. 2016, 194, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Medic, J.; Atkinson, C.; Hurburgh, C.R. Current knowledge in soybean composition. J. Am. Oil Chem. Soc. 2014, 91, 363–384. [Google Scholar] [CrossRef]
- Ortez, O.A.; Salvagiotti, F.; Enrico, J.M.; Prasad, P.V.V.; Armstrong, P.; Ciampitti, I.A. Exploring nitrogen limitation for historical and modern soybean genotypes. Agron. J. 2018, 110, 2080–2090. [Google Scholar] [CrossRef] [Green Version]
- Patil, G.; Vuong, T.D.; Kale, S.; Valliyodan, B.; Deshmukh, R.; Zhu, C.; Wu, X.; Bai, Y.; Yungbluth, D.; Lu, F.; et al. Dissecting genomic hotspots underlying seed protein. oil. and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping. Plant Biotechnol. J. 2018, 16, 1939–1953. [Google Scholar] [CrossRef]
- Wilk, M.; Ród, S.Ź.; Cennych, E.M.; Adników, S.K. Soya as a source of valuable nutrients/Soja źródłem cennych składników żywieniowych. Żywność Nauka Technol. Jakość 2017, 2, 16–25. (In Polish) [Google Scholar]
- Soystats. International: World Soybean Production (soystats.com). 2022. The American Soybean Association. Available online: http://soystats.com/international-world-soybean-production/ (accessed on 12 February 2023).
- Eurostat. Agriculture, Forestry and Fishery Statistics—2020; Edition 2020, ss. 234.; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Jańczak-Pieniążek, M.; Buczek, J.; Bobrecka-Jamro, D.; Szpunar-Krok, E.; Tobiasz-Salach, R.; Jarecki, W. Morphophysiology, productivity and quality of soybean (Glycine max (L.) Merr.) cv. Merlin in response to row spacing and seeding systems. Agronomy 2021, 11, 403. [Google Scholar] [CrossRef]
- Panasiewicz, K. Chemical Composition of Lupin (Lupinus spp.) as Influenced by variety and tillage system. Agriculture 2022, 12, 263. [Google Scholar] [CrossRef]
- Sulewska, H.; Niewiadomska, A.; Ratajczak, K.; Budka, A.; Panasiewicz, K.; Faligowska, A.; Wolna-Maruwka, A.; Dryjański, L. Changes in Pisum sativum L. plants and in soil as a result of application of selected foliar fertilizers and biostimulators. Agronomy 2020, 10, 1558. [Google Scholar]
- Szpunar-Krok, E.; Wondołowska-Grabowska, A.; Bobrecka-Jamro, D.; Jańczak-Pieniążek, M.; Kotecki, A.; Kozak, M. Effect of nitrogen fertilisation and inoculation with Bradyrhizobium japonicum on the fatty acid profile of soybean (Glycine max (L.) Merrill) seeds. Agronomy 2021, 11, 941. [Google Scholar] [CrossRef]
- Natarajan, S. Analysis of soybean seed proteins using proteomics. J. Data Min. Genom. Proteom. 2014, 5, 10–12. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Lu, Y.; Bhusal, S.J.; Song, Q.; Cregan, P.B.; Yen, Y.; Brown, M.; Jiang, G.L. Genome-wide scan for seed composition provides insights into soybean quality Improvement and the impacts of domestication and breeding. Mol. Plant 2016, 11, 460–472. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, S.; Messmer, M.; Haase, T.; Piepho, H.P.; Mindermann, A.; Schulz, H.; Habekuß, A.; Ordon, F.; Wilbois, K.-P.; Heß, J. Effects of soybean variety and Bradyrhizobium strains on yield, protein content and biological nitrogen fixation under cool growing conditions in Germany. Eur. J. Agron. 2016, 72, 38–46. [Google Scholar] [CrossRef]
- Miladinovic, J.; Kurosaki, H.; Burton, J.W.; Hrustic, M.; Miladinovic, D. The adaptability of short season soybean genotypes to varying longitudinal regions. Eur. J. Agron. 2006, 25, 243–249. [Google Scholar]
- Klepa, S.M.; Ferraz Helene, L.C.; O’Hara, G.; Hungaria, M. Bradyrhizobium cenepequi sp. nov., Bradyrhizobium semiaridum sp. nov., Bradyrhizobium hereditatis sp. nov. and Bradyrhizobium australafricanum sp. nov., symbionts of different leguminous plants of Western Australia and South Africa and definition of three novel symbiovars. Int. J. Syst. Evol. Microbiol. 2022, 72, 005446. [Google Scholar]
- Legget, M.; Diaz-Zorita, M.; Koivunen, M.; Bowman, R.; Pesek, R.; Stevenson, C.; Leister, T. Soybean response to inoculation with Bradyrhizobium japonicum in the United States and Artentina. Agron. J. 2017, 109, 1031–1038. [Google Scholar]
- Popovic, V.; Tatic, M.; Spalevic, V.; Rajicic, V.; Filipovic, V.; Todosijevic, L.S.; Stevanovic, P. Effect of nitrogen fertilization on soybean plant height in arid year. In Proceedings of the 2nd International and 14th National Congress of Soil Science Society of Serbia—Solutions and Projections for Sustainable Soil Management, Conference Soil and Food, Novi Sad, Serbia, 25–28 September 2017; pp. 65–73. [Google Scholar]
- Zilli, J.E.; Alves, B.J.R.; Rouws, L.F.M.; Simões-Araujo, J.L.; Soares, L.H.B.; Cassa’n, F.; Castellanos, M.O.; O’Hara, G. The importance of denitrification performed by nitrogen-fixing bacteria used as inoculants in South America. Plant Soil 2020, 451, 5–24. [Google Scholar] [CrossRef]
- Zilli, J.E.; Pacheco, R.S.; Gianluppi, V.; Smiderle, O.J.; Urquiaga, S.; Hungria, M. Biological N2 fixation and yield performance of soybean inoculated with Bradyrhizobium. Nutr. Cycl. Agroecosystems 2021, 119, 323–336. [Google Scholar] [CrossRef]
- Kabała, C.; Charzyński, P.; Chodorowski, J.; Drewnik, M.; Glina, B.; Greinert, A.; Hulisz, P.; Jankowski, M.; Jonczak, J.; Łabaz, B.; et al. Polish Soil Classification, 6th edition—Principles, classification scheme and correlations. Soil Sci. Annu. 2019, 70, 71–97. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legendsfor Soil Maps; Update 2015; FAO: Rome, Italy, 2014; p. 182. [Google Scholar]
- Horwitz, W.; Latimer, G.W., Jr. (Eds.) AOAC Official Methods of Analysis of AOAC International, 18th ed.; Revision 4; AOAC International: Gaithersburg, MD, USA, 2011. [Google Scholar]
- SAS Institute. SAS/STAT User’s Guide; 7th ed.; SAS Campus Drive: Cary, NC, USA, 1999. [Google Scholar]
- Căpățână, N.; Bolohan, C.; Marin, D.I. Research regarding the influence of mineral fertilization along with Bradyrhizobium japonicum on soybean grain yield (Glycine max (L.) Merrill), under the conditions of south-east Romania. Sci. Papers. Ser. A Agron. 2017, 60, 207–214. [Google Scholar]
- Fogelberg, F. Soybean (Glycine max) cropping in Sweden—Influence of row distance, seeding date and suitable cultivars. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2021, 71, 311–317. [Google Scholar] [CrossRef]
- Jarecki, W.; Bobrecka-Jamro, D. Reaction of soybean plants to the vaccination of seeds with nitragina and initial nitrogen fertilization. Nauka Przyr. Technol. 2016, 10, 12. Available online: http://www.npt.up-poznan.net (accessed on 15 January 2022). (In Polish).
- Pannecoucque, J.; Goormachtigh, S.; Ceusters, J.; Debode, J.; Van Waes, C.; Van Waes, J. Temperature as a key factor for successful inoculation of soybean with Bradyrhizobium spp. under cool growing conditions in Belgium. J. Agric. Sci. 2018, 156, 493–503. [Google Scholar] [CrossRef]
- Richard, D.; Leimbrock-Rosch, L.; Keßler, S.; Zimmer, S.; Stoll, E. Impact of different mechanical weed control methods on weed communities in organic soybean cultivation in Luxembourg. Org. Agric. 2020, 10 (Suppl. S1), 79–92. [Google Scholar] [CrossRef]
- Lu, W.; Misselbrook, T.H.; Feng, L.; Wu, L. Assessment of nitrogen uptake and biological nitrogen fixation responses of soybean to nitrogen fertiliser with SPACSYS. Sustainability 2020, 12, 5921. [Google Scholar]
- Toleikiene, M.; Slepetys, J.; Sarunaite, L.; Lazauskas, S.; Deveikyte, I.; Kadziuliene, Z. Soybean development and productivity in response to organic management above the Northern Boundary of soybean distribution in Europe. Agronomy 2021, 11, 214. [Google Scholar] [CrossRef]
- Dolijanowic, Z.; Kovacevic, D.; Oliaca, S.; Jovovic, Z.; Stipesevic, B.; Jug, D. The multi-year soybean grain yield depending on weather conditions. In Proceedings of the Međunarodni Simpozij Agronoma, Dubrovnik, Croatia, 17–22 October 2013; pp. 422–477. [Google Scholar]
- Basal, O.; Szabó, A. Inoculation enhances soybean physiology and yield under moderate drought. Life Int. J. Health Life Sci. 2019, 5, 1–13. [Google Scholar] [CrossRef]
- Księżak, J.; Bojarszczuk, J. The Effect of Mineral N Fertilization and Bradyrhizobium japonicum Seed Inoculation on Productivity of Soybean (Glycine max (L.) Merrill). Agriculture 2022, 12, 11. [Google Scholar] [CrossRef]
- Stojmenova, L.; Alexieva, S. Impacts of climate condition on soybean yield. Pochvoznanie. Agrokhimiya Ekol. 2009, 43, 10–14. [Google Scholar]
- Ohyama, T.; Minagawa, R.; Ishikawa, S.; Yamamoto, M.; Hung, N.V.P.; Ohtake, N.; Sueyoshi, K.; Sato, T.; Nagumo, Y.; Takahashi, Y. Soybean eed production and nitrogen nutrition. In A Comprehensive Survey of International Soybean Research—Genetics, Physiology, Agronomy and Nitrogen Relationships; IntechOpen: London, UK, 2013; pp. 115–157. [Google Scholar]
- Prusiński, J.; Baturo-Cieśniewska, A.; Borowska, M. Response of Soybean (Glycine max (L.) Merrill) to Mineral Nitrogen Fertilization and Bradyrhizobium japonicum Seed Inoculation. Agronomy 2020, 10, 1300. [Google Scholar] [CrossRef]
- Franco, A.A.; Munns, D.N. Nodulation and growth of Phaseolus vulgaris in solution culture. Plant Soil 1982, 66, 149–160. [Google Scholar]
- Hungria, M.; Barradas, C.A.A.; Wallsgrove, R.M. Nitrogen fixation, assimilation and transport during the initial growth stage of Phaseolus vulgaris L. J. Exp. Bot. 1991, 42, 839–844. [Google Scholar]
Year | Months | Average | ||||||
---|---|---|---|---|---|---|---|---|
III | IV | V | VI | VII | VIII | IX | ||
2016 | 2.95 | 0.93 | 1.11 | 1.71 | 1.56 | 1.15 | 0.13 | 1.37 |
2017 | 2.93 | 1.44 | 1.93 | 2.65 | 2.79 | 1.91 | 1.15 | 2.12 |
2018 | 6.01 | 1.45 | 0.43 | 0.41 | 1.32 | 0.14 | 1.04 | 1.54 |
2019 | 2.84 | 0.23 | 2.36 | 0.10 | 1.24 | 0.62 | 1.44 | 1.26 |
2020 | 2.12 | 0.28 | 1.39 | 0.60 | 1.25 | 1.17 | 1.04 | 1.12 |
1958–2015 | 3.86 | 2.00 | 1.42 | 1.21 | 1.36 | 1.10 | 1.09 | 1.72 |
Year | Specification | ||
---|---|---|---|
Seed Yield | Protein Yield | Fat Yield | |
2016 | 2.03 a | 628 a | 361 a |
2017 | 1.91 a | 594 a | 337 a |
2018 | 0.77 c | 238 c | 138 c |
2019 | 1.03 b | 318 b | 183 b |
2020 | 1.16 b | 358 b | 206 b |
LSD value | 0.188 ** | 57.7 ** | 33.5 ** |
Specification | Seed Yield | Protein Yield | Fat Yield |
---|---|---|---|
Control | 1.03 d | 293 e | 189 e |
30 kg N ha−1 | 1.17 c | 338 d | 217 d |
60 kg N ha−1 | 1.26 c | 368 cd | 232 d |
HiStick® Soy | 1.46 b | 463 b | 257 c |
Nitroflora | 1.27 c | 389 c | 226 d |
HiStick® Soy + 30 kg N ha−1 | 1.63 a | 536 a | 282 ab |
HiStick® Soy + 60 kg N ha−1 | 1.62 a | 529 a | 283 a |
Nitroflora + 30 kg N ha−1 | 1.46 b | 460 b | 260 bc |
Nitroflora + 60 kg N ha−1 | 1.47 b | 469 b | 258 c |
LSD value | 0.121 ** | 38.95 ** | 22.68 ** |
Specification | PH | DMN | PD | NP | NS | NSP | TSW |
---|---|---|---|---|---|---|---|
Control | 37.3 c | 0.5 d | 79.5 | 8.7 d | 14.2 c | 1.6 | 183.5 f |
30 kg N ha−1 | 41.2 ab | 0.5 d | 73.7 | 10.1 cd | 15.6 c | 1.5 | 187.4 ef |
60 kg N ha−1 | 43.4 a | 0.7 cd | 78.1 | 12.8 a | 20.1 ab | 1.5 | 188.8 de |
HiStick® Soy | 38.2 b | 3.1 a | 73.0 | 10.6 bcd | 17.2 bc | 1.6 | 200.5 a |
Nitroflora | 37.0 c | 4.1 a | 74.0 | 9.5 d | 16.3 bc | 1.7 | 198.7 ab |
HiStick® Soy + 30 kg N ha−1 | 40.6 ab | 2.8 ab | 77.1 | 12.4 ab | 21.7 a | 1.6 | 203.4 a |
HiStick® Soy + 60 kg N ha−1 | 42.6 a | 2.7 b | 70.7 | 11.5 abc | 19.2 ab | 1.5 | 200.1 ab |
Nitroflora + 30 kg N ha−1 | 40.9 ab | 1.9 bc | 75.1 | 10.0 cd | 16.1 c | 1.6 | 194.6 bc |
Nitroflora + 60 kg N ha−1 | 43.1 a | 2.9 ab | 78.7 | 12.9 a | 20.5 a | 1.5 | 193.1 c |
LSD value | 3.22 ** | 1.35 ** | NS | 1.95 ** | 3.09 ** | NS | 4.12 ** |
Specification | Crude Protein | Crude Fat | Crude Fibre | Crude Ash | N-Free Extract |
---|---|---|---|---|---|
Control | 332.6 b | 215.0 | 79.5 | 64.0 | 308.7 a |
30 kg N ha−1 | 339.5 ab | 218.7 | 85.8 | 64.7 | 291.1 abc |
60 kg N ha−1 | 341.9 ab | 215.6 | 81.1 | 63.4 | 297.8 ab |
HiStick® Soy | 372.0 ab | 206.4 | 83.8 | 62.9 | 274.6 abc |
Nitroflora | 359.1 ab | 208.4 | 97.6 | 64.7 | 269.9 bc |
HiStick® Soy + 30 kg N ha−1 | 385.2 a | 202.7 | 90.0 | 62.2 | 259.7 c |
HiStick® Soy + 60 kg N ha−1 | 381.8 a | 204.6 | 95.0 | 61.2 | 257.1 c |
Nitroflora + 30 kg N ha−1 | 370.5 ab | 209.3 | 99.2 | 61.5 | 259.3 c |
Nitroflora + 60 kg N ha−1 | 373.2 ab | 205.8 | 94.6 | 61.1 | 265.0 bc |
LSD value | 48.18 ** | NS | NS | NS | 37.93 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panasiewicz, K.; Faligowska, A.; Szymańska, G.; Ratajczak, K.; Sulewska, H. Optimizing the Amount of Nitrogen and Seed Inoculation to Improve the Quality and Yield of Soybean Grown in the Southeastern Baltic Region. Agriculture 2023, 13, 798. https://doi.org/10.3390/agriculture13040798
Panasiewicz K, Faligowska A, Szymańska G, Ratajczak K, Sulewska H. Optimizing the Amount of Nitrogen and Seed Inoculation to Improve the Quality and Yield of Soybean Grown in the Southeastern Baltic Region. Agriculture. 2023; 13(4):798. https://doi.org/10.3390/agriculture13040798
Chicago/Turabian StylePanasiewicz, Katarzyna, Agnieszka Faligowska, Grażyna Szymańska, Karolina Ratajczak, and Hanna Sulewska. 2023. "Optimizing the Amount of Nitrogen and Seed Inoculation to Improve the Quality and Yield of Soybean Grown in the Southeastern Baltic Region" Agriculture 13, no. 4: 798. https://doi.org/10.3390/agriculture13040798