Assessment and Principles of Environmentally Sustainable Food and Agriculture Systems
Abstract
:1. Introduction
2. Sustainable Food, Agriculture, and Agroecosystems
3. Climate Change Mitigation and Adaptation Strategies
4. Environmental, Food, and Agricultural Security
5. Food Systems, Nutrition, Health, and Environment
6. Agricultural Biodiversity and Diversification
7. Approaches for Sustainable Agricultural Production
7.1. Agroecological Agriculture
7.2. Agricultural and Sustainable Intensification
7.3. Regenerative Farming Systems
7.4. Organic Farming
7.5. Agroforestry
7.6. Regional Food Systems
7.7. Urban Agriculture
7.8. Precision Agriculture
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, T.; Prosperi, P. Modelling sustainable food systems. Environ. Manag. 2016, 57, 956–975. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Farm to Fork Strategy. For a Fair, Healthy and Environmentally Friendly Food System; EU: Brussels, Belgium, 2020. [Google Scholar]
- FAO. Sustainable Food Systems-Concept and Framework; FAO: Rome, Italy, 2018. [Google Scholar]
- Drewnowski, A.; The ecosystem inception team. The Chicago consensus on sustainable food systems science. Front. Nutr. 2018, 4, 74. [Google Scholar] [CrossRef]
- Menalled, F.; Bass, T.; Buschena, D.E.; Cash, D.; Malone, M.; Maxwell, B.; McVay, K.; Miller, P.; Soto, R.; Weaver, D. An Introduction to the Principles and Practices of Sustainable Farming; MontGuide; Montana State University: Bozeman, MT, USA, 2008. [Google Scholar]
- Muhie, S.H. Novel approaches and practices to sustainable agriculture. J. Sci. Food Agric. 2022, 10, 100446. [Google Scholar] [CrossRef]
- FAO. Agriculture and Climate Change: Challenges and Opportunities at the Global and Local Level; FAO: Rome, Italy, 2019. [Google Scholar]
- Pérez-Escamilla, R. Food Security and the 2015-2030 sustainable development goals: From human to planetary health: Perspectives and opinions. Curr. Dev. Nutr. 2017, 1, e000513. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.K.; Zhang, X.; Adler, P.R.; Kleppel, G.S.; Romeiko, X.X. Spatially and temporally explicit life cycle global warming, eutrophication, and acidification impacts from corn production in the U.S. Midwest. J. Clean. Prod. 2020, 242, 118465. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.A.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef] [PubMed]
- van Dooren, N.; Leseman, B.; van der Meulen, S. How new food networks change the urban environment: A case study in the contribution of sustainable, regional food systems to green and healthy cities. Sustainability 2021, 13, 481. [Google Scholar] [CrossRef]
- Duff, H.; Hegedus, P.B.; Loewen, S.; Bass, T.; Maxwell, B.D. Precision agroecology. Sustainability 2022, 14, 106. [Google Scholar] [CrossRef]
- Shahmohamadloo, R.S.; Febria, C.M.; Fraser, E.D.G.; Sibley, P.K. The sustainable agriculture imperative: A perspective on the need for an agrosystem approach to meet the United Nations Sustainable Development Goals by 2030. Integr. Environ. Assess. Manag. 2022, 18, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- McLennon, E.; Dari, B.; Jha, G.; Sihi, D.; Kankarla, V. Regenerative agriculture and integrative permaculture for sustainable and technology driven global food production and security. Agron. J. 2021, 113, 4541–4559. [Google Scholar] [CrossRef]
- Wittenberg, J.; Gernert, M.; El Bilali, H.; Strassner, C. Towards sustainable urban food systems: Potentials, impacts and challenges of grassroots initiatives in the foodshed of Muenster, Germany. Sustainability 2022, 14, 13595. [Google Scholar] [CrossRef]
- Shariatmadary, H.; O’Hara, S.; Graham, R.; Stuiver, M. Are food hubs sustainable? An analysis of social and environmental objectives of U.S. food hubs. Sustainability 2023, 15, 2308. [Google Scholar] [CrossRef]
- Pratama, I.P.; Winarso, H.; Hudalah, D.; Syabri, I. Extended urbanization through capital centralization: Contract farming in palm oil-based agroindustrialization. Sustainability 2021, 13, 10044. [Google Scholar] [CrossRef]
- Ebenso, B.; Otu, A.; Giusti, A.; Cousin, P.; Adetimirin, V.; Razafindralambo, H.; Effa, E.; Gkisakis, V.; Thiare, O.; Levavasseur, V.; et al. Nature-based one health approaches to urban agriculture can deliver food and nutrition security. Front. Nutr. 2022, 9, 773746. [Google Scholar] [CrossRef] [PubMed]
- Bisht, I.S. Agri-food system dynamics of small-holder hill farming communities of Uttarakhand in north-western India: Socio-economic and policy considerations for sustainable development. Agroecol. Sustain. Food Syst. 2021, 45, 417–449. [Google Scholar] [CrossRef]
- Crews, T.E.; Carton, W.; Olsson, L. Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures. Glob. Sustain. 2018, 1, e11. [Google Scholar] [CrossRef]
- Clark, M.; Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 2017, 12, 064016. [Google Scholar] [CrossRef]
- FAO. Building a Common Vision for Sustainable Food and Agriculture, Principles and Approaches; FAO: Rome, Italy, 2014. [Google Scholar]
- Kaymaz, Ç.K.; Birinci, S.; Kızılkan, Y. Sustainable development goals assessment of Erzurum province with SWOT-AHP analysis. Environ. Dev. Sustain. 2022, 24, 2986–3012. [Google Scholar] [CrossRef]
- Viola, I.; Marinelli, A. Life cycle assessment and environmental sustainability in the food system. Agric. Agric. Sci. Procedia 2016, 8, 317–323. [Google Scholar] [CrossRef]
- Basiago, A.D. Economic, social, and environmental sustainability in development theory and urban planning practice. Environmentalist 1999, 19, 145–161. [Google Scholar] [CrossRef]
- Bisht, I.S.; Rana, J.C.; Ahlawat, S.P. The future of smallholder farming in India: Some sustainability considerations. Sustainability 2020, 12, 3751. [Google Scholar] [CrossRef]
- Musa, S.F.P.D.; Basir, K.H.; Luah, E. The role of smart farming in sustainable development. Int. J. Asian Bus. Inf. Manag. 2022, 13, 1–12. [Google Scholar] [CrossRef]
- Mustafa, M.A.; Mateva, K.I.; Massawe, F. Sustainable crop production for environmental and human health-the future of agriculture. Annu. Plant Rev. 2019, 2, 1117–1140. [Google Scholar]
- Dey, P.K.; Malesios, C.; De, D.; Chowdhury, S.; Abdelaziz, F.B. The impact of lean management practices and sustainably-oriented innovation on sustainability performance of small and medium-sized enterprises: Empirical evidence from the UK. Br. J. Manag. 2020, 31, 141–161. [Google Scholar] [CrossRef]
- Mwangi, G.M.; Despoudi, S.; Espindola, O.R.; Spanaki, K.; Papadopoulos, T. A planetary boundaries perspective on the sustainability: Resilience relationship in the Kenyan tea supply chain. Ann. Oper. Res. 2022, 319, 661–695. [Google Scholar] [CrossRef]
- FAO. Climate Change and Food Security: Risks and Responses; FAO: Rome, Italy, 2015. [Google Scholar]
- Shen, J.; Zhu, Q.; Jiao, X.; Ying, H.; Wang, H.; Wen, X.; Xu, W.; Li, T.; Cong, W.; Liu, X.; et al. Agriculture green development: A model for China and the World. Front. Agr. Sci. Eng. 2020, 7, 5–13. [Google Scholar] [CrossRef]
- Sofo, A.; Zanella, A.; Ponge, J.F. Soil quality and fertility in sustainable agriculture, with a contribution to the biological classification of agricultural soils. Soil Use Manag. 2022, 38, 1085–1112. [Google Scholar] [CrossRef]
- Newton, P.; Civita, N.; Frankel-Goldwater, L.; Bartel, K.; Johns, C. What is regenerative agriculture? A review of scholar and practitioner definitions based on processes and outcomes. Front. Sustain. Food Syst. 2020, 4, 577723. [Google Scholar] [CrossRef]
- Lajoie-O’Malley, A.; Bronson, K.; van der Burg, S.; Klerkx, L. The future(s) of digital agriculture and sustainable food systems: A analysis of high-level policy documents. Ecosyst. Serv. 2020, 45, 49–69. [Google Scholar] [CrossRef]
- Oberč, B.P.; Schnell, A.A. Approaches to Sustainable Agriculture: Exploring the Pathways towards the Future of Farming; International Union for Conservation of Nature (IUCN): Brussels, Belgium, 2020; pp. 1–92. [Google Scholar]
- The Food and Land Use Coalition. Systemic and Soil Capital. Regenerating Europe’s Soils: Making the Economics Work; The Food and Land Use Coalition: London, UK, 2020; pp. 1–27. [Google Scholar]
- Pretty, J.; Benton, T.G.; Bharucha, Z.P.; Dicks, L.V.; Flora, C.B.; Godfray, H.C.J.; Goulson, D.; Hartley, S.; Lampkin, N.; Morris, C.; et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 2018, 1, 441–446. [Google Scholar] [CrossRef]
- Wezel, A.; Soboksa, G.; McClelland, S.; Delespesse, F.; Boissau, A. The blurred boundaries of ecological, sustainable, and agroecological intensification: A review. Agron. Sustainable Dev. 2015, 35, 1283–1295. [Google Scholar] [CrossRef]
- Torres, M.A.O.; Kallas, Z.; Herrera, S.I.O. Farmers’ environmental perceptions and preferences regarding climate change adaptation and mitigation actions; towards a sustainable agricultural system in México. Land Use Policy 2020, 99, 105031. [Google Scholar] [CrossRef]
- Guareschi, M.; Mancini, M.C.; Lottici, C.; Arfini, F. Strategies for the valorization of sustainable productions through an organic district model. Agroecol. Sustain. Food Syst. 2023, 47, 100–125. [Google Scholar] [CrossRef]
- HLPE. Agroecological and Other Innovative Approaches for Sustainable Agriculture and Food Systems That Enhance Food Security and Nutrition; A Report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security, Rome; HLPE: Rome, Italy, 2019; pp. 1–163. [Google Scholar]
- Hoffmann, U. Assuring Food Security in Developing Countries under the Challenges of Climate Change: Key Trade and Development Issues of a Fundamental Transformation of Agriculture. In United Nations Conference on Trade and Development (UNCTAD) Discussion Papers; UNCTAD: Geneva, Switzerland, 2011; pp. 1–43. [Google Scholar]
- Bàrberi, P. Functional Agrobiodiversity: The Key to Sustainability. In Agricultural Sustainability: Progress and Prospects in Crop Research; Bhullar, S., Bhullar, K., Eds.; Elsevier: London, UK, 2013; pp. 3–20. [Google Scholar]
- Altieri, M.A. Developing and Promoting Agroecological Innovations within Country Program Strategies to Address Agroecosystem Resilience in Production Landscapes: A Guide; University of California: Berkeley, CA, USA, 2016; pp. 1–25. [Google Scholar]
- Barrios, E.; Gemmill-Herren, B.; Bicksler, A.; Siliprandi, E.; Brathwaite, R.; Moller, S.; Batello, C.; Tittonell, P. The 10 Elements of agroecology: Enabling transitions towards sustainable agriculture and food systems through visual narratives. Ecosyst. People 2020, 16, 230–247. [Google Scholar] [CrossRef]
- FAO. The 10 Elements of Agroecology: Guiding the Transition to Sustainable Food and Agricultural Systems; FAO: Rome, Italy, 2018. [Google Scholar]
- Iseman, T.; Miralles-Wilhelm, F. Nature-Based Solutions in Agriculture—The Case and Pathway for Adoption; FAO and The Nature Conservancy: Rome, Italy, 2021; pp. 1–52. [Google Scholar]
- Hallstein, E.; Iseman, T. Nature-Based Solutions in Agriculture—Project Design for Securing Investment; FAO and The Nature Conservancy: Rome, Italy, 2021; pp. 1–68. [Google Scholar]
- Cousin, P.; Husson, O.; Thiare, O.; Ndiaye, G. Technology-enabled sustainable agriculture: The agroecology case. In Proceedings of the 2021 IST-Africa Conference (IST-Africa), Pretoria, South Africa, 10–14 May 2021; pp. 1–8. [Google Scholar]
- Bacenetti, J.; Duca, D.; Negri, M.; Fusi, A.; Fiala, M. Mitigation strategies in the agro-food sector: The anaerobic digestion of tomato purée by-products. An Italian case study. Sci. Total Environ. 2015, 526, 88–97. [Google Scholar] [CrossRef]
- Caron, P.; Ferrero y de Loma-Osorio, Y.; Nabarro, D.; Hainzelin, E.; Guillou, M.; Andersen, I.; Arnold, T.; Astralaga, M.; Beukeboom, M.; Bickersteth, S.; et al. Food systems for sustainable development: Proposals for a profound four-part transformation. Agron. Sustain. Dev. 2018, 38, 41. [Google Scholar] [CrossRef]
- Fanzo, J.; Rudie, C.; Sigman, I.; Grinspoon, S.; Benton, T.G.; Brown, M.E.; Covic, N.; Fitch, K.; Golden, C.D.; Grace, D.; et al. Sustainable food systems and nutrition in the 21st century: A report from the 22nd annual Harvard Nutrition Obesity Symposium. Am. J. Clin. Nutr. 2022, 115, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.S.; Kareemulla, K.; Krishnan, P.; Murthy, G.R.K.; Ramesh, P.; Ananthan, P.S.; Joshi, P.K. Agro-ecosystem based sustainability indicators for climate resilient agriculture in India: A conceptual framework. Ecol. Indic. 2019, 105, 621–633. [Google Scholar]
- Sarkar, A.; Azim, J.A.; Asif, A.A.; Qian, L.; Peau, A.K. Structural equation modelling for indicators of sustainable agriculture: Prospective of a developing country’s agriculture. Land Use Policy 2021, 109, 105638. [Google Scholar] [CrossRef]
- Purcell, W.; Neubauer, T.; Mallinger, K. Digital Twins in agriculture: Challenges and opportunities for environmental sustainability. Curr. Opin. Environ. Sustain. 2023, 61, 101252. [Google Scholar] [CrossRef]
- Mayer, A.; Kalt, G.; Kaufmann, L.; Röös, E.; Muller, A.; Weisshaidinger, R.; Frehner, A.; Roux, N.; Smith, P.; Theurl, M.C.; et al. Impacts of scaling up agroecology on the sustainability of European agriculture in 2050. EuroChoices 2022, 21, 27–36. [Google Scholar] [CrossRef]
- Streimikis, J.; Baležentis, T. Agricultural sustainability assessment framework integrating sustainable development goals and interlinked priorities of environmental, climate and agriculture policies. Sustain. Dev. 2020, 28, 1702–1712. [Google Scholar] [CrossRef]
- Islam, M.M.; Urmi, T.A.; Rana, M.S.; Alam, M.S.; Haque, M.M. Green manuring effects on crop morpho-physiological characters, rice yield and soil properties. Physiol. Mol. Biol. Plants 2019, 25, 303–312. [Google Scholar] [CrossRef]
- Prusty, A.K.; Natesan, R.; Panwar, A.S.; Jat, M.L.; Tetarwal, J.P.; López-Ridaura, S.; Adelhart Toorop, R.; Akker, J.V.D.; Kaur, J.; Ghasal, P.C.; et al. Redesigning of farming systems using a multicriterion assessment tool for sustainable intensification and nutritional security in Northwestern India. Sustainability 2022, 14, 3892. [Google Scholar] [CrossRef]
- Çolakoğlu, E. The climate change and energy security nexus in the U.S. Atatürk Üniversitesi İktisadi İdari Bilimler Derg. 2017, 31, 71–84. [Google Scholar]
- Osei, E.; Jafri, S.H.; Saleh, A.; Gassman, P.W.; Gallego, O. Simulated climate change impacts on corn and soybean yields in Buchanan County, Iowa. Agriculture 2023, 13, 268. [Google Scholar] [CrossRef]
- Wegren, S.; Trotsuk, I. Is industrial agriculture sustainable during climate change and ecological threats? Ekon. Sotsiologiya 2020, 21, 12–38. [Google Scholar] [CrossRef]
- Lynch, J.; Cain, M.; Frame, D.; Pierrehumbert, R. Agriculture’s contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors. Front. Sustain. Food Syst. 2021, 4, 518039. [Google Scholar] [CrossRef]
- Campanhola, C.; Stamoulis, K.; Pandey, S. Sustainable Agriculture and Food Systems: The Way Forwards. In Sustainable Food and Agriculture: An Integrated Approach; Academic Press: London, UK, 2019. [Google Scholar]
- O’Hara, S.; Stuiver, M. Restorative Economics-Food Hubs as Catalysts of a New Urban Economy. In Symbiotic Cities; Stuiver, M., Ed.; Wageningen University and Research Academic Press: Wageningen, The Netherlands, 2022; pp. 1–20. [Google Scholar]
- Whitfield, S.; Challinor, A.J.; Rees, R.M. Frontiers in climate smart food systems: Outlining the research space. Front. Sustain. Food Syst. 2018, 2, 2. [Google Scholar] [CrossRef]
- Kanat, Z.; Keskin, A. Dünyada iklim değişikliği üzerine yapılan çalışmalar ve Türkiye’de mevcut durum. (Studies on climate change in the world and current situation in Turkey). Atatürk Univ. J. Agric. Fac. 2018, 49, 67–78. [Google Scholar]
- Lipper, L.; McCarthy, N.; Zilberman, D.; Asfaw, S.; Branca, G. Climate Smart Agriculture: Building Resilience to Climate Change; FAO: Rome, Italy; Springer Nature: Cham, Switzerland, 2018. [Google Scholar]
- Zhang, J.Y.; Li, X.M.; Lin, H.X.; Chong, K. Crop improvement through temperature resilience. Annu. Rev. Plant Biol. 2019, 70, 753–780. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Wang, J.W.; Li, J.; Han, B. Designing future crops: Challenges and strategies for sustainable agriculture. Plant J. 2021, 105, 1165–1178. [Google Scholar] [CrossRef] [PubMed]
- Corwin, D.L. Climate change impacts on soil salinity in agricultural areas. Eur. J. Soil Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- FAO. The Ten Elements of Agroecology, Guiding the Transition to Sustainable Food and Agricultural Systems. Forty-First Session; FAO: Rome, Italy, 2019. [Google Scholar]
- Khanal, U.; Wilson, C.; Lee, B.L.; Hoang, V.N.; Managi, S. Influence of payment modes on farmers’ contribution to climate change adaptation: Understanding differences using a choice experiment in Nepal. Sustain. Sci. 2019, 14, 1027–1040. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Mbow, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.T.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T.; et al. Climate change responses benefit from a global food system approach. Nat. Food 2020, 1, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Sambell, R.; Andrew, L.; Godrich, S.; Wolfgang, J.; Vandenbroeck, D.; Stubley, K.; Rose, N.; Newman, L.; Horwitz, P.; Devine, A. Local challenges and successes associated with transitioning to sustainable food system practices for a West Australian context: Multisector stakeholder perceptions. Int. J. Environ. Res. Public Health 2019, 16, 2051. [Google Scholar] [CrossRef]
- Pereira, J.C. Environmental issues and international relations, a new global (dis) order-the role of International relations in promoting a concerted international system. Rev. Bras. Polít. Int. 2015, 58, 191–209. [Google Scholar] [CrossRef]
- John, D.A.; Babu, G.R. Lessons from the aftermaths of green revolution on food system and health. Front. Sustain. Food Syst. 2021, 5, 644559. [Google Scholar] [CrossRef]
- Lucertini, G.; Di Giustino, G. Urban and peri-urban agriculture as a tool for food security and climate change mitigation and adaptation: The case of mestre. Sustainability 2021, 13, 5999. [Google Scholar] [CrossRef]
- Fantin, A. Urban and peri-urban agriculture as a strategy for creating more sustainable and resilient urban food systems and facing socio-environmental emergencies. Agroecol. Sustain. Food Syst. 2023, 47, 47–71. [Google Scholar] [CrossRef]
- Zimmerer, K.S.; Bell, M.G.; Chirisa, I.; Duvall, C.S.; Egerer, M.; Hung, P.Y.; Lerner, A.M.; Shackleton, C.; Ward, J.D.; Yacamán Ochoa, C. Grand challenges in urban agriculture: Ecological and social approaches to transformative sustainability. Front. Sustain. Food Syst. 2021, 5, 668561. [Google Scholar] [CrossRef]
- Vandermeer, J.; Aga, A.; Allgeier, J.; Badgley, C.; Baucom, R.; Blesh, J.; Shapiro, L.F.; Jones, A.D.; Hoey, L.; Jain, M.; et al. Feeding prometheus: An interdisciplinary approach for solving the global food crisis. Front. Sustain. Food Syst. 2018, 2, 39. [Google Scholar] [CrossRef]
- Cappelli, S.L.; Domeignoz-Horta, L.A.; Loaiza, V.; Laine, A.L. Plant biodiversity promotes sustainable agriculture directly and via belowground effects. Trends Plant Sci. 2022, 27, 674–687. [Google Scholar] [CrossRef]
- Tribaldos, T.; Kortetmäki, T. Just transition principles and criteria for food systems and beyond. Environ. Innov. Soc. Transit. 2022, 43, 244–256. [Google Scholar] [CrossRef]
- El Bilali, H. Innovation-sustainability nexus in agriculture transition: Case of agroecology. Open Agric. 2019, 4, 1–16. [Google Scholar] [CrossRef]
- Ramankutty, N.; Dowlatabadi, H. Beyond productivism versus agroecology: Lessons for sustainable food systems from Lovins’ soft path energy policies. Environ. Res. Lett. 2021, 16, 091003. [Google Scholar] [CrossRef]
- Turan, M.; Erenler, S.; Ekinci, M.; Yıldırım, E.; Argin, S. Intercropping of cauliflower with lettuce is more effective for sustainable fertilizer management and minimizing environmental risks. Sustainability 2022, 14, 7874. [Google Scholar] [CrossRef]
- Frison, E.A.; Cherfas, J.; Hodgkin, T. Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 2011, 3, 238–253. [Google Scholar] [CrossRef]
- Stefan, L.; Hartmann, M.; Engbersen, N.; Six, J.; Schöb, C. Positive effects of crop diversity on productivity driven by changes in soil microbial composition. Front. Microbiol. 2021, 12, 660749. [Google Scholar] [CrossRef] [PubMed]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef]
- Almond, R.E.A.; Grooten, M.; Petersen, T. (Eds.) Living Planet Report 2020: Bending the Curve of Biodiversity Loss; WWF: Gland, Switzerland, 2020; pp. 1–164. [Google Scholar]
- Cook, S.; Jackson, E.L.; Fisher, M.J.; Baker, D.; Diepeveen, D. Embedding digital agriculture into sustainable Australian food systems: Pathways and pitfalls to value creation. Int. J. Agric. Sustain. 2022, 20, 346–367. [Google Scholar] [CrossRef]
- Benton, T.G.; Bieg, C.; Harwatt, H.; Pudasaini, R.; Wellesley, L. Food System Impacts on Biodiversity Loss: Three Levers for Food System Transformation in Support of Nature; The Royal Institute of International Affairs, Chatham House: London, UK, 2021; pp. 1–71. [Google Scholar]
- Peltonen-Sainio, P.; Jauhiainen, L. Unexploited potential to diversify monotonous crop sequence at high latitudes. Agric. Syst. 2019, 174, 73–82. [Google Scholar] [CrossRef]
- Renard, D.; Tilman, D. National food production stabilized by crop diversity. Nature 2019, 571, 257–262. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Pérez-Méndez, N. Positive outcomes between crop diversity and agricultural employment. Ecol. Econ. 2019, 164, 106358. [Google Scholar] [CrossRef]
- Bowles, T.M.; Mooshammer, M.; Socolar, Y.; Calderon, F.; Cavigelli, M.A.; Culman, S.W.; Deen, W.; Drury, C.F.; Garcia y Garcia, A.; Gaudin, A.C.M.; et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2020, 2, 284–293. [Google Scholar] [CrossRef]
- Isbell, F.; Adler, P.R.; Eisenhauer, N.; Fornara, D.; Kimmel, K.; Kremen, C.; Letourneau, D.K.; Liebman, M.; Polley, H.W.; Quijas, S.; et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 2017, 105, 871–879. [Google Scholar] [CrossRef]
- van der Ploeg, J.D.; Barjolle, D.; Bruil, J.; Brunori, G.; Madureira, L.M.C.; Dessein, J.; Drąg, Z.; Fink-Kessler, A.; Gasselin, P.; Gonzalez de Molina, M.; et al. The economic potential of agroecology: Empirical evidence from Europe. J. Rural Stud. 2019, 71, 46–61. [Google Scholar] [CrossRef]
- Muchane, M.N.; Sileshi, G.W.; Gripenberg, S.; Jonsson, M.; Pumariño, L.; Barrios, E. Agroforestry boosts soil health in the humid and subhumid tropics: A meta-analysis. Agric. Ecosyst. Environ. 2020, 295, 106899. [Google Scholar] [CrossRef]
- Tamburini, G.; Bommarco, R.; Wanger, T.C.; Kremen, C.; van der Heijden, M.G.A.; Liebman, M.; Hallin, S. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 2020, 6, eaba1715. [Google Scholar] [CrossRef]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef]
- Raseduzzaman, M.; Jensen, E.S. Does intercropping enhance yield stability in arable crop production? A meta-analysis. Eur. J. Agron. 2017, 91, 25–33. [Google Scholar] [CrossRef]
- Frison, E.; Clément, C. The potential of diversified agroecological systems to deliver healthy outcomes: Making the link between agriculture, food systems & health. Food Policy 2020, 96, 101851. [Google Scholar]
- van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. Camb. Philos. Soc. 2019, 94, 1220–1245. [Google Scholar] [CrossRef] [PubMed]
- Francaviglia, R.; Álvaro-Fuentes, J.; Di Bene, C.; Gai, L.; Regina, K.; Turtola, E. Diversification and management practices in selected European regions. A data analysis of arable crops production. Agronomy 2020, 10, 297. [Google Scholar]
- Beillouin, D.; Ben-Ari, T.; Makowski, D. Evidence map of crop diversification strategies at the global scale. Environ. Res. Lett. 2019, 14, 123001. [Google Scholar] [CrossRef]
- Zonneveld, M.; Turmel, M.S.; Hellin, J. Decision-making to diversify farm systems for climate change adaptation. Front. Sustain. Food Syst. 2020, 4, 32. [Google Scholar] [CrossRef]
- Jones, S.K.; Sánchez, A.C.; Juventia, S.D.; Estrada-Carmona, N. A global database of diversified farming effects on biodiversity and yield. Sci. Data 2021, 8, 212. [Google Scholar] [CrossRef] [PubMed]
- Stomph, T.J.; Dordas, C.; Baranger, A.; de Rijk, J.; Dong, B.; Evers, J.; Gu, C.F.; Li, L.; Simon, J.; Jensen, E.S.; et al. Designing intercrops for high yield, yield stability and efcient use of resources: Are there principles? Adv. Agron. 2020, 160, 1–50. [Google Scholar]
- Altieri, M.A. Agroecology: The Science of Sustainable Agriculture; CRC Press: Boca Raton, FL, USA, 2018; pp. 1–433. [Google Scholar]
- Osei, E.; Jafri, S.H.; Gassman, P.W.; Saleh, A. Simulated ecosystem and farm-level economic impacts of conservation tillage in a Northeastern Iowa County. Agriculture 2023, 13, 891. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Alletto, L.; Cong, W.F.; Dayoub, E.; Maury, P.; Plaza-Bonilla, D.; Reckling, M.; Saia, S.; Soltani, E.; Tison, G.; et al. Relay cropping for sustainable intensification of agriculture across temperate regions: Crop management challenges and future research priorities. Field Crops Res. 2023, 291, 108795. [Google Scholar] [CrossRef]
- Du, J.; Han, T.; Gai, J.; Yong, T.; Sun, X.; Wang, X.; Yang, F.; Liu, J.; Shu, K.; Liu, W.; et al. Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability. J. Integr. Agric. 2018, 17, 747–754. [Google Scholar] [CrossRef]
- Xu, Z.; Li, C.; Zhang, C.; Yu, Y.; van der Werf, W.; Zhang, F. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; a meta-analysis. Field Crops Res. 2020, 246, 107661. [Google Scholar] [CrossRef]
- Leoni, F.; Lazzaro, M.; Ruggeri, M.; Carlesi, S.; Meriggi, P.; Moonen, A.C. Relay intercropping can efficiently support weed management in cereal-based cropping systems when appropriate legume species are chosen. Agron. Sustain. Dev. 2022, 42, 75. [Google Scholar] [CrossRef]
- Karadağ, H.; Berk, Ü.; Aksüt, B. A part of sustainable agricultural sector: Biodynamic agriculture. Int. J. Agric. For. Life Sci. 2019, 3, 345–349. [Google Scholar]
- Beluhova-Uzunova, R.; Atanasov, D. Biodynamic agriculture-old traditions and modern practices. Trakia J. Sci. 2019, 17, 530–536. [Google Scholar] [CrossRef]
- Mugandani, R.; Mwadzingeni, L.; Mafongoya, P. Contribution of conservation agriculture to soil security. Sustainability 2021, 13, 9857. [Google Scholar] [CrossRef]
- Parihar, C.M.; Jat, S.L.; Singh, A.K.; Datta, A.; Parihar, M.D.; Varghese, E.; Bandyopadhyay, K.K.; Nayak, H.S.; Kuri, B.R.; Jat, M.L. Changes in carbon pools and biological activities of a sandy loam soil under medium-term conservation agriculture and diversified cropping systems. Eur. J. Soil Sci. 2018, 69, 902–912. [Google Scholar] [CrossRef]
- Jat, H.S.; Choudhary, M.; Datta, A.; Kakraliya, S.K.; McDonald, A.J.; Jat, M.L.; Sharma, P.C. Long-term conservation agriculture helps in the reclamation of sodic soils in major agri-food systems. Land Degrad. Dev. 2022, 33, 2423–2439. [Google Scholar] [CrossRef]
- Bonaudo, T.; Bendahan, A.B.; Sabatier, R.; Ryschawy, J.; Bellon, S.; Leger, F.; Magda, D.; Tichit, M. Agroecological principles for the redesign of integrated crop-livestock systems. Eur. J. Agron. 2014, 57, 43–51. [Google Scholar] [CrossRef]
- Kremen, C. Ecological intensification and diversification approaches to maintain biodiversity, ecosystem services and food production in a changing world. Emerg. Top. Life Sci. 2020, 4, 229–240. [Google Scholar]
- Ewing, P.M.; TerAvest, D.; Tu, X.; Snapp, S.S. Accessible, affordable, fine-scale estimates of soil carbon for sustainable management in sub-Saharan Africa. Soil Sci. Soc. Am. J. 2021, 85, 1814–1826. [Google Scholar] [CrossRef]
- Miles, A.; DeLonge, M.S.; Carlisle, L. Triggering a positive research and policy feedback cycle to support a transition to agroecology and sustainable food systems. Agroecol. Sustain. Food Syst. 2017, 41, 855–879. [Google Scholar] [CrossRef]
- Anderson, C.R.; Bruil, J.; Chappell, M.J.; Kiss, C.; Pimbert, M.P. From transition to domains of transformation: Getting to sustainable and just food systems through agroecology. Sustainability 2019, 11, 5272. [Google Scholar] [CrossRef]
- Boeraeve, F.; Dendoncker, N.; Cornélis, J.T.; Degrune, F.; Dufrêne, M. Contribution of agroecological farming systems to the delivery of ecosystem services. J. Environ. Manag. 2020, 260, 109576. [Google Scholar] [CrossRef]
- Cross, R.; Ampt, P. Exploring agroecological sustainability: Unearthing innovators and documenting a community of practice in Southeast Australia. Soc. Nat. Resour. 2017, 30, 585–600. [Google Scholar] [CrossRef]
- Lanka, S.V.; Khadaroo, I.; Böhm, S. Agroecology accounting: Biodiversity and sustainable livelihoods from the margins. Account. Audit. Account. J. 2017, 30, 1592–1613. [Google Scholar] [CrossRef]
- Santamaria-Guerra, J.; González, G.I. The contribution of agroecology to the persistence of family agriculture in Panama. Agroecol. Sustain. Food Syst. 2017, 41, 349–365. [Google Scholar] [CrossRef]
- González de Molina, M.; Lopez-Garcia, D. Principles for designing agroecology-based local (territorial) agri-food systems: A critical revision. Agroecol. Sustain. Food Syst. 2021, 45, 1050–1082. [Google Scholar] [CrossRef]
- Fanzo, J.; Bellows, A.L.; Spiker, M.L.; Thorne-Lyman, A.L.; Bloem, M.W. The importance of food systems and the environment for nutrition. Am. J. Clin. Nutr. 2021, 113, 7–16. [Google Scholar] [CrossRef]
- Mouratiadou, I.; Latka, C.; van der Hilst, F.; Müller, C.; Berges, R.; Bodirsky, B.L.; Ewert, F.; Faye, B.; Heckelei, T.; Hoffmann, M.; et al. Quantifying intensification of agriculture: The contribution of metrics and modelling. Ecol. Indic. 2021, 129, 107870. [Google Scholar] [CrossRef]
- Prosekov, A.Y.; Ivanova, S.A. Food security: The challenge of the present. Geoforum 2018, 91, 73–77. [Google Scholar] [CrossRef]
- Meyfroidt, P. Trade-offs between environment and livelihoods: Bridging the global land use and food security discussions. Glob. Food Sec. 2018, 16, 9–16. [Google Scholar] [CrossRef]
- Cassman, K.G.; Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 2020, 3, 262–268. [Google Scholar] [CrossRef]
- Xie, H.; Huang, Y.; Chen, Q.; Zhang, Y.; Wu, Q. Prospects for agricultural sustainable ıntensification: A review of research. Land 2019, 8, 157. [Google Scholar] [CrossRef]
- Diogo, V.; Helfenstein, J.; Mohr, F.; Varghese, V.; Debonne, N.; Levers, C.; Swart, R.; Sonderegger, G.; Nemecek, T.; Schader, C.; et al. Developing context-specific frameworks for integrated sustainability assessment of agricultural intensity change: An application for Europe. Environ. Sci. Policy 2022, 137, 128–142. [Google Scholar] [CrossRef]
- Pretty, J. Intensification for redesign and sustainable agricultural systems. Science 2018, 362, eeav0294. [Google Scholar] [CrossRef]
- Didarali, Z.; Gambiza, J. Permaculture: Challenges and benefits in improving rural livelihoods in South Africa and Zimbabwe. Sustainability 2019, 11, 2219. [Google Scholar] [CrossRef]
- Fiebrig, I.; Zikeli, S.; Bach, S.; Gruber, S. Perspectives on permaculture for commercial farming: Aspirations and realities. Org. Agric. 2020, 10, 379–394. [Google Scholar] [CrossRef]
- Schoolman, E.D. Do direct market farms use fewer agricultural chemicals? Evidence from the US census of agriculture. Renew. Agric. Food Syst. 2019, 34, 415–429. [Google Scholar] [CrossRef]
- Morseletto, P. Restorative and regenerative: Exploring the concepts in the circular economy. J. Ind. Ecol. 2020, 24, 763–773. [Google Scholar] [CrossRef]
- LaCanne, C.E.; Lundgren, J.G. Regenerative agriculture: Merging farming and natural resource conservation profitably. PeerJ. 2018, 6, e4428. [Google Scholar] [CrossRef]
- IFOAM. The Principles of Organic Agriculture; IFOAM—Organic International Head Office: Bonn, Germany, 2020. [Google Scholar]
- Çakmakçı, S.; Çakmakçı, R. Quality and nutritional parameters of food in agri-food production systems. Foods 2023, 12, 351. [Google Scholar] [CrossRef]
- Domeignoz-Horta, L.A.; Shinfuku, M.; Junier, P.; Poirier, S.; Verrecchia, E.; Sebag, D.; DeAngelis, K.M. Direct evidence for the role of microbial community composition in the formation of soil organic matter composition and persistence. ISME Commun. 2021, 1, 64. [Google Scholar] [CrossRef]
- Eyhorn, F.; Muller, A.; Reganold, J.P.; Frison, E.; Herren, H.R.; Luttikholt, L.; Mueller, A.; Sanders, J.; El-Hage Scialabba, N.; Seufert, V.; et al. Sustainability in global agriculture driven by organic farming. Nat. Sustain. 2019, 2, 253–255. [Google Scholar] [CrossRef]
- Coppola, G.; Costantini, M.; Orsi, L.; Facchinetti, D.; Santoro, F.; Pessina, D.; Bacenetti, J. A comparative cost-benefit analysis of conventional and organic hazelnuts production systems in center Italy. Agriculture 2020, 10, 409. [Google Scholar] [CrossRef]
- Meemken, E.M.; Qaim, M. Organic agriculture, food security, and the environment. Annu. Rev. Resour. Econ. 2018, 10, 39–63. [Google Scholar] [CrossRef]
- Çakmakçı, R.; Erdoğan, U. Organic Farming, 3rd ed.; Publishing Office of Atatürk University: Erzurum, Turkey, 2015. [Google Scholar]
- Guareschi, M.; Maccari, M.; Sciurano, J.P.; Arfini, F.; Pronti, A. A methodological approach to upscale toward an agroecology system in EU-LAFSs: The case of the Parma biodistrict. Sustainability 2020, 12, 5398. [Google Scholar] [CrossRef]
- Goel, R.; Debbarma, P.; Kumari, P.; Suyal, D.C.; Kumar, S.; Mahapatra, B.S. Assessment of soil chemical quality, soil microbial population and plant growth parameters under organic and conventional rice-wheat cropping system. Agric. Res. 2021, 10, 193–204. [Google Scholar] [CrossRef]
- Carrilloa, C.; Wilches-Pérez, D.; Hallmann, E.; Kazimierczak, R.; Rembiałkowska, E. Organic versus conventional beetroot. Bioactive compounds and antioxidant properties. LWT-Food Sci. Technol. 2019, 116, 108552. [Google Scholar] [CrossRef]
- Hallmann, E.; Marszałek, K.; Lipowski, J.; Jasinska, U.; Kazimierczak, R.; Średnicka-Tober, D.; Rembiałkowska, E. Polyphenols and carotenoids in pickled bell pepper from organic and conventional production. Food Chem. 2019, 278, 254–260. [Google Scholar] [CrossRef]
- Kopczyńska, K.; Kazimierczak, R.; Średnicka-Tober, D.; Barański, M.; Wyszyński, Z.; Kucińska, K.; Perzanowska, A.; Szacki, P.; Rembiałkowska, E.; Hallmann, E. The profile of selected antioxidants in two courgette varieties from organic and conventional production. Antioxidants 2020, 9, 404. [Google Scholar] [CrossRef] [PubMed]
- Rempelos, L.; Baranski, M.; Wang, J.; Adams, T.N.; Adebusuyi, K.; Beckman, J.J.; Brockbank, C.J.; Douglas, B.S.; Feng, T.; Greenway, J.D.; et al. Integrated soil and crop management in organic agriculture: A logical framework to ensure food quality and human health? Agronomy 2021, 11, 2494. [Google Scholar] [CrossRef]
- Çakmakçı, R. Effects of organic versus conventional management on bacterial population and pH in tea orchards soils. In Proceedings of the 5th International Eurasian Congress on Natural Nutrition, Healthy Life & Sport, Ankara, Turkey, 2–6 October 2019; Karaman, M.R., Erdogan Orhan, I., Zorba, E., Konar, N., Eds.; Natural: Ankara, Turkey, 2019; pp. 231–239. [Google Scholar]
- Wesołowska, S.; Futa, B.; Myszura, M.; Kobyłka, A. Residual effects of different cropping systems on physicochemical properties and the activity of phosphatases of soil. Agriculture 2022, 12, 693. [Google Scholar] [CrossRef]
- Boone, L.; Roldán-Ruiz, I.; Van linden, V.; Muylle, H.; Dewulf, J. Environmental sustainability of conventional and organic farming: Accounting for ecosystem services in life cycle assessment. Sci. Total Environ. 2019, 695, 133841. [Google Scholar] [CrossRef]
- Thompson, B.; Barnes, A.P.; Toma, L. Increasing the adoption intensity of sustainable agricultural practices in Europe: Farm and practice level insights. J. Environ. Manag. 2022, 320, 115663. [Google Scholar] [CrossRef]
- Waldron, A.; Garrity, D.; Malhi, Y.; Girardin, C.; Miller, D.C.; Seddon, N. Agroforestry can enhance food security while meeting other sustainable development goals. Trop. Conserv. Sci. 2017, 10, 1–6. [Google Scholar] [CrossRef]
- Castle, S.E.; Miller, D.C.; Merten, N.; Ordonez, P.J.; Baylis, K. Evidence for the impacts of agroforestry on ecosystem services and human well-being in high-income countries: A systematic map. Environ. Evid. 2022, 11, 10. [Google Scholar] [CrossRef]
- Salimath, S.K.; Deepthi Dechamma, N.L.; Clara Manasa, P.A.; Maheshwarappa, V.; Hegde, R.; Ashwath, M.N. Agroforestry-alternative land management for sustainable development. J. Pharm. Innov. 2022, 11, 1936–1944. [Google Scholar]
- Rosati, A.; Borek, R.; Canali, S. Agroforestry and organic agriculture. Agrofor. Syst. 2021, 95, 805–821. [Google Scholar] [CrossRef]
- Blay-Palmer, A.; Santini, G.; Dubbeling, M.; Renting, H.; Taguchi, M.; Giordano, T. Validating the city region food systemapproach: Enacting inclusive, transformational city region food systems. Sustainability 2018, 10, 1680. [Google Scholar] [CrossRef]
- Cirone, F.; Petruzzelli, M.; De Menna, F.; Samoggia, A.; Buscaroli, E.; Durante, E.; Orsini, F.; Rufí-Salís, M.; Tonini, P.; Xavier Gabarrell Durany, X.G.; et al. A sustainability scoring system to assess food initiatives in city regions. Sustain. Prod. Consum. 2023, 36, 88–99. [Google Scholar] [CrossRef]
- FAO; Rikolto; RUAF. Urban and Peri-Urban Agriculture Sourcebook—From Production to Food Systems; FAO: Rome, Italy; Rikolto: Leuven, Belgium, 2022. [Google Scholar]
- Valencia, A.; Qiu, J.; Chang, N.B. Integrating sustainability indicators and governance structures by clustering analysis and multicriteria decision making for an urban agriculture network. Ecol. Indic. 2022, 142, 109237. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Shang, J.; Yasmeen, S.; Wattoo, M.U.; Nasrullah, M.; Alam, Q. Urban agriculture can transform the sustainable food security for urban dwellers in Pakistan. GeoJournal 2021, 86, 2419–2433. [Google Scholar] [CrossRef]
- De la Sota, C.; Ruffato-Ferreira, V.J.; Ruiz-García, L.; Alvarez, S. Urban green infrastructure as a strategy of climate change mitigation. A case study in northern Spain. Urban For. Urban Green. 2019, 40, 145–151. [Google Scholar] [CrossRef]
- Pulighe, G.; Lupia, F. Food first: COVID-19 outbreak and cities lockdown a booster for a wider vision on urban agriculture. Sustainability 2020, 12, 5012. [Google Scholar] [CrossRef]
- Valente de Macedo, L.S.; Barda Picavet, M.E.; Puppim de Oliveira, J.A.; Shih, W.Y. Urban green and blue infrastructure: A critical analysis of research on developing countries. J. Clean. Prod. 2021, 313, 127898. [Google Scholar] [CrossRef]
- Hume, I.V.; Summers, D.M.; Cavagnaro, T.R. Self-sufficiency through urban agriculture: Nice idea or plausible reality? Sustain. Cities Soc. 2021, 68, 102770. [Google Scholar] [CrossRef]
- Dubbeling, M.; van Veenhuizen, R.; Halliday, J. Urban agriculture as a climate change and disaster risk reduction strategy. Field Actions Sci. Rep. 2019, 20, 31–39. [Google Scholar]
- Longato, D.; Lucertini, G.; Dalla Fontana, M.; Musco, F. Including urban metabolism principles in decision-making: A methodology for planning waste and resource management. Sustainability 2019, 11, 2101. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; Buralli, R.J.; Ranieri, G.R.; Hearn, A.H.; Williams, C.; Mauad, T. Building knowledge in urban agriculture: The challenges of local food production in São Paulo and Melbourne. Environ. Dev. Sustain. 2021, 23, 2785–2796. [Google Scholar] [CrossRef]
- Maragno, D.; Fontana, M.D.; Musco, F. Mapping heat stress vulnerability and risk assessment at the neighborhood scale to drive urban adaptation planning. Sustainability 2020, 12, 1056. [Google Scholar] [CrossRef]
- Pulighe, G.; Lupia, F. Multitemporal geospatial evaluation of urban agriculture and (non)-sustainable food self-provisioningin Milan, Italy. Sustainability 2019, 11, 1846. [Google Scholar] [CrossRef]
- Khumalo, N.Z.; Sibanda, M. Does urban and peri-urban agriculture contribute to household food security? An assessment of the food security status of households in Tongaat, eThekwini Municipality. Sustainability 2019, 11, 1082. [Google Scholar] [CrossRef]
- Zasada, I.; Schmutz, U.; Wascher, D.; Kneafsey, M.; Corsi, S.; Mazzocchi, C.; Monaco, F.; Boyce, P.; Doernberg, A.; Sali, G.; et al. Food beyond the city-analysing foodsheds and self-sufficiency for different food system scenarios in European metropolitan regions. City Cult. Soc. 2019, 16, 25–35. [Google Scholar] [CrossRef]
- Pollard, G.; Roetman, P.; Ward, J.; Chiera, B.; Mantzioris, E. Beyond productivity: Considering the health, social value and happiness of home and community food gardens. Urban Sci. 2018, 2, 97. [Google Scholar] [CrossRef]
- Trendov, N.M. Comparative study on the motivations that drive urban community gardens in Central Eastern Europe. Ann. Agrarian Sci. 2018, 16, 85–89. [Google Scholar] [CrossRef]
- Egerer, M.; Cohen, H. Urban Agroecology: Interdisciplinary Research and Future Directions; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Shimpo, N.; Wesener, A.; McWilliam, W. How community gardens may contribute to community resilience following an earthquake. Urban For. Urban Green. 2019, 38, 124–132. [Google Scholar] [CrossRef]
- Slater, T.; Birchall, S.J. Growing resilient: The potential of urban agriculture for increasing food security and improving earthquake recovery. Cities 2022, 131, 103930. [Google Scholar] [CrossRef]
- Zasada, I.; Weltin, M.; Zoll, F.; Benninger, S.L. Home gardening practice in Pune (India), the role of communities, urban environment and the contribution to urban sustainability. Urban Ecosyst. 2020, 23, 403–417. [Google Scholar] [CrossRef]
- Sioen, G.B.; Sekiyama, M.; Terada, T.; Yokohari, M. Postdisaster food and nutrition from urban agriculture: A self-sufficiency analysis of Nerima Ward, Tokyo. Int. J. Environ. Res. Public Health 2017, 14, 748. [Google Scholar] [CrossRef]
- Yurday, İ.; Ceren Yağcı, C.; İşcan, F. Turkey’s urban agriculture opportunities and peri urban agriculture’s relationship with Law No. 6360. Turk. J. Land Manag. 2021, 3, 87–93. [Google Scholar] [CrossRef]
- Wesener, A.; Fox-Kämper, R.; Sondermann, M.; Münderlein, D. Placemaking in action: Factors that support or obstruct the development of urban community gardens. Sustainability 2020, 12, 657. [Google Scholar] [CrossRef]
- Chang, M.; Morel, K. Reconciling economic viability and socioecological aspirations in London urban microfarms. Agron. Sustain. Dev. 2018, 38, 9. [Google Scholar] [CrossRef]
- McDougall, R.; Kristiansen, P.; Rader, R. Small-scale urban agriculture results in high yields but requires judicious management of inputs to achieve sustainability. Proc. Natl. Acad. Sci. USA 2019, 116, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Kirby, C.K.; Goralnik, L.; Hodbod, J.; Piso, Z.; Libarkin, J.C. Resilience characteristics of the urban agriculture system in Lansing, Michigan: Importance of support actors in local food systems. Urban Agric. Region. Food Syst. 2020, 5, e20003. [Google Scholar] [CrossRef]
- Erickson, B.; Fausti, S.W. The role of precision agriculture in food security. Agron. J. 2021, 113, 4455–4462. [Google Scholar] [CrossRef]
- Abbate, S.; Centobelli, P.; Cerchione, R. The digital and sustainable transition of the agri-food sector. Technol. Forecast. Soc. Chang. 2023, 187, 122222. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Stangherlin, I.D.C. Upcycled by product use in agri-food systems from a consumer perspective: A review of what we know, and what is missing. Technol. Forecast. Soc. Chang. 2021, 168, 120749. [Google Scholar] [CrossRef]
- Akyazi, T.; Goti, A.; Oyarbide, A.; Alberdi, E.; Bayon, F. A guide for the food industry to meet the future skills requirements emerging with industry 4.0. Foods 2020, 9, 492. [Google Scholar] [CrossRef]
- Trendov, N.K.; Varas, S.; Zeng, M. Digital Technologies in Agriculture and Rural Areas—Status Report; FAO: Rome, Italy, 2019; pp. 1–153. [Google Scholar]
- Clapp, J.; Ruder, S.L. Precision technologies for agriculture: Digital farming, gene-edited crops, and the politics of sustainability. Glob. Environ Polit. 2020, 20, 49–69. [Google Scholar] [CrossRef]
- Klerkx, L.; Rose, D. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Glob. Food Secur. 2020, 24, 100347. [Google Scholar] [CrossRef]
- Schreefel, L.; Schulte, R.P.O.; de Boer, I.J.M.; Pas Schrijver, A.; van Zanten, H.H.E. Regenerative agriculture-the soil is the base. Glob. Food Sec. 2020, 26, 100404. [Google Scholar] [CrossRef]
Sustainable Farming Approaches | Dimension/Strategic/Practices/Principles and/or Goals | References |
---|---|---|
Agriculture green development | Subsystems: Green crop production system/Integrated animal–crop production system/Rural environment and ecosystem services/Green food products and industry | [32] |
Sustainable plant production | Main principles: Economic development/Social inclusion/Environmental sustainability Systems approach: Sustainable seeds and varieties/Diversified farming systems/Minimal pesticide use/Water conservation/Nurturing soil health Innovations: Biotechnology and genetic engineering/Remote sensing and big data/New forms of fertilizers | [28] |
Sustainable agriculture | Main benefits: Enhancement of soil quality, fertility, and production, and amelioration of soil physicochemical characteristics/Improvement in plant physiological status and reduction in plant disease incidence/Increase in the abundance, functionality, and diversity of soil biota/Re-establishment of the trophic balance and increase in soil–plant compatibility/Preservation of natural resources, environmental protection | [33] |
Conservation agriculture | Minimizing soil disturbance (minimal or reduced tillage)/Maintaining soil cover (cultivation of cover crops and permanent organic cover over soils)/Managing crop rotation | [22] |
Regenerative agricultural practices | Objectives/Outcomes: Regenerate the systems/Enhance and improve soil health/Reduce environmental externalities/Increase biodiversity, yields, farm profitability, carbon sequestration, and crop health/Improve ecosystem health and resilience, soil carbon, soil fertility, and soil physical quality/Optimize resource management/Improve nutrient cycling/Improve the ecosystem/Alleviate climate change/Improve water quality, availability, percolation, and retention/Improve food nutritional quality and human health/Improve food security, safety and access, and economic prosperity/Improve the social and economic well-being/Reduce greenhouse gas emissions and waste | [34,35] |
Principles: Minimize or eliminate agrochemicals/Maintain permanent cover of the soil, ideally with living roots/Minimize soil disturbance/Maximize functional biodiversity/Adapt to context-specific design | [36,37] | |
Activities: Minimize external inputs/Use of manure and compost/Mixed farming/Minimize tillage/Crop rotation/Use of perennials/Other soil activities | [35] | |
Processes: Use cover crop, crop rotations, plant diversity, organic methods, organic fertilizers, and inputs/Restore natural habitats/Use ecological, natural principles/Focus on localism and regionality, and small-scale systems/Changes land preparation, fertility management, and land use | [34] | |
Permaculture | Improve soil and water quality/Integrated land and pest management/Involved crop rotation/Diversify ecosystems | [14] |
Sustainable intensification | Redesign: Producing more per unit of input/Preserving essential ecosystem services/Resilience to shocks and stresses caused by climate change/Integrated pest management/Agroecological system and habitat/Redesign/Conservation agriculture/Integrated crop and biodiversity redesign/Pasture and forage redesign/Trees in agricultural systems/Irrigation water management/Intensive small and patch systems Practices: Drawing from integrated approaches/Agroecology/Organic farming/Precision farming/Urban farming/Genetic improvement methods | [36,38] |
Ecological intensification | Goals: Biodiversity conservation/Improved soil fertility management/Reduced pest and disease infestations/Farming system resilience Practices: Mixed cropping systems, crop rotation, cover crops, and mulch-based cropping systems/Conservation tillage/Integrated pest management/Improved fertilizer and nutrient management/Biodiversity preservation and promotion of positive allelopathic effect | [39] |
Climate-smart agriculture | Goals: Increasing agricultural productivity, incomes, and food security sustainably/Adapting and building resilience to climate change/Reducing and/or removing greenhouse gases emissions/Food security and preserve natural resources | [7,31] |
Adaptation and mitigation actions: Use of less pollution and energetically efficient machinery/Investment in the improvement in irrigation infrastructure/Change in crop/Zero-tillage management/Introduce improved and resistant seed/Organic agriculture/Adaptation of the sowing calendar/Use of renewable energy | [40] | |
Principles of agroecology | Recycling/Input reduction/Soil health/Animal health/Biodiversity/Synergies/Economic diversification/Cocreation of knowledge/Social value and diets/Fairness/Connectivity/Land and natural resource governance/Participation | [41,42] |
Direction and principles of more sustainable agroecosystems | Use of inputs such as water and nutrients efficiently/Keep soil covered throughout the year/Select species and varieties well suited to the site and to conditions/Reduce tillage in a manner consistent with effective weed control/Diversify farming enterprise to spread agronomic and economic risk/Rotate crops to enhance yields and facilitate pest management/Diversify crop and cultural practices to enhance the biological and economic stability of the farm/Manage soil appropriately and use cover crops, composts, mulches, and green and/or animal manure to build soil quality and fertility/Protect water quality/Develop ecologically based pest management programs/Integrate crop and livestock production/Increase energy efficiency in production and food distribution/Maintain profitability/Take into account farmers’ goals and lifestyle choices | [5,43] |
Basic agroecological strategies | Increase in planned and associated biodiversity (functional agrobiodiversity)/Prevention and control of pests and diseases (natural control and crop diversification)/Restore soil fertility and biological activity (regenerative soil management)/Restoration of natural resources (minimize losses of energy, water, and nutrients) | [18,44,45] |
Ten elements of agroecology for the transformation of agriculture and food systems | Diversity/Cocreation and sharing of knowledge/Synergies/Efficiency/Recycling/Resilience/Human and social values/Culture and food traditions/Responsible governance/Circular and solidarity economy | [46,47] |
Nature-based solutions | Resilient food production/Mitigating climate change/Enhancing nature and biodiversity | [48] |
Reforestation/Targeted land protection/Land use change from farmland to pastureland/Riparian buffer strips/Aquifer recharge/Reconnecting rivers to floodplains/Establishing flood bypasses/Wetlands restoration/Conservation/Construction of artificial wetlands/Ponds and basins/Forestry best management practices | [49] | |
Decision support systems | Farmers’ decision making about adopting agroecology/Impact assessment of the applied methods/Standardization and regulation of efficient approaches/Communication between farmers and other actors/Track market trends | [18,50] |
Mitigation strategies in the agro-food sector | Environmental: Agro-food waste management and efficient use of waste/Reduction in climate change, ozone depletion, and greenhouse gas emissions/Energy production as a strategy to reduce the environmental load/Improved organic fertilizer management and environmental protection Economic: Environmental credits due to the production of electricity from a renewable source/Raw material management for biogas production | [51] |
Food systems transformation | Enable all people to benefit from nutritious and healthy food/Reflect sustainable agricultural production and food value chains/Mitigate climate change and build resilience/Encourage a renaissance of rural territories | [52] |
Sustainable development goals | Ensuring access to safe and nutritious food for all/Shifting to sustainable consumption patterns/Boosting nature-positive production/Advancing equitable livelihoods/Building resilience to vulnerabilities/Shocks and stresses. | [53] |
Principles for sustainability in food and agriculture | Improving efficiency in the use of resources/Conserving, protecting, and enhancing natural ecosystems/Protecting and improving rural livelihoods, equity, and social well-being/Enhancing resilience of people, communities, and ecosystems/Promoting good governance of both natural and human systems | [22] |
Indicators of climate-resilient sustainable agriculture | Ecological: Crop and livestock biodiversity/Rainfall deviation/Soil organic carbon/Cropping intensity/Drought, flood, and forest frequency/Net irrigation area/Soil depth/Water productivity/Groundwater table/Fertilizer usage/Agriculture waste/Organic/Conservation agriculture/Fertilizer use efficiency/Soil drainage | [54] |
Environmental: Integrated water, land, and pest management/Soil fertility management/Biodiversity/Plant rotation/Mixing of traditional and modern innovative methods/Ecological systems and environmental degradation Societal: Education and training facilities/Social involvement/Farmers’ knowledge and awareness/Food self-sufficiency/Food security and distribution/Participation in cooperative/Sharing knowledge and experience/Labor migration/Population density Economic: Net farm return/Land productivity/Target economic viability/Sufficiency of cash flow/Cost saving/Firms overall value/Advanced technology/Agricultural employment/Per capita food supply/Gross value added from crops and livestock | [54,55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çakmakçı, R.; Salık, M.A.; Çakmakçı, S. Assessment and Principles of Environmentally Sustainable Food and Agriculture Systems. Agriculture 2023, 13, 1073. https://doi.org/10.3390/agriculture13051073
Çakmakçı R, Salık MA, Çakmakçı S. Assessment and Principles of Environmentally Sustainable Food and Agriculture Systems. Agriculture. 2023; 13(5):1073. https://doi.org/10.3390/agriculture13051073
Chicago/Turabian StyleÇakmakçı, Ramazan, Mehmet Ali Salık, and Songül Çakmakçı. 2023. "Assessment and Principles of Environmentally Sustainable Food and Agriculture Systems" Agriculture 13, no. 5: 1073. https://doi.org/10.3390/agriculture13051073
APA StyleÇakmakçı, R., Salık, M. A., & Çakmakçı, S. (2023). Assessment and Principles of Environmentally Sustainable Food and Agriculture Systems. Agriculture, 13(5), 1073. https://doi.org/10.3390/agriculture13051073