Field Incubation Studies on Nutrient Mineralization of Bagasse on Spodosols and Histosols in Florida
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Bagasse Characteristics
2.3. Mesh Bag Technique and Experimental Design
2.4. Data Analysis
3. Results
3.1. Precipitation and Soil Temperature
3.2. Dry Matter Loss
3.3. Nutrient Release Patterns
3.3.1. Nitrogen
3.3.2. Phosphorus
3.3.3. Potassium
4. Discussion
4.1. Dry Matter Loss
4.2. Nutrient Release Patterns
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orndorff, S.G.; Lang, T.A.; Bhadha, J.H.; McCray, J.M.; Daroub, S.H. Sugarcane by-products used as soil amendments on a sandy soil: Effects on sugarcane crop nutrition and yield. J. Plant Nutr. 2018, 41, 928–942. [Google Scholar] [CrossRef]
- Vanweelden, M.; Swanson, S.; Davidson, W.; Baltazar, M.; Rice, R. Sugarcane Variety Census, Florida. Sugar J. 2021, 84, 6–15. [Google Scholar]
- McCray, J.M.; Sandhu, H.S.; Rice, R.W.; Odero, D.C. Nutrient Requirements for Sugarcane Production on Florida Muck Soils; IFAS EDIS Publication # SS-AGR-226; University of Florida: Gainesville, FL, USA, 2002; Available online: https://edis.ifas.ufl.edu/publication/SC026 (accessed on 16 January 2023).
- McCray, J.M.; Powell, G. Sugarcane yield response to potassium on a Florida histosol. J. Am. Soc. Sugar Cane Technol. 2016, 36, 9–18. [Google Scholar]
- McCray, J.M.; Ji, S.; Powell, G. Sugarcane yield response to potassium fertilization as related to extractable soil potassium on Florida Histosols. Agron. J. 2017, 109, 2243–2252. [Google Scholar] [CrossRef]
- Bhadha, J.H.; Xu, N.; Khatiwada, R.; Swanson, S.; LaBorde, C. Bagasse: A Potential Organic Soil Amendment Used in Sugarcane Production; IFAS EDIS Publication # SL-477; University of Florida: Gainesville, FL, USA, 2020; Available online: https://edis.ifas.ufl.edu/ss690 (accessed on 16 January 2023).
- Dotaniya, M.L.; Datta, S.C.; Biswas, D.R.; Dotaniya, C.K.; Meena, B.L.; Rajendiran, S.; Regar, K.L.; Lata, M. Use of sugarcane industrial by-products for improving sugarcane productivity and soil health. Int. J. Recycl. Org. Waste Agric. 2016, 5, 185–194. [Google Scholar] [CrossRef]
- Xu, N.; Bhadha, J.H.; Rabbany, A.; Swanson, S.; McCray, J.M.; Li, Y.C.; Strauss, S.L.; Mylavarapu, R. Crop nutrition and yield response of bagasse application on sugarcane grown on a mineral soil. Agronomy 2021, 11, 1526. [Google Scholar] [CrossRef]
- Xu, N.; Bhadha, J.H.; Rabbany, A.; Swanson, S.; McCray, J.M.; Li, Y.C.; Strauss, S.L.; Mylavarapu, R. Sugarcane bagasse amendment mitigates nutrient leaching from a mineral soil under tropical conditions. Pedosphere 2022, 32, 876–883. [Google Scholar] [CrossRef]
- Ansong Omari, R.; Bellingrath-Kimura, D.S.; Fujii, Y.; Sarkodee-Addo, E.; Appiah Sarpong, K.; Oikawa, Y. Nitrogen mineralization and microbial biomass dynamics in different tropical soils amended with contrasting organic resources. Soil Syst. 2018, 2, 63. [Google Scholar] [CrossRef]
- Wienhold, B.J. Comparison of laboratory methods and an in situ method for estimating nitrogen mineralization in an irrigated silt-loam soil. Commun. Soil Sci. Plant Anal. 2007, 38, 1721–1732. [Google Scholar] [CrossRef]
- Hanselman, T.A.; Graetz, D.A.; Obreza, T.A. A comparison of in situ methods for measuring net nitrogen mineralization rates of organic soil amendments. J. Environ. Qual. 2004, 33, 1098–1105. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Gough, L. Litter decomposition in moist acidic and non-acidic tundra with different glacial histories. Oecologia 2004, 140, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Jahanzad, E.; Barker, A.V.; Hashemi, M.; Eaton, T.; Sadeghpour, A.; Weis, S.A. Nitrogen release dynamics and decomposition of buried and surface cover crop residues. Agron. J. 2016, 108, 1735–1741. [Google Scholar] [CrossRef]
- Soon, Y.; Arshad, M. Comparison of the decomposition and N and P mineralization of canola, pea and wheat residues. Biol. Fertil. Soils 2002, 36, 10–17. [Google Scholar]
- Christensen, B.T. Wheat and barley straw decomposition under field conditions: Effect of soil type and plant cover on weight loss, nitrogen and potassium content. Soil Biol. Biochem. 1985, 17, 691–697. [Google Scholar] [CrossRef]
- Kurz-Besson, C.; Coûteaux, M.M.; Thiéry, J.M.; Berg, B.; Remacle, J. A comparison of litterbag and direct observation methods of Scots pine needle decomposition measurement. Soil Biol. Biochem. 2005, 37, 2315–2318. [Google Scholar] [CrossRef]
- Mylavarapu, R.; d’Angelo, W.; Wilkinson, N.; Moon, D. UF/IFAS Extension Soil Testing Laboratory (ESTL) Analytical Procedures and Training Manual: CIR1248/SS312, rev. 12/2014. EDIS 2014, 2014, 20. [Google Scholar] [CrossRef]
- Koenig, R.T.; Cochran, V.L. Decomposition and nitrogen mineralization from legume and non-legume crop residues in a subarctic agricultural soil. Biol. Fertil. Soils 1994, 17, 269–275. [Google Scholar] [CrossRef]
- Naik, S.K.; Maurya, S.; Mukherjee, D.; Singh, A.K.; Bhatt, B.P. Rates of decomposition and nutrient mineralization of leaf litter from different orchards under hot and dry sub-humid climate. Arch. Agron. Soil Sci. 2018, 64, 560–573. [Google Scholar] [CrossRef]
- Xie, Y. A meta-analysis of critique of litterbag method used in examining decomposition of leaf litters. J. Soils Sediments 2020, 20, 1881–1886. [Google Scholar] [CrossRef]
- Schnürer, J.; Clarholm, M.; Rosswall, T. Microbial biomass and activity in an agricultural soil with different organic matter contents. Soil Biol. Biochem. 1985, 17, 611–618. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Hill, P.W.; Jones, D.L. Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature. Plant Soil 2007, 290, 293–305. [Google Scholar] [CrossRef]
- Isaac, S.R.; Nair, M.A. Biodegradation of leaf litter in the warm humid tropics of Kerala, India. Soil Biol. Biochem. 2005, 37, 1656–1664. [Google Scholar] [CrossRef]
- Crawford, D.L.; Crawford, R.L. Microbial degradation of lignin. Enzyme Microb. Technol. 1980, 2, 11–22. [Google Scholar] [CrossRef]
- Garzon, J.; Vendramini, J.M.; Silveira, M.L.; Dubeux, J.C.; Liao, H.L.; Sollenberger, L.E.; Moriel, P.; Silva, H.M.; Gomes, V.C.; Ferreira, I.M.; et al. Residue management and genotype effect on sunn hemp organic matter and nitrogen decomposition. Agron. J. 2023, 115, 261–272. [Google Scholar] [CrossRef]
- Nourbakhsh, F.; Dick, R.P. Net nitrogen mineralization or immobilization potential in a residue-amended calcareous soil. Arid. Land Res. Manag. 2005, 19, 299–306. [Google Scholar] [CrossRef]
- Vigil, M.F.; Kissel, D.E. Equations for estimating the amount of nitrogen mineralized from crop residues. Soil Sci. Soc. Am. J. 1991, 55, 757–761. [Google Scholar] [CrossRef]
- Lupwayi, N.Z.; Clayton, G.W.; O’Donovan, J.T.; Harker, K.N.; Turkington, T.K.; Soon, Y.K. Phosphorus release during decomposition of crop residues under conventional and zero tillage. Soil Tillage Res. 2007, 95, 231–239. [Google Scholar] [CrossRef]
Properties | Value |
---|---|
MC (%) | 56.35 ± 3.02 |
OM (%) | 95.77 ± 0.44 |
Total C (%) | 33.91 |
Total N (%) | 0.51 |
C/N ratio | 65.88 |
Total P (g kg−1) | 0.38 ± 0.01 |
Total K (g kg−1) | 1.16 ± 0.05 |
Treatment | Exponential Regression Equation | R2 |
---|---|---|
Spodosols | ||
SB | y = 110.24e−0.008x | 0.94 |
SS | y = 95.916e−0.001x | 0.95 |
FB | y = 106.76e−0.007x | 0.95 |
FS | y = 97.03e−0.001x | 0.97 |
Histosols | ||
SB | y = 116.17e−0.01x | 0.97 |
SS | y = 96.94e−0.002x | 0.98 |
FB | y = 106.82e−0.012x | 0.96 |
FS | y = 94.891e−0.002x | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, N.; Amgain, N.R.; Rabbany, A.; McCray, J.M.; Li, Y.C.; Strauss, S.L.; Mylavarapu, R.; Bhadha, J.H. Field Incubation Studies on Nutrient Mineralization of Bagasse on Spodosols and Histosols in Florida. Agriculture 2023, 13, 975. https://doi.org/10.3390/agriculture13050975
Xu N, Amgain NR, Rabbany A, McCray JM, Li YC, Strauss SL, Mylavarapu R, Bhadha JH. Field Incubation Studies on Nutrient Mineralization of Bagasse on Spodosols and Histosols in Florida. Agriculture. 2023; 13(5):975. https://doi.org/10.3390/agriculture13050975
Chicago/Turabian StyleXu, Nan, Naba R. Amgain, Abul Rabbany, James M. McCray, Yuncong C. Li, Sarah L. Strauss, Rao Mylavarapu, and Jehangir H. Bhadha. 2023. "Field Incubation Studies on Nutrient Mineralization of Bagasse on Spodosols and Histosols in Florida" Agriculture 13, no. 5: 975. https://doi.org/10.3390/agriculture13050975
APA StyleXu, N., Amgain, N. R., Rabbany, A., McCray, J. M., Li, Y. C., Strauss, S. L., Mylavarapu, R., & Bhadha, J. H. (2023). Field Incubation Studies on Nutrient Mineralization of Bagasse on Spodosols and Histosols in Florida. Agriculture, 13(5), 975. https://doi.org/10.3390/agriculture13050975