Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,343)

Search Parameters:
Keywords = nutrient release

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10595 KiB  
Article
Dual Delivery of Cells and Bioactive Molecules for Wound Healing Applications
by Petras Winkler and Yong Mao
Molecules 2025, 30(7), 1577; https://doi.org/10.3390/molecules30071577 - 31 Mar 2025
Viewed by 62
Abstract
Chronic wounds not only cause significant patient morbidity but also impose a substantial economic burden on the healthcare system. The primary barriers to wound healing include a deficiency of key modulatory factors needed to progress beyond the stalled inflammatory phase and an increased [...] Read more.
Chronic wounds not only cause significant patient morbidity but also impose a substantial economic burden on the healthcare system. The primary barriers to wound healing include a deficiency of key modulatory factors needed to progress beyond the stalled inflammatory phase and an increased susceptibility to infections. While antimicrobial agents have traditionally been used to treat infections, stem cells have recently emerged as a promising therapy due to their regenerative properties, including the secretion of cytokines and immunomodulators that support wound healing. This study aims to develop an advanced dual-delivery system integrating stem cells and antibiotics. Stem cells have previously been delivered by encapsulation in gelatin methacrylate (GelMA) hydrogels. To explore a more effective delivery method, GelMA was processed into microparticles (MP). Compared to a bulk GelMA hydrogel (HG) encapsulation, GelMA MP supported greater cell growth and enhanced in vitro wound healing activity of human mesenchymal stem cells (hMSCs), likely due to a larger surface area for cell attachment and improved nutrient exchange. To incorporate antimicrobial properties, the broad-spectrum antibiotics penicillin/streptomycin (PS) were loaded into a bulk GelMA hydrogel, which was then cryo-milled into MPs to serve as carriers for hMSCs. To achieve a more sustained antibiotic release, gelatin nanoparticles (NP) were used as carriers for PS. PS was either incorporated during NP synthesis (NP+PS(S)) or absorbed into NP after synthesis (NP+PS(A)). MPs containing PS, NP+PS(S), or NP+PS(A) were tested for their cell carrier functions and antibacterial activities. The incorporation of PS did not compromise the cell-carrying function of MP configurations. The anti-S. aureus activity was detected in conditioned media from MPs for up to eight days—four days longer than from bulk HG containing PS. Notably, the presence of hMSCs prolonged the antimicrobial activity of MPs, suggesting a synergistic effect between stem cells and antibiotics. PS loaded via synthesis (NP+PS(S)) exhibited a delayed initial release, whereas PS loaded via absorption (NP+PS(A)) provided a more immediate release, with potential for sustained delivery. This study demonstrates the feasibility of a dual-delivery system integrating thera Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Their Applications)
18 pages, 3576 KiB  
Article
Effects of Nitrogen Application Strategies on Yield, Nitrogen Uptake and Leaching in Spring Maize Fields in Northwest China
by Ying Wang, Jingjing He, Zongyuan Gao, Ruliang Liu, Yu Hong, Fang Wang, Xinping Mao, Tianxiang Xu, Lina Zhou and Jun Yi
Plants 2025, 14(7), 1067; https://doi.org/10.3390/plants14071067 - 31 Mar 2025
Viewed by 119
Abstract
Nitrogen (N) is an essential nutrient for crop growth, as N fertilizer application regulates crop nitrogen uptake, affecting leaf photosynthetic rates, crop growth, and yield formation. However, both N deficiency and excess can reduce corn yields. Hence, optimizing the N fertilizer application strategy [...] Read more.
Nitrogen (N) is an essential nutrient for crop growth, as N fertilizer application regulates crop nitrogen uptake, affecting leaf photosynthetic rates, crop growth, and yield formation. However, both N deficiency and excess can reduce corn yields. Hence, optimizing the N fertilizer application strategy is crucial for crop production. In this study, a field plot trial with five N fertilization application strategies was conducted in the maize field from 2021 to 2022 in the Ningxia Yellow Irrigation District, Northwest China. These strategies contain zero N application rates (CK, 0 kg ha−1), the farmer practical N fertilizer application strategy (FP, 420 kg ha−1), the optimized N fertilizer application strategy (OPT, 360 kg ha−1), organic fertilizer and chemical fertilizer combination application (ON, 300 kg ha−1), and controlled-release N fertilizer and 33 urea application (CN, 270 kg ha−1). The maize yield and N balance under each treatment were investigated to propose the optimized N application strategy. The results showed that the CN treatment’s grain yield (15,672 kg ha−1) was the highest in both years, which was 109.97% and 8.92% higher than the CK and FP treatments, respectively. The apparent utilization rate and partial productivity of N fertilizer decreased with the increase in the N application rate. Also, the apparent utilization rate of N fertilizer in CN was 23.02%, 19.41%, and 13.02% higher than the FP, OPT, and ON, respectively. Applying controlled-release urea and organic fertilizers improved the physical and chemical properties of the soil, increased the organic matter content and soil fertility, and ultimately increased the spring maize yield. Meanwhile, the TN, NO3-N, and NH4+-N concentrations in leaching water significantly correlated with the N application rate. With the extension of the maize growth period, the concentrations of TN, NO3-N, and NH4+-N in leaching water gradually decreased. The N leaching amount in FP was the highest, while the CN was the lowest. The NO3-N is the primary N leaching form, accounting for 46.78~54.68% of the TN leaching amount. Compared with the CN, the ON significantly increased the inorganic N content in the 0–40 cm soil layer, and it reduced the residual inorganic N content below 40 cm soil depths compared with FP and OPT treatments. Considering the relatively high spring maize yield and N utilization efficiency, as well as the relatively low N leaching amount and soil inorganic N residues, the ON and CN treatments with 270–300 kg ha−1 N application rate were the optimized N application strategies in the spring maize field in the study area. Full article
(This article belongs to the Special Issue Water and Nitrogen Management in the Soil–Crop System (3rd Edition))
Show Figures

Figure 1

34 pages, 818 KiB  
Review
Unveiling the Multifaceted Roles of Root Exudates: Chemical Interactions, Allelopathy, and Agricultural Applications
by Alice Zambelli, Fabio Francesco Nocito and Fabrizio Araniti
Agronomy 2025, 15(4), 845; https://doi.org/10.3390/agronomy15040845 - 28 Mar 2025
Viewed by 67
Abstract
Root exudates, compounds secreted by plant roots, play a crucial role in plant–soil interactions and have significant agricultural implications. These substances influence nutrient availability, plant growth, and the surrounding rhizosphere. This review examines the composition, mechanisms, and importance of root exudates, categorizing them [...] Read more.
Root exudates, compounds secreted by plant roots, play a crucial role in plant–soil interactions and have significant agricultural implications. These substances influence nutrient availability, plant growth, and the surrounding rhizosphere. This review examines the composition, mechanisms, and importance of root exudates, categorizing them as diffusates, secretions, and excretions, each with specific release methods and functions. It highlights the allelopathic effects of root exudates, showing how plants use them to inhibit competitors through chemical signals and nutrient changes. Case studies on crops such as wheat and rice demonstrate the practical relevance of root exudates in agriculture. This review emphasizes the need to understand root exudates to improve sustainable farming and weed control strategies. Full article
(This article belongs to the Special Issue Advances in Agricultural Engineering for a Sustainable Tomorrow)
Show Figures

Figure 1

20 pages, 4213 KiB  
Article
Preparation of Phosphogypsum–Bentonite-Based Slow-Release Potassium Magnesium Sulfate Fertilizer
by Zhizhi Zhang, Chunxiao Han, Changyuan Tao, Xing Fan and Renlong Liu
Agriculture 2025, 15(7), 692; https://doi.org/10.3390/agriculture15070692 - 25 Mar 2025
Viewed by 166
Abstract
The application of slow-release fertilizers is essential for improving fertilizer utilization efficiency and promoting sustainable agricultural development. Unlike traditional single organic polymer-coated or inorganic-coated fertilizers, this study utilized biodegradable modified polyvinyl alcohol (PVA) as a binder and cheap, readily available phosphogypsum–bentonite as an [...] Read more.
The application of slow-release fertilizers is essential for improving fertilizer utilization efficiency and promoting sustainable agricultural development. Unlike traditional single organic polymer-coated or inorganic-coated fertilizers, this study utilized biodegradable modified polyvinyl alcohol (PVA) as a binder and cheap, readily available phosphogypsum–bentonite as an inorganic coating material to develop a novel slow-release potassium magnesium sulfate fertilizer (SRPMSF). This study initially examined the influence of SA dosage on PVA properties. XRD, FTIR, TGA, and water resistance analyses revealed that sodium alginate exhibits good compatibility with polyvinyl alcohol, enhancing its heat and water resistance. Ultimately, PVA–SA-2 (1.2% sodium alginate) was chosen as the optimal binder for SRPMSF production. Furthermore, this study investigated the impact of bentonite on the physical and slow-release properties of the SRPMSF by varying the phosphogypsum-to-bentonite ratio. This experiment included five treatment methods: the treatments consist of SRPMSF-1 (0 g bentonite), SRPMSF-2 (phosphogypsum/bentonite ratio of 4:1), SRPMSF-3 (3:2), SRPMSF-4 (2:3), and SRPMSF-5 (1:4). A control group (PMSF) was also included. The results indicated that, as the bentonite content increased, both the particle size and compressive strength of the coated slow-release fertilizer increased, with the SRPMSF particle sizes ranging from 3.00 to 4.50 mm. The compressive strength of the SRPMSF ranged from 20.85 to 43.78 N, meeting the requirements for industrial production. The soil column leaching method was employed to assess the nutrient release rate of the fertilizers. The experimental results indicated that, compared to the PMSF, the SRPMSF effectively regulated nutrient release. Pot experiments demonstrated that the SRPMSF significantly enhanced garlic seedling growth compared to the PMSF. In conclusion, a new type of slow-release fertilizer with good slow-release performance is prepared in this paper, which can improve the utilization rate of fertilizer and reduce the economic loss and is conducive to the sustainable development of agriculture. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

14 pages, 2670 KiB  
Article
Absence of Exogenous Glucose in the Perfusate During Kidney Hypothermic Machine Perfusion Does Not Affect Mitochondrial Function
by Dafni Efraimoglou, L. Annick van Furth, Albert Gerding, Barbara M. Bakker, Jan-Luuk Hillebrands, Henri G. D. Leuvenink and Leonie H. Venema
Transplantology 2025, 6(2), 8; https://doi.org/10.3390/transplantology6020008 - 22 Mar 2025
Viewed by 161
Abstract
Background: Optimizing organ preservation techniques is imperative in the face of donor kidney shortage and high waiting list mortality. Hypothermic machine perfusion (HMP) has emerged as an effective method to improve graft function post-transplantation, particularly for deceased donor kidneys, prone to ischemia reperfusion [...] Read more.
Background: Optimizing organ preservation techniques is imperative in the face of donor kidney shortage and high waiting list mortality. Hypothermic machine perfusion (HMP) has emerged as an effective method to improve graft function post-transplantation, particularly for deceased donor kidneys, prone to ischemia reperfusion injury (IRI). The perfusion solution includes glucose to support kidney metabolism; however, its effect on mitochondrial function remains unclear. The present study investigated the effect of glucose supplementation during 24 h of oxygenated HMP on mitochondrial function in porcine kidneys. Methods: After 30 min of warm ischemia, porcine slaughterhouse kidneys were preserved for 24 h using HMP with one of the following three solutions: the standard HMP preservation solution, University of Wisconsin machine perfusion (UW-MP) solution, which contains glucose; the solution used for static cold storage, University of Wisconsin cold storage (UW-CS) solution, which lacks glucose; or the UW-CS supplemented with 10 mmol/L glucose. Tissue and perfusate samples were collected before, during, and after perfusion for further analysis. Results: ATP production, mitochondrial respiration, and oxidative stress markers were not significantly different between groups. Glucose was released into the perfusion solution even from kidneys without exogenous glucose supplementation in the perfusate. Conclusions: These results suggest that kidney mitochondrial respiration does not depend on the presence of glucose in the HMP perfusion solution at the start of perfusion, underscoring the need for further exploration of nutrient supplementation and mitochondrial function in organ preservation strategies. Full article
(This article belongs to the Section Organ and Tissue Donation and Preservation)
Show Figures

Figure 1

20 pages, 5254 KiB  
Article
Biomimetic Modification of Waterborne Polymer Coating Using Bio-Wax for Enhancing Controlled Release Performance of Nutrient
by Lianjie Wan, Cong Ge, Fei Ma, Jianmin Zhou and Changwen Du
Polymers 2025, 17(7), 838; https://doi.org/10.3390/polym17070838 - 21 Mar 2025
Viewed by 195
Abstract
Waterborne polymer coated controlled release fertilizers (CRFs) are highly valued for their potential to enhance nitrogen use efficiency (NUE) and reduce fertilization labor costs. However, their application in crops with long growth periods, such as rice and maize, is limited by inadequate coating [...] Read more.
Waterborne polymer coated controlled release fertilizers (CRFs) are highly valued for their potential to enhance nitrogen use efficiency (NUE) and reduce fertilization labor costs. However, their application in crops with long growth periods, such as rice and maize, is limited by inadequate coating strength and suboptimal hydrophobicity. Inspired by the hydrophobic and anti-fouling structure of lotus leaf cuticles, this study biomimetically modified waterborne polyacrylate-coated urea (PACU) using natural bio-wax including rice bran wax (RBW), candelilla wax (CAW), bees wax (BW) and carnauba wax (CW), along with paraffin wax (PW) as a control. The modifications significantly extended nutrient release duration by 22 d compared to unmodified PACU, with CW providing the longest duration, followed by CAW, BW, RBW, and PW. Additionally, the modification of BW, CAW, and CW exhibited superior hydrophobicity and affinity to polyacrylate coatings, while the inferior hardness and toughness of PW compromised its controlled release performance. Field trials demonstrated that CW-modified CRFs effectively controlled nutrient release in rice and maize, resulting in a 7.2% increase in rice yield and a 37.9% increase in maize yield, as well as an 18.7% improvement in NUE compared to conventional fertilizers. These findings offered a novel approach for hydrophobic modification of waterborne polymer coatings, thereby enhancing the performance and applicability of waterborne polymer coated CRFs in long-season crops. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

14 pages, 3140 KiB  
Article
Enhancement of Biological Durability and Fire Safety in Wood Modified with Maleic Anhydride and Sodium Hypophosphite
by Injeong Kim, Lone Ross, Gry Alfredsen, Olov Karlsson, Elif Kaynak, Oisik Das, Dennis Jones, George I. Mantanis and Dick Sandberg
Forests 2025, 16(3), 526; https://doi.org/10.3390/f16030526 - 16 Mar 2025
Viewed by 99
Abstract
Scots pine (Pinus sylvestris L.) sapwood was modified using maleic anhydride (MA) and sodium hypophosphite (SHP) to improve its durability against wood-deteriorating fungi, mechanical strength, and fire retardancy (thermal stability). The modification significantly reduced mass loss caused by wood-decaying fungi (Trametes [...] Read more.
Scots pine (Pinus sylvestris L.) sapwood was modified using maleic anhydride (MA) and sodium hypophosphite (SHP) to improve its durability against wood-deteriorating fungi, mechanical strength, and fire retardancy (thermal stability). The modification significantly reduced mass loss caused by wood-decaying fungi (Trametes versicolor, Rhodonia placenta, and soft rot fungi) due to the formation of cross-links between wood, MA, and SHP, which limited the moisture uptake and altered the chemical structure of wood. On the other hand, the modification did not provide improved resistance to fungi growth on the wood surface, which indicated that the modification had little impact on the accessibility of nutrients on the surface. A bending test showed that the modulus of elasticity (MOE) was not affected by the treatment, whilst the modulus of rupture (MOR) decreased to half the value of untreated wood. Thermal resistance was improved, as demonstrated by micro-scale combustion calorimeter testing, where the total heat release was halved, and the residue percentage nearly doubled. These results indicate that phosphonate protects the modified wood via the formation of a protective char layer on the surface and the formation of radical moieties. Based on the results, wood modified with MA and SHP shows potential for possible use in outdoor, non-loadbearing structures. Full article
(This article belongs to the Special Issue Transformation of Wood After Processing and Modification)
Show Figures

Figure 1

17 pages, 3154 KiB  
Article
Effect of Postharvest Storage Temperature and Duration on Tomato Fruit Quality
by Xueou Li, Huofeng Huang, Lida Zhang and Lingxia Zhao
Foods 2025, 14(6), 1002; https://doi.org/10.3390/foods14061002 - 15 Mar 2025
Viewed by 413
Abstract
Tomato (Solanum lycopersicum), a leading vegetable crop of significant economic importance, is a valuable source of nutrients and minerals in the human diet. Consumer and breeder interest focuses extensively on tomato quality attributes, including appearance, texture, flavor, and nutritional value. While [...] Read more.
Tomato (Solanum lycopersicum), a leading vegetable crop of significant economic importance, is a valuable source of nutrients and minerals in the human diet. Consumer and breeder interest focuses extensively on tomato quality attributes, including appearance, texture, flavor, and nutritional value. While moderate low temperatures are generally beneficial for preserving tomato quality during transportation and storage, the precise effects of storage temperature on these qualities remain to be fully elucidated. This study investigated the changes in quality attributes of tomato (cv. Shangjiao No.2) fruit stored at different temperatures (4 °C, 14 °C, and 24 °C) for varying durations (0, 1, 5, 9, and 15 days postharvest, dph). Results showed that low temperatures (4 °C and 14 °C) were beneficial for maintaining fruit appearance and total soluble solids (TSS) content. Furthermore, 4 °C storage effectively delayed ascorbic acid (Vitamin C) loss. Storage at both 4 °C and 14 °C similarly and significantly reduced fruit softening and water loss rate (WLR). This reduction was associated with the temperature-regulated expression of cell wall-related genes, including SlCESA6, SlCEL2, SlEXP1, and SlPL. The activities of cell wall-degrading enzymes, such as polygalacturonase (PG), β-galactosidase (β-Gal), and cellulase, were also significantly inhibited at lower storage temperatures. Additionally, storage at 24 °C caused considerable damage to plastid ultrastructure. Although temperature had a minor effect on carotenoid, the reduction in carotenoid levels was less pronounced at 4 °C. While low-temperature storage suppressed the release of some aroma compounds, it also reduced the levels of undesirable volatiles. This study provides insights for optimizing storage temperature and duration to maintain tomato fruit quality. Full article
(This article belongs to the Special Issue Postharvest Storage and Preservation of Fruits and Vegetables)
Show Figures

Figure 1

18 pages, 1515 KiB  
Review
Recent Advances in Physicochemical Control and Potential Green Ecologic Strategies Related to the Management of Mold in Stored Grains
by Tianyu Sha, Yujie Lu, Peihuan He, Md Mehedi Hassan and Yehan Tong
Foods 2025, 14(6), 961; https://doi.org/10.3390/foods14060961 - 12 Mar 2025
Viewed by 200
Abstract
Grain serves as an essential cornerstone for sustaining life and social stability. However, during storage grain is often invaded by mold, which leads to mildew issues. This problem diminishes nutrient content and food quality and raises safety concerns, including toxin production, which can [...] Read more.
Grain serves as an essential cornerstone for sustaining life and social stability. However, during storage grain is often invaded by mold, which leads to mildew issues. This problem diminishes nutrient content and food quality and raises safety concerns, including toxin production, which can cause serious economic losses and catastrophic market stability and national food security conditions. Accordingly, implementing effective measures to prevent and control mold is crucial for ensuring grain storage safety. This paper analyzes the molds that affect grain during storage, discussing their varieties, environmental needs, and potential hazards. It also expounds on corresponding prevention and control measures, including physical methods, chemical approaches, innovative mold inhibitors derived from microbes and plants, and micro–nano prevention and control technology. These measures demonstrate significant mold suppression by destroying the cell structure of mold or inhibiting its physiological processes. In particular, micro–nano technology enables the effective embedding and controlled release of active ingredients. It can prolong the release duration and enhance antibacterial stability, thus achieving more effective control effects. Furthermore, it can be concluded that these strategies provide a theoretical foundation to enhance the safety and efficiency of grain storage. Additionally, they assist in more effectively addressing mold-related challenges while ensuring food security. Full article
Show Figures

Figure 1

16 pages, 4393 KiB  
Article
Seasonal Distribution of Nutrient Salts and Microbial Communities in the Pearl River Delta
by Zhiwei Huang, Jie Wang, Weijie Li, Aixiu Yang, Yupeng Mao, Yangliang Gu, Luping Zeng, Hongwei Du, Lei Shi and Huaiyang Fang
Water 2025, 17(6), 798; https://doi.org/10.3390/w17060798 - 10 Mar 2025
Viewed by 277
Abstract
The transformations of iron (Fe), phosphorus (P), and sulfide (S) have been previously investigated in many areas, but quantifying the effects of the seasons on nutrient transformations and bacterial community distributions is a major issue that requires urgent attention in areas with serious [...] Read more.
The transformations of iron (Fe), phosphorus (P), and sulfide (S) have been previously investigated in many areas, but quantifying the effects of the seasons on nutrient transformations and bacterial community distributions is a major issue that requires urgent attention in areas with serious anthropogenic disturbance. The authors used the diffusive gradients in thin films (DGTs) technique and 16S rRNA gene sequencing to determine the spatial heterogeneity in the nutrient distribution and bacterial community structure in the overlying water and sediment in the Pearl River Delta (PRD). Sampling campaigns were conducted in summer and winter. The results show that the nutrient salts exhibited greater differences in time than in space and there were higher water pollution levels in winter than in summer. During summer, the abundant non-point source pollution from the rainfall input provided a rich substrate for the bacteria in the water, leading to a strong competitiveness of the PAOs and nitrifying bacteria. Meanwhile, a high temperature was favorable for the exchange of elements at the SWI, with a greater release of P, Fe, and N, while, with the low temperatures and high DO and nutrient salts seen in winter, the SOB and denitrifying bacteria were active, which correctly indicated the high concentration of SO42− and NH4+-N in the water. The microbial diversity and abundance were also affected by the season, with a higher richness and diversity of the microbial communities in summer than in winter, and the high salinity and nutrient salt concentration had a significant inhibitory effect on the microorganisms. A Mantel test revealed that the spatiotemporal distribution patterns of the dominant bacteria were closely related to the TOC and DO levels and played an important role in the P, Fe, S, and N cycle. These observations are important for understanding the nutrient salt transformation and diffusion in the Pearl River Delta. Full article
Show Figures

Figure 1

14 pages, 2249 KiB  
Article
Comparative Assessment of the Impacts of Wildland–Urban Interface Fire Ash on Growth of the Diatom Thalassiosira weissflogii
by Talal Alshehri, Amar Yasser Jassim, Bo Cai, Tammi L. Richardson and Mohammed Baalousha
Nanomaterials 2025, 15(6), 422; https://doi.org/10.3390/nano15060422 - 9 Mar 2025
Viewed by 318
Abstract
Fires at the wildland–urban interface (WUI) result in the release of ash into the atmosphere that can be transported for long distances and deposited on land and in oceans. Wildfire ash has the potential to increase phytoplankton biomass in the open ocean by [...] Read more.
Fires at the wildland–urban interface (WUI) result in the release of ash into the atmosphere that can be transported for long distances and deposited on land and in oceans. Wildfire ash has the potential to increase phytoplankton biomass in the open ocean by providing both major nutrients and trace metals. However, fires that originate at the WUI contain potentially toxic concentrations of metals such as Ti, Cr, Cu, Pb, and Zn, especially in coastal oceans close to WUI fires, where ash deposition rates are high. Here, we investigated the impact of fire ash from different sources originating from vegetation, structures, and vehicles on growth of the diatom Thalassiosira weissflogii (T. weissflogii). The diatom was exposed to ash suspensions containing equimolar concentrations of 10 and 50 µM Fe. The concentration of potentially toxic metals (e.g., Ti, Cu, and Zn) in the exposure suspensions decreased following the order vehicle ash suspension > structural ash suspension > vegetation ash suspension. Growth rates (GR) of T. weissflogii were between 0.44 d−1 and 0.52 d−1 in the controls, and varied with ash types, following the order vegetation (GR = 0.40 d−1 to 0.48 d−1) > vehicle (GR = 0.06 d−1 to 0.46 d−1) > structure (GR = 0.02 d−1 to 0.31 d−1) ash. Two ash samples (A 131 and A136) completely inhibited the growth of T. weissflogii, possibly due to high Ti, Cu, and Zn concentrations in the form of (nano)particles. Overall, this study showed that structural and vehicle ash, with high concentrations of potentially toxic metals, significantly suppress the growth of T. weissflogii, whereas vegetation ash with high concentrations of Fe and Mn but low concentrations of potentially toxic metals had no significant beneficial or suppressive effect. High concentrations of the metals Ti, Cu, and Zn in the form of nano(particles) in structural and vehicle ash are possible sources of toxicity to diatom growth. This study provides valuable insights into the potential impacts of WUI fires on aquatic ecosystems and can inform management strategies aimed at reducing these impacts. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

23 pages, 4508 KiB  
Review
Nitrogen Acquisition by Invasive Plants: Species Preferential N Uptake Matching with Soil N Dynamics Contribute to Its Fitness and Domination
by Xingang Chang, Wenying Wang and Huakun Zhou
Plants 2025, 14(5), 748; https://doi.org/10.3390/plants14050748 - 1 Mar 2025
Viewed by 420
Abstract
Plant invasions play a significant role in global environmental change. Traditionally, it was believed that invasive plants absorb and utilize nitrogen (N) more efficiently than native plants by adjusting their preferred N forms in accordance with the dominant N forms present in the [...] Read more.
Plant invasions play a significant role in global environmental change. Traditionally, it was believed that invasive plants absorb and utilize nitrogen (N) more efficiently than native plants by adjusting their preferred N forms in accordance with the dominant N forms present in the soil. More recently, invasive plants are now understood to optimize their N acquisition by directly mediating soil N transformations. This review highlights how exotic species optimize their nitrogen acquisition by influencing soil nitrogen dynamics based on their preferred nitrogen forms, and the various mechanisms, including biological nitrification inhibitor (BNI) release, pH alterations, and changes in nutrient stoichiometry (carbon to nitrogen ratio), that regulate the soil nitrogen dynamics of exotic plants. Generally, invasive plants accelerate soil gross nitrogen transformations to maintain a high supply of NH4+ and NO3 in nitrogen-rich ecosystems irrespective of their preference. However, they tend to minimize nitrogen losses to enhance nitrogen availability in nitrogen-poor ecosystems, where, in such situations, plants with different nitrogen preferences usually affect different nitrogen transformation processes. Therefore, a comprehensive understanding requires more situ data on the interactions between invasive plant species’ preferential N form uptake and the characteristics of soil N transformations. Understanding the combination of these processes is essential to elucidate how exotic plants optimize nitrogen use efficiency (NUE) and minimize nitrogen losses through denitrification, leaching, or runoff, which are considered critical for the success of invasive plant species. This review also highlights some of the most recent discoveries in the responses of invasive plants to the different forms and amounts of N and how plants affect soil N transformations to optimize their N acquisition, emphasizing the significance of how plant–soil interactions potentially influence soil N dynamics. Full article
(This article belongs to the Special Issue Advances in Nitrogen Nutrition in Plants)
Show Figures

Figure 1

18 pages, 1296 KiB  
Article
Photobiological and Biochemical Characterization of Conchocelis and Blade Phases from Porphyra linearis (Rhodophyta, Bangiales)
by Débora Tomazi Pereira and Félix L. Figueroa
Phycology 2025, 5(1), 9; https://doi.org/10.3390/phycology5010009 - 28 Feb 2025
Viewed by 212
Abstract
Porphyra specimens are red macroalgae with significant economic importance for food and pharmaceutical industries due to their physiological activities resulting from their bioactive compounds (BACs). Due to its economic importance, this research aimed to characterize the photosynthetic and biochemical aspects of the conchocelis [...] Read more.
Porphyra specimens are red macroalgae with significant economic importance for food and pharmaceutical industries due to their physiological activities resulting from their bioactive compounds (BACs). Due to its economic importance, this research aimed to characterize the photosynthetic and biochemical aspects of the conchocelis and blade phases of Porphyra linearis to understand and help improve production of this algae. The algae were cultured for 7 days with nutrients for blade phase measurements, while another portion was cultured without nutrients for 21 days to release carpospores, which were cultivated for 4 months. For both phases, the content of BACs (chlorophyll a, carotenoids, phycobiliproteins, phenols, carbohydrates, proteins, mycosporine-like amino acids), antioxidant activity, and photosynthetic parameters were analyzed. Most of the parameters showed the blade phase had better results than conchocelis, except for carbohydrates. Phycobiliproteins showed no statistical differences between the phases. These findings highlight that conchocelis is not a good BACs source compared to the blade phase, but it is a crucial phase in the life cycle of Porphyra. Understanding the key parameters for maintaining the cultivation of conchocelis stocks for the development of the blade phase is a way to produce macroscopic biomass of this economically important algae throughout the year. Full article
Show Figures

Graphical abstract

29 pages, 374 KiB  
Review
Relevance of Milk Composition to Human Longitudinal Growth from Infancy Through Puberty: Facts and Controversies
by Katarina T. Borer
Nutrients 2025, 17(5), 827; https://doi.org/10.3390/nu17050827 - 27 Feb 2025
Viewed by 595
Abstract
Milk is the principal nutrient of newborn humans and a diagnostic feature of the order Mammalia. Its release is elicited as a reflex by infant sucking under the control of the hormone oxytocin. While it is recognized that breast milk optimally promotes infant [...] Read more.
Milk is the principal nutrient of newborn humans and a diagnostic feature of the order Mammalia. Its release is elicited as a reflex by infant sucking under the control of the hormone oxytocin. While it is recognized that breast milk optimally promotes infant longitudinal growth and development, this review explores facts and controversies regarding the extent to which the milks of several dairy animals and infant formula milk (IF) approximate special properties and bioactivities of breast milk. It also provides evidence that early exposure to undernutrition during the very rapid fetal and early infancy growth predominantly and permanently stunts longitudinal growth trajectory in both animals and humans and is often followed in later life by obesity and metabolic dysfunction, and sometimes also by precocious timing of sexual maturation. There is a knowledge gap as to whether there may be additional critical periods of nutritional vulnerability in human development, which is characterized by a relatively prolonged period of slow childhood growth bracketed by the rapid fetal–neonatal and pubertal growth spurts. It is also unclear whether any quantitative differences in caloric intake and supply during neonatal period may influence developmental fatness programming. A further knowledge gap exists regarding the role of infant microbiome composition and development in the possible epigenetic programming of longitudinal growth or fatness in later life. Extending the research of early developmental programming to the entire period of human growth from conception to the end of puberty, examining infant caloric intake and supply as possible factors modulating the epigenetic programming in favor of obesity, and examining the role of infant gut microbiome in developing infant’s capacity to process nutrients may provide a better understanding of the interaction between critical nutritional influences in the control of human longitudinal growth and later-life obesity. Full article
29 pages, 3144 KiB  
Article
Integrating Microalgal Chlorella Biomass and Biorefinery Residues into Sustainable Agriculture and Food Production: Insights from Lettuce Cultivation
by Antira Wichaphian, Apiwit Kamngoen, Wasu Pathom-aree, Wageeporn Maneechote, Tawanchai Khuendee, Yupa Chromkaew, Benjamas Cheirsilp, Douglas J. H. Shyu and Sirasit Srinuanpan
Foods 2025, 14(5), 808; https://doi.org/10.3390/foods14050808 - 26 Feb 2025
Viewed by 511
Abstract
Microalgal biomass offers a promising biofertilizer option due to its nutrient-rich composition, adaptability, and environmental benefits. This study evaluated the potential of microalgal-based biofertilizers—microalgal Chlorella biomass, de-oiled microalgal biomass (DMB), and de-oiled and de-aqueous extract microalgal biomass (DAEMB)—in enhancing lettuce growth, soil nutrient [...] Read more.
Microalgal biomass offers a promising biofertilizer option due to its nutrient-rich composition, adaptability, and environmental benefits. This study evaluated the potential of microalgal-based biofertilizers—microalgal Chlorella biomass, de-oiled microalgal biomass (DMB), and de-oiled and de-aqueous extract microalgal biomass (DAEMB)—in enhancing lettuce growth, soil nutrient dynamics, and microbial community composition. Lettuce seedlings were cultivated with these biofertilizers, and plant growth parameters, photosynthetic pigments, and nitrogen uptake were assessed. Soil incubation experiments further examined nutrient mineralization rates, while DNA sequencing analyzed shifts in rhizosphere microbial communities. Lettuce grown with these biofertilizers exhibited improved growth parameters compared to controls, with Chlorella biomass achieving a 31.89% increase in shoot length, 27.98% in root length, and a 47.33% increase in fresh weight. Chlorophyll a and total chlorophyll levels increased significantly in all treatments, with the highest concentrations observed in the Chlorella biomass treatment. Soil mineralization studies revealed that DMB and DAEMB provided a gradual nitrogen release, while Chlorella biomass exhibited a rapid nutrient supply. Microbial community analyses revealed shifts in bacterial and fungal diversity, with increased abundance of nitrogen-fixing and nutrient-cycling taxa. Notably, fungal diversity was enriched in biomass and DAEMB treatments, enhancing soil health and reducing pathogenic fungi. These findings highlight microalgal biofertilizers’ potential to enhance soil fertility, plant health, and sustainable resource use in agriculture. Full article
Show Figures

Graphical abstract

Back to TopTop