Silkworm Bombyx mori—Sustainability and Economic Opportunity, Particularly for Romania
Abstract
:1. Introduction
2. Materials and Methods
3. From the Past to the Present State of Sericulture
4. Climatic Conditions
5. Mulberry Sustainability by Its Applications
6. Silkworm Products—Economic Impact
7. Edible Silkworm—Mentality and Perspectives
7.1. Silkworm as a Source of Food
7.2. Silkworm, a Valuable Feedstuff for Animal Feeding
8. Employment Opportunity
9. Sericulture Development Policy—Perspectives
10. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Govorushko, S. Global status of insects as food and feed source: A review. Trends Food Sci. Technol. 2019, 91, 436–445. [Google Scholar] [CrossRef]
- Bessa, L.W.; Pieterse, P.; Marais, J.; Dhanani, K.; Hoffman, L.C. Food safety of consuming black soldier fly (Hermetia illucens) larvae: Microbial, heavy metal and cross-reactive allergen risks. Foods 2021, 10, 1934. [Google Scholar] [CrossRef] [PubMed]
- Khatun, R.; Azmal, S.A.; Sarker, M.S.K.; Rashid, M.A.; Hussain, M.A.; Miah, M.Y. Effect of silkworm pupae on the growth and egg production performance of Rhode Island Red (RIR) pure line. Int. J. Poult. Sci. 2005, 4, 718–720. [Google Scholar]
- Ullah, R.; Khan, S.; Khan, N.A.; Mobashar, M.; Lohakare, J. Replacement of soybean meal with silkworm meal in the diets of White Leghorn layers and effects on performance, apparent total tract digestibility, blood profile and egg quality. J. Vet. Sci. Res. 2017, 5, 200–207. [Google Scholar]
- Priyadharshini, P.; Joncy, M.A.; Saratha, M. Industrial utilization of silkworm pupae—A review. Int. Acad. Res. Multidiscip. 2017, 5, 62–70. [Google Scholar]
- Hăbeanu, M.; Gheorghe, A.; Mihalcea, T. Nutritional value of silkworm pupae (Bombyx mori) with emphases on fatty acids profile and their potential applications for humans and animals. Insects 2023, 14, 254. [Google Scholar] [CrossRef]
- Panthee, S.; Paudel, A.; Hamamoto, H.; Sekimizu, K. Advantages of the silkworm as an animal model for developing novel antimicrobial agents. Front. Microbiol. 2017, 8, 373. [Google Scholar] [CrossRef] [Green Version]
- Cappellozza, S.; Casartelli, M.; Sandrelli, F.; Saviane, A.; Tettaman, G. Silkworm and Silk Traditional and Innovative Applications. Insects 2023, 13, 1016. [Google Scholar] [CrossRef]
- Nwibo, N.N.; Hamamoto, H.; Matsumoto, Y.; Kaito, C.; Sekimizu, K. Current use of silkworm larvae (Bombyx mori) as an animal model in pharmaco-medical research. Drug Discov. Ther. 2015, 9, 133–135. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Zhu, F.; Che, K. Silkworm: A promising model organism in life science. J. Insect Sci. 2017, 17, 97. [Google Scholar] [CrossRef]
- Neelaboina, B.K.; Shivkumar, M.N.A.; Ghosh, M.K. Studies on the performance of some silkworm, Bombyx mori L., breeds in temperate region of Jammu and Kashmir, India. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2192–2201. [Google Scholar] [CrossRef]
- Jasmine, S.; Mandal, B.B. Chapter 10. Types and Properties of Non-Mulberry Silk Biomaterials for Tissue Engineering Applications. In Silk Biomaterials for Tissue Engineering and Regenerative; Kundu, S.C., Ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 275–298. [Google Scholar] [CrossRef]
- Oduor, E.O.; Ciera, L.; Adolkar, V.; Pido, O. Physical characterization of eri silk fibers produced in Kenya. J. Nat. Fibers 2019, 18, 59–70. [Google Scholar] [CrossRef]
- Gjurašić, M.; Đurović, T. Development of sericulture in the eastern Adriatic during the Austrian administration. Athens J. Hist. 2023, 9, 9–52. [Google Scholar] [CrossRef]
- Sharma, V.; Rattan, M.; Chauhan, S.K. Potential use of sericultural by products: A review. Pharma Innov. 2022, SP-11, 1154–1158. [Google Scholar]
- Tzenov, P.; Cappellozza, S.; Saviane, A. Black, Caspian Seas and Central Asia Silk Association (BACSA) for the future of seri-culture in Europe and Central Asia. Insects 2022, 13, 44. [Google Scholar] [CrossRef]
- Andadari, L.; Yuniati, D.; Supriyanto, B.; Murniati; Suharti, S.; Widarti, A.; Steven, E.; Sadapotto, A.; Winarno, B.; Minarningsih; et al. Lens on tropical sericulture development in Indonesia: Recent status and future directions for industry and social forestry. Insects 2022, 13, 913. [Google Scholar] [CrossRef]
- Padaki, N.V.; Das, B.; Basu, A. Advances in Understanding the Properties of Silk. Advances in Silk Science and Technology; Basu, A., Ed.; Woodhead Publishing Series in Textiles; Woodhead Publishing: Cambridge, UK, 2015; pp. 3–16. [Google Scholar] [CrossRef]
- Giora, G.; Marchetti, G.; Cappellozza, S.; Assirelli, A.; Saviane, A.; Sartori, L.; Marinello, F. Bibliometric analysis of trends in mulberry and silkworm research on the production of silk and its by-Products. Insects 2022, 13, 568. [Google Scholar] [CrossRef]
- Arunkumar, K.P.; Metta, M.; Nagaraju, J. Molecular phylogeny of silkmoths reveals the origin of domesticated silkmoth, Bombyx mori from Chinese Bombyx mandarina and paternal inheritance of Antheraea proylei mitochondrial DNA. Mol. Phylogenet. Evol. 2006, 40, 419–427. [Google Scholar] [CrossRef]
- Altman, G.H.; Farrell, B.D. Sericulture as a sustainable agroindustry. Clean. Circ. Bioecon. 2022, 2, 100011. [Google Scholar] [CrossRef]
- Gaston, G.O. History of sericiculture in France. Eur. J. Res. Soc. Sci. 2017, 5, 4–58. [Google Scholar]
- Łochyńska, M. History of sericulture in Poland. J. Nat. Fibers 2010, 7, 334–337. [Google Scholar] [CrossRef]
- Tanase, D. The agro productive characterization of the mulberry varieties used in the amelioration programs. Sci. Pap. Anim. Sci. Biotechnol. 2007, 40, 141–149. [Google Scholar]
- Pau, E.; Constantinescu, M. Solutions for sericulture reorganization in Romania. In Proceedings of the First International Conference “Sericulture—From Tradition to Modern Biotechnology”, Cluj-Napoca, Romania, 17–18 April 2008; pp. 133–140. [Google Scholar]
- Pop, L.L.; Mărghitaș, A.L.; Dezmirean, D.; Bobis, O.; Moise, A.; Pasca, C. Sericiculture industry in Romania—Analysis on current situation and prospects of development. Sci. Pap. Ser. D Anim. Sci. 2018, LXI, 251–258. [Google Scholar]
- Rohela, G.K.; Shukla, P.; Muttanna; Kumar, R.; Chowdhury, S.R. Mulberry (Morus spp.): An ideal plant for sustainable development. Trees For. People 2020, 2, 100011. [Google Scholar] [CrossRef]
- Ruiz, X.; Almanza, M. Implications of genetic diversity in the improvement of silkworm Bombyx mori L. Chil. J. Agric. Res. 2018, 78, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Memete, A.R.; Timar, A.V.; Vuscan, A.N.; Miere (Groza), F.; Venter, A.C.; Vicas, S.I. Phytochemical composition of different botanical parts of Morus species, health benefits and application in food industry. Plants 2022, 11, 152. [Google Scholar] [CrossRef]
- Giacomin, A.M.; Garcia, J.B., Jr.; Zonatti, W.F.; Silva-Santos, M.C.; Laktim, M.C.; Baruque-Ramos, J. Silk industry and carbon footprint mitigation. Procedia Eng. Conf. Ser. Mater. Sci. Eng. 2017, 254, 192008. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Gangopadhyay, D.; Chowdhur, T. Economical and environmental importance of mulberry: A Review. Int. J. Plant Environ. 2017, 3, 51–58. [Google Scholar] [CrossRef]
- Sujathamma, P.; Savithri, G.; Kavyasudha, K. Value addition of mulberry (Morus sp.). Int. J. Emerg. Technol. Comput. Appl. Sci. 2013, 7, 352–356. [Google Scholar]
- Tassoni, L.; Cappellozza, S.; Dalle Zotte, A.; Belluco, S.; Antonelli, P.; Marzoli, F.; Saviane, A. Nutritional composition of Bombyx mori pupae: A systematic review. Insects 2022, 13, 644. [Google Scholar] [CrossRef]
- Srivastava, S.; Kapoor, R.; Thathola, A.; Srivastava, R.P. Nutritional quality of leaves of some genotypes of mulberry (Morus alba). Int. J. Food Sci. Nutr. 2006, 57, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Mu, L.; Wang, Z.; Liu, J.; Liu, T.; Wanapat, M.; Huang, B. Assessment of mulberry leaf as a potential feed supplement for animal feeding in PR China. Asian-Aust. J. Anim. Sci. 2019, 32, 1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andallu, B.; Varadacharyulu, N.C. Antioxidant role of mulberry (Morus indica L. cv. Anantha) leaves in streptozotocin-diabetic rats. Clin. Chim. Acta 2003, 338, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Arfan, M.; Khan, R.; Rybarczyk, A.; Amarowicz, R. Antioxidant activity of mulberry fruit extract. Int. J. Mol. Sci. 2012, 13, 2472–2480. [Google Scholar] [CrossRef]
- Pan, G.; Lou, C.F. Isolation of an 1-aminocyclopropane-1-carboxylate oxidase gene from mulberry (Morus alba L.) and analysis of the function of this gene in plant development and stresses response. J. Plant Physiol. 2008, 165, 1204–1213. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhao, L. The Mulberry (Morus alba L.) Fruit: A review of characteristic components and health benefits. J. Agric. Food Chem. 2017, 65, 10383–10394. [Google Scholar] [CrossRef]
- Józefczuk, J.; Malikowska, K.; Glapa, A.; Stawińska-Witoszyńska, B.; Nowak, J.K.; Bajerska, J.; Lisowska, A.; Walkowiak, J. Mulberry leaf extract decreases digestion and absorption of starch in healthy subjects—A randomized, placebo-controlled, crossover study. Adv. Med. Sci. 2017, 62, 302–306. [Google Scholar] [CrossRef]
- Olteanu, M.; Panaite, T.; Ciurescu, G.; Criste, R.D. Effect of dietary mulberry leaves on performance parameters and nutrient digestibility of laying hens. Indian J. Anim. Sci. 2012, 82, 914–917. [Google Scholar]
- Olteanu, M.; Criste, R.D.; Cornescu, G.M.; Ropota, M.; Panaite, T.D.; Varzaru, I. Effect of dietary mulberry (Morus alba) leaves on performance parameters and quality of breast meat of broilers. Indian J. Anim. Sci. 2015, 85, 291–295. [Google Scholar]
- Ustundag, A.O.; Ozdogan, M. Usage possibilities of mulberry leaves in poultry nutrition. Sci. Pap. Ser. D Anim. Sci. 2015, LVIII, 18. [Google Scholar]
- Wang, C.; Yang, F.; Wang, Q.; Zhou, X.; Xie, M.; Kang, P.; Wang, Y.; Peng, X. Nutritive value of mulberry leaf meal and its effect on the performance of 35-70-day-old geese. J. Poult. Sci. 2017, 54, 41–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Li, Y.; Peng, Y.; He, J.; Xiao, D.; Chen, C.; Li, F.; Huang, R.; Yin, Y. Dietary mulberry leaf powder affects growth performance, carcass traits and meat quality in finishing pigs. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1934–1945. [Google Scholar] [CrossRef] [PubMed]
- Şengul, A.Y.; Şengul, T.; Celik, Ș.; Şengül, G.; Daş, A.; İnci, H.; Bengu, A.Ş. The effect of dried white mulberry (Morus alba) Pulp supplementation in diets of laying quail. Rev. MVZ Cordoba 2021, 26, e1940. [Google Scholar] [CrossRef]
- Ssemugenze, B.; Esimu, J.; Nagasha, J.; Masiga, C.W. Sericulture: Agro-based industry for sustainable socio-economic development: A review. Int. J. Sci. Res. Publ. 2021, 11, 474–482. [Google Scholar] [CrossRef]
- Data Bridge Market Research. Available online: https://www.databridgemarketresearch.com/reports/global-silk-market (accessed on 30 March 2023).
- Market Data Forecast. Available online: https://www.marketdataforecast.com/market-reports/silk-market (accessed on 30 March 2023).
- Mordor Intelligence. Available online: https://www.mordorintelligence.com/industry-reports/silk-yarn-market (accessed on 30 March 2023).
- The Observatory of Economic Complexity (OEC). Available online: https://oec.world/en/profile/hs/silk (accessed on 30 March 2023).
- Zhang, Y.-Q. Applications of natural silk protein sericin in biomaterials. Biotechnol. Adv. 2002, 20, 91–100. [Google Scholar] [CrossRef]
- Saric, M.; Scheibel, T. Engineering of silk proteins for materials applications. Curr. Opin. Biotechnol. 2019, 60, 213–220. [Google Scholar] [CrossRef]
- Kundu, B.; Kurland, N.E.; Bano, S.; Patra, C.; Engel, F.B.; Yadavalli, V.K.; Kundu, S.C. Silk proteins for biomedical applications: Bioengineering perspectives. Prog. Polym. Sci. 2014, 39, 251–267. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, K.P.; Lee, D.Y.; Kim, Y.T.; Baek, S.; Yoon, M.S. Inhibitory effect of modified silkworm pupae oil in PDGF-BB-induced proliferation and migration of vascular smooth muscle cells. Food Sci. Biotechnol. 2020, 29, 1091–1099. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, S.; Duan, H.; Wang, J.; Yan, W. Silkworm pupae: A functional food with health benefits for humans. Foods 2022, 11, 1594. [Google Scholar] [CrossRef]
- Wu, X.; He, K.; Cirkovic Velickovic, T.; Liu, Z. Nutritional, functional, and allergenic properties of silkworm pupae. Food Sci. Nutr. 2021, 9, 4655–4665. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar Gupta, R.; Sharma, P.; Duwa, A.K.; Bandral, R.S.; Bali, K. Silkworm as an edible insect: A review. Pharma Innov. 2022, SP-11, 1667–1674. [Google Scholar]
- Łochyńska, M.; Frankowski, J. The biogas production potential from silkworm waste. Waste Manag. 2018, 79, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Łochyńska, M.E.; Frankowski, J. Impact of silkworm excrement organic fertilizer on hemp biomass yield and composition. J. Ecol. Eng. 2019, 20, 63–71. [Google Scholar] [CrossRef]
- Shanmugam, R.; Mohanraj, P.; Krishnamoorthy, S.V.; Chozhan, K. Stimulus of silkworm excreta on quality and quantity of cocoon production. Int. J. Creat. Res. Thoughts 2020, 8, 1166–1171. [Google Scholar]
- Kodama, R.; Nakasuji, Y. Bacteria isolated from silkworm larvae: X. Inhibition of development of viral diseases in gnotobiotic silkworm by nalidixic acid. J. Insect Biotechnol. Sericol. 1972, 41, 7–41. [Google Scholar]
- Pachiappan, P.; Prabhu, S.; Mahalingam, C.A.; Thangamalar, A.; Umapathy, G. In vivo antibacterial effect of chitosan against Staphylococcus aureus and Bacillus thuringiensis and its impact on economic parameters of silkworm, Bombyx mori. L. J. Pharmacogn. Phytochem. 2018, 7, 2448–2451. [Google Scholar]
- Hafner, S.; Lund, A.H. Great expectations e epigenetics and the meandering path from bench to bedside. Biomed. J. 2016, 19, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Aznar-Cervantes, S.D.; Monteagudo Santesteban, B.; Cenis, J.L. Products of sericulture and their hypoglycemic action evaluated by using the silkworm, Bombyx mori (Lepidoptera: Bombycidae), as a model. Insects 2021, 12, 1059. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nation (FAO). Edible Insects: Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nation (FAO): Rome, Italy, 2013. [Google Scholar]
- Orkusz, A. Edible insects versus meat—Nutritional comparison: Knowledge of their composition is the key to good health. Nutrients 2021, 13, 1207. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Scientific opinion on a risk profile related to production and consumption of in-sects as food and feed. EFSA J. 2015, 13, 4257. [Google Scholar] [CrossRef] [Green Version]
- Imathiu, S. Benefits and food safety concerns associated with consumption of edible insects. NFS J. 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Zugravu, C.; Tarcea, M.; Nedelescu, M.; Nuță, D.; Guiné, R.P.F.; Constantin, C. Knowledge: A factor for acceptance of insects as food. Sustainability 2023, 15, 4820. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nation (FAO). Looking at Edible Insects from a Food Safety Perspective. Challenges and Opportunities for the Sector; Food and Agriculture Organization of the United Nation (FAO): Rome, Italy, 2021. [Google Scholar]
- Ji, K.M.; Zhan, Z.K.; Chen, J.J.; Liu, Z.G. Anaphylactic shock caused by silkworm pupa consumption in China. Allergy 2008, 63, 1407–1408. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Chen, X.M.; Zhao, M.; He, Z.; Sun, L.; Wang, C.Y.; Ding, D.F. Edible insects in China: Utilization and prospects. Insect Sci. 2018, 25, 184–198. [Google Scholar] [CrossRef] [PubMed]
- The World Health Organization and International Union of Immunological Societies (WHO/IUIS). Allergen Nomenclature Sub-Committee. Available online: www.allergen.org (accessed on 30 March 2023).
- Sheikh, I.U.; Banday, M.T.; Baba, I.A.; Adil, S.; Shaista, S.N.; Bushra, Z.; BulbuI, K.H. Utilization of silkworm pupae meal as an alternative source of protein in the diet of livestock and poultry: A review. J. Entomol. Zool. Stud. 2018, 6, 1010–1016. [Google Scholar]
- Asimi, O.A.; Bhat, T.H.; Nasir, H.; Irfan, K. Alternative Source of Protein “Silkworm Pupae” (Bombyx mori) in Coldwater Aquaculture. Int. J. Poult. Fish. Sci. 2017, 1, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Herman, R.A.; Yan, C.-H.; Wang, J.-Z.; Xun, X.M.; Wu, C.-K.; Li, Z.N.; Ayepa, E.; You, S.; Gong, L.C.; Wang, J. Insight into the silkworm pupae: Modification technologies and functionality of the protein and lipids. Trends Food Sci. Technol. 2022, 129, 408–420. [Google Scholar] [CrossRef]
- Shakoori, M.; Gholipour, M.; Naseri, S. Effect of replacing dietary fish meal with silkworm (Bombyx mori) pupae on hematological parameters of rainbow trout Oncorhynchus mykiss. Comp. Clin. Pathol. 2013, 24, 139–143. [Google Scholar] [CrossRef]
- Trivedy, K.; Kumar, S.N.; Mondal, M.; Bhat, C.A.K. Protein banding pattern and major amino acids components in de-oiled pupal powder of silkworm, Bombyx mori L. J. Entomol. 2008, 5, 10–16. [Google Scholar] [CrossRef]
- Popescu, A. Considerations upon the trends in the world silk trade. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2018, 18, 385–400. [Google Scholar]
- Liceaga, A.M. Chapter Four—Edible insects, a valuable protein source from ancient to modern times. Adv. Food Nutr. 2022, 101, 129–152. [Google Scholar] [CrossRef]
- Moise, A.R.; Marghitas, L.A.; Bobis, O.; Copaciu, F.M.; Dezmirean, D.S. Morus spp. Material conservation and characterization and its importance for Romanian sericulture and GCEARS-PSP development—A Review. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Anim. Sci. Biotechnol. 2018, 75, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dezmirean, D.; Mărghitaş, L.A.; Bobiş, O.; Urcan, A.C.; Dezmirean, H.; Paşca, C.; Moise, A.R. Multidirectional activities for gene pool conservation in GCEARS-PSP. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Anim. Sci. Biotechnol. 2018, 75, 5–10. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hăbeanu, M.; Gheorghe, A.; Mihalcea, T. Silkworm Bombyx mori—Sustainability and Economic Opportunity, Particularly for Romania. Agriculture 2023, 13, 1209. https://doi.org/10.3390/agriculture13061209
Hăbeanu M, Gheorghe A, Mihalcea T. Silkworm Bombyx mori—Sustainability and Economic Opportunity, Particularly for Romania. Agriculture. 2023; 13(6):1209. https://doi.org/10.3390/agriculture13061209
Chicago/Turabian StyleHăbeanu, Mihaela, Anca Gheorghe, and Teodor Mihalcea. 2023. "Silkworm Bombyx mori—Sustainability and Economic Opportunity, Particularly for Romania" Agriculture 13, no. 6: 1209. https://doi.org/10.3390/agriculture13061209
APA StyleHăbeanu, M., Gheorghe, A., & Mihalcea, T. (2023). Silkworm Bombyx mori—Sustainability and Economic Opportunity, Particularly for Romania. Agriculture, 13(6), 1209. https://doi.org/10.3390/agriculture13061209