Air Frosts in Poland in the Thermal Growing Season (AT > 5 °C)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Easterling, D.R.; Horton, B.; Jones, P.D.; Peterson, T.C.; Karl, T.R.; Parker, D.E.; Salinger, M.J.; Razuvayev, V.; Plummer, N.; Jamason, P.; et al. Maximum and minimum temperature trends for the globe. Science 1997, 277, 364–367. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Sato, M.; Ruedy, R. Long-term changes of the diurnal temperature cycle: Implications about mechanisms of global climate change. Atmos. Res. 1995, 37, 175–209. [Google Scholar] [CrossRef]
- Vitasse, Y.; Schneider, L.; Rixen, C.; Christen, D.; Rebetez, M. Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agric. For. Meteorol. 2018, 248, 60–69. [Google Scholar] [CrossRef]
- Jabłońska, K.; Kwiatkowska-Falińska, A.; Czernecki, B.; Walawender, J.P. Changes in Spring and Summer Phenology in Poland—Responses of Selected Plant Species to Air Temperature Variations. Pol. J. Ecol. 2015, 63, 311–319. [Google Scholar] [CrossRef]
- Sulikowska, A.; Wypych, A.; Ustrnul, Z.; Czekierda, D. Zmienność Zasobów termicznych w Polsce w aspekcie obserwowanych zmian klimatu. Acta Scientiarum Polonorum. Form. Circumiectus 2016, 15, 127–139. [Google Scholar] [CrossRef]
- Peng, D.; Wu, C.; Li, C.; Zhang, X.; Liu, Z.; Ye, H.; Luo, S.; Liu, X.; Hu, Y.; Fang, B. Spring green-up phenology products derived from MODIS NDVI and EVI: Intercomparison, interpretation and validation using National Phenology Network and AmeriFlux observations. Ecol. Indic. 2017, 77, 323–336. [Google Scholar] [CrossRef]
- Duarte, L.; Teodoro, A.C.; Monteiro, A.T.; Cunha, M.; Gonçalves, H. QPhenoMetrics: An open source software application to assess vegetation phenology metrics. Comput. Electron. Agric. 2018, 148, 82–94. [Google Scholar] [CrossRef]
- Chmielewski, F.-M.; Rötzer, T. Response of tree phenology to climate change across Europe. Agric. For. Meteorol. 2001, 108, 101–112. [Google Scholar] [CrossRef]
- Chmielewski, F.M.; Rotzer, T. Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Clim. Res. 2002, 19, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-Kübler, K.; Bissolli, P.; Braslavská, O.; Briede, A.; et al. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 2006, 12, 1969–1976. [Google Scholar] [CrossRef]
- Jatczak, K.; Walawender, J. Average rate of phenological changes in Poland according to climatic changes—Evaluation and mapping. Adv. Sci. Res. 2009, 3, 127–131. [Google Scholar] [CrossRef]
- Graczyk, D.; Szwed, M. Changes in the Occurrence of Late Spring Frost in Poland. Agronomy 2020, 10, 1835. [Google Scholar] [CrossRef]
- Ceglar, A.; Zampieri, M.; Toreti, A.; Dentener, F. Observed Northward Migration of Agro-Climate Zones in Europe Will Further Accelerate Under Climate Change. Earth’s Future 2019, 7, 1088–1101. [Google Scholar] [CrossRef] [Green Version]
- Gepts, P. Plant Genetic Resources Conservation and Utilization: The Accomplishments and Future of a Societal Insurance Policy. Crop. Sci. 2006, 46, 2278–2292. [Google Scholar] [CrossRef]
- Luterbacher, J.; Werner, J.P.; E Smerdon, J.; Fernández-Donado, L.; González-Rouco, F.J.; Barriopedro, D.; Ljungqvist, F.C.; Büntgen, U.; Zorita, E.; Wagner, S.; et al. European summer temperatures since Roman times. Environ. Res. Lett. 2016, 11, 024001. [Google Scholar] [CrossRef] [Green Version]
- Van der Schrier, G.; van den Besselaar, E.J.M.; Klein Tank, A.M.G.; Verver, G. Monitoring European average temperaturę based on E-OBS gridded data set. J. Geophys. Res. Atmos. 2013, 118, 5120–5135. [Google Scholar] [CrossRef]
- Christensen, O.; Yang, S.; Boberg, F.; Maule, C.F.; Thejll, P.; Olesen, M.; Drews, M.; Sørup, H.; Christensen, J. Scalability of regional climate change in Europe for high-end scenarios. Clim. Res. 2015, 64, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Vautard, R.; Gobiet, A.; Sobolowski, S.; Kjellström, E.; Stegehuis, A.; Watkiss, P.; Mendlik, T.; Landgren, O.; Nikulin, G.; Teichmann, C.; et al. The European climate under a 2 °C global warming. Environ. Res. Lett. 2014, 9, 034006. [Google Scholar] [CrossRef]
- van Oldenborgh, G.J.; Drijfhout, S.; van Ulden, A.; Haarsma, R.; Sterl, A.; Severijns, C.; Hazeleger, W.; Dijkstra, H. Western Europe is warming much faster than expected. Clim. Past 2009, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Krauskopf, T.; Huth, R. Temperature trends in Europe: Comparison of different data sources. Theor. Appl. Clim. 2019, 139, 1305–1316. [Google Scholar] [CrossRef]
- Zveryaev, I.I.; Gulev, S.K. Seasonality in secular changes and interannual variability of European air temperature during the twentieth century. J. Geophys. Res. Atmos. 2009, 114, D02110. [Google Scholar] [CrossRef] [Green Version]
- Kossowska-Cezak, U. Zmienność temperatury z dnia na dzień w Polsce. Gaz. Obs. 1993, 48, 4–6. [Google Scholar]
- Rebetez, M. Changes in daily and nightly day-to-day temperature variability during the twentieth century for two stations in Switzerland. Theor. Appl. Clim. 2001, 69, 13–21. [Google Scholar] [CrossRef]
- Szyga-Pluta, K. Large Day-to-Day Variability of Extreme Air Temperatures in Poland and Its Dependency on Atmospheric Circulation. Atmosphere 2021, 12, 80. [Google Scholar] [CrossRef]
- Piskala, V.; Huth, R. Asymmetry of day-to-day temperature changes and its causes. Theor. Appl. Clim. 2020, 140, 683–690. [Google Scholar] [CrossRef]
- Zohner, C.M.; Mo, L.; Renner, S.S.; Svenning, J.-C.; Vitasse, Y.; Benito, B.M.; Ordonez, A.; Baumgarten, F.; Bastin, J.-F.; Sebald, V.; et al. Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proc. Natl. Acad. Sci. USA 2020, 117, 12192–12200. [Google Scholar] [CrossRef] [PubMed]
- Koźmiński, C.; Górski, T.; Michalska, B. (Eds.) Atlas Klimatyczny Elementów i Zjawisk Szkodliwych Dla Rolnictwa w Polsce; AR Szczecin—IUNG: Puławy, Poland, 1990. [Google Scholar]
- Koźmiński, C.; Michalska, B. (Eds.) Atlas Klimatycznego Ryzyka Uprawy Roślin w Polsce; Wydawnictwo AR US: Szczecin, Poland, 2001. [Google Scholar]
- Koźmiński, C.; Michalska, B. Niekorzystne Zjawiska Atmosferyczne w Polsce. Straty w Rolnictwie. In Klimatyczne Zagrożenia Rolnictwa w Polsce; Koźmiński, C., Michalska, B., Leśny, J., Eds.; Uniwersytet Szczeciński: Szczecin, Poland, 2010; pp. 9–54. [Google Scholar]
- Doroszewski, A.; Wróblewska, E.; Jóźwicki, T.; Katarzyna Mizak, K. Evaluation of damage to fruit and horticultural plants caused by frosts in May 2011. Acta Agrophysica 2013, 20, 269–281. [Google Scholar]
- Chmielewski, F.M.; Rötzer, T. Phenological trends in Europe in relation to climatic changes. Agrarmeteorol. Schr. 2000, 7, 1–15. [Google Scholar]
- Rigby, J.R.; Porporato, A. Spring frost risk in a chang-ing climate. Geophys. Res. Lett. 2008, 35, L12703. [Google Scholar] [CrossRef]
- Dragańska, E.; Rynkiewicz, I.; Panfil, M. Częstotliwość i intensywność występowania przymrozków w Polsce północ-no-wschodniej w latach 1971–2000. Acta Agrophysica 2004, 104, 35–42. [Google Scholar]
- Lardon, A.; Triboi-Blondel, A.M. Cold and freeze stress at flowering Effects on seed yields in winter rapeseed. Field Crop. Res. 1995, 44, 95–101. [Google Scholar] [CrossRef]
- Wieteska, S. Ryzyko Występowania Przymrozków w Polskiej Strefie Klimatycznej. Folia Oeconomica 2011. Acta Univ. Lodz. Folia Oeconomica 2011, 259, 143–157. [Google Scholar]
- Budzyński, W. Kapusta Rzepak. In Book Rośliny Oleiste—Uprawa i Zastosowanie; Budzyński, W., Zając, T., Eds.; PWRiL: Poznań, Poland, 2010; pp. 15–107. [Google Scholar]
- Wielebski, F.; Wójtowicz, M. Effect of simulated spring frosts on damage to flowering winter rape plants and losses in yield of seeds. Fragm. Agron. 2019, 36, 97–105. [Google Scholar]
- Rymuza, K. Analysis of an Occurrence of High Frosts During the Growing Season in Central-East Poland in 2001–2018. J. Ecol. Eng. 2021, 22, 142–149. [Google Scholar] [CrossRef]
- Jerzak, E. Rekordowe Majowe Przymrozki w 2011 r. i Ich Wpływ na Drzewa i Krzewy Ogrodu Botanicznego w Poznaniu. Rocz. Pol. Tow. Dendrol. 2011, 59, 37–61. [Google Scholar]
- Madany, R. O występowaniu przymrozków w różnych masach powietrza. Przegląd Geofiz. 1971, 16, 95–100. [Google Scholar]
- Ustrnul, Z.; Wypych, A.; Winkler, J.A.; Czekierda, D. Late Spring Freezes in Poland in Relation to Atmospheric Circulation. Quaest. Geogr. 2014, 33, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Bielec-Bakowska, Z.; Piotrowicz, K.; Krępa-Adolf, E. Trends in the frost-free season with parallel circulation and air mass statistics in Poland. Idojaras 2018, 122, 375–392. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Szyga-Pluta, K.; Bednorz, E. Occurrence and synoptic background of strong and very strong frost in spring and autumn in Central Europe. Int. J. Biometeorol. 2020, 64, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Bartoszek, K.; Skiba, K.; Dobek, M.; Siłuch, M.; Wereski, S. Frost occurrence in April and, May in the eastern Poland area in the period 1988–2007. Acta Agrophysica Rozpr. Monogr. 2010, 6, 24–33. [Google Scholar]
- Tomczyk, A.M. Przymrozki Wiosenne i Jesienne Oraz Okres Bezprzymrozkowy Na Nizinie Wielkopolskiej w Latach 1981–2010. Współczesne Problemy i Kierunki Badawcze w Geografii; Instytut Geografii i Gospodarki Przestrzennej UJ Kraków: Kraków, Poland, 2015; pp. 245–256. [Google Scholar]
- Koźmiński, C.; Nidzgorska-Lencewicz, J.; Mąkosza, A.; Michalska, B. Ground Frosts in Poland in the Growing Season. Agriculture 2021, 11, 573. [Google Scholar] [CrossRef]
- Dudek, S.; Żarski, J.; Kuśmierek-Tomaszewska, R. Tendencje zmian występowania przymrozków przygruntowych w rejonie Bydgoszczy. Water-Environ.-Rural. Areas 2012, 12, 93–106. [Google Scholar]
- Kalbarczyk, R. Spatial and temporal variability of the occurrence of ground frost in Poland and its effect on growth, devel-opment and yield of pickling cucumber (Cucumis sativus L.), 1966–2005. Acta Sci. Pol. Hortorum Cultus 2010, 9, 3–26. [Google Scholar]
- Bielec-Bąkowska, Z.; Piotrowicz, K. Wieloletnia zmienność okresu bezprzymrozkowego w Polsce w latach 1951–2006. Pr. Stud. Geogr. 2011, 47, 77–86. [Google Scholar]
- Leśny, J. Climate change and agriculture in Poland–impacts, mitigation and adaptation measures. Acta Agrophysica 2022, 1, 1–151. [Google Scholar]
- Koźmiński, C. Występowanie ciągów dni przymrozkowych w okresie wegetacyjnym na terenie Polski. Przegl. Geogr. 1976, 48, 75–93. [Google Scholar]
- Szyga-Pluta, K. Przymrozki i okres bezprzymrozkowy w latach 2001–2016 na Stacji Ekologicznej w Jeziorach (Wielkopolski Park Narodowy). Bad. Fizjogr. Ser. A 2017, 68, 189–203. [Google Scholar]
- Menzel, A.; Fabian, P. Growing season extended in Europe. Nature 1999, 397, 659. [Google Scholar] [CrossRef]
- Jeong, S.-J.; Ho, C.-H.; Gim, H.-J.; Brown, M.E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Chang. Biol. 2011, 17, 2385–2399. [Google Scholar] [CrossRef]
- Fu, Y.H.; Piao, S.; De Beeck, M.O.; Cong, N.; Zhao, H.; Zhang, Y.; Menzel, A.; Janssens, I. Recent spring phenology shifts in western Central Europe based on multiscale observations. Glob. Ecol. Biogeogr. 2014, 23, 1255–1263. [Google Scholar] [CrossRef]
- Fuhrer, J.; Smith, P.; Gobiet, A. Implications of climate change scenarios for agriculture in alpine regions—A case study in the Swiss Rhone catchment. Sci. Total. Environ. 2014, 493, 1232–1241. [Google Scholar] [CrossRef] [PubMed]
- Wypych, A.; Sulikowska, A.; Ustrnul, Z.; Czekierda, D. Variability of growing degree days in Poland in response to ongoing climate changes in Europe. Int. J. Biometeorol. 2016, 61, 49–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolasiński, J. Przymrozki wiosenne i jesienne—Występowanie i tendencje zmian. Prz. Geof. 2008, 53, 3–4, 303–310. [Google Scholar]
- Winkler, J.A.; Andresen, J.A.; Guentchev, G.; Kriegel, R.D. Possible Impacts of Projected Temperature Change on Commercial Fruit Production in the Great Lakes Region. J. Great Lakes Res. 2002, 28, 608–625. [Google Scholar] [CrossRef]
- Trnka, M.; Olesen, J.E.; Kersebaum, K.C.; Skjelvåg, A.O.; Eitzinger, J.; Seguin, B.; Peltonen-Sainio, P.; Rötter, R.; Iglesias, A.; Orlandini, S.; et al. Agroclimatic conditions in Europe under climate change. Glob. Chang. Biol. 2011, 17, 2298–2318. [Google Scholar] [CrossRef] [Green Version]
- Sang, Z.; Hamann, A.; Aitken, S.N. Assisted migration poleward rather than upward in elevation minimizes frost risks in plantations. Clim. Risk Manag. 2021, 34, 100380. [Google Scholar] [CrossRef]
- Mosedale, J.R.; Wilson, R.J.; Maclean, I.M.D. Climate Change and Crop Exposure to Adverse Weather: Changes to Frost Risk and Grapevine Flowering Conditions. PLoS ONE 2015, 10, e0141218. [Google Scholar] [CrossRef] [Green Version]
- Grabowski, J. The occurence of ground frost in the Mazurskie Lakeland between the years 1966 and 2005. Rozpr. Monogr. Acta Agrophys 2010, 185, 99–110. [Google Scholar]
- Starkel, L.; Kundzewicz, W. Konsekwencje zmian klimatu dla zagospodarowania przestrzennego kraju. Nauka 2008, 1, 85–101. [Google Scholar]
- Gumiński, R. Próba wydzielenia dzielnic rolniczo-klimatycznych w Polsce. Przegl. Met. I Hydr. 1948, 1, 7–20. [Google Scholar]
- Szyga-Pluta, K.; Tomczyk, A.M.; Bednorz, E.; Piotrowicz, K. Assessment of climate variations in the growing period in Central Europe since the end of eighteenth century. Theor. Appl. Clim. 2022, 149, 1785–1800. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Szyga-Pluta, K.; Bednorz, E. The effect of macro-scale circulation types on the length of the growing season in Poland. Meteorol. Atmos. Phys. 2019, 131, 1315–1325. [Google Scholar] [CrossRef] [Green Version]
- Szyga-Pluta, K.; Tomczyk, A.M. Anomalies in the length of the growing season in Poland in the period 1966–2015. Időjárás/Q. J. Hung. Meteorol. Serv. 2019, 123, 391–408. [Google Scholar] [CrossRef] [Green Version]
- Koźmiński, C.; Mąkosza, A.; Michalska, B.; Nidzgorska-Lencewicz, J. Thermal Conditions for Viticulture in Poland. Sustainability 2020, 12, 5665. [Google Scholar] [CrossRef]
- Ziernicka-Wojtaszek, A. Weryfikacja rolniczo-klimatycznych regionalizacji Polski w świetle współczesnych zmian klimatu. Acta Agrophysica 2009, 13, 803–812. [Google Scholar]
- Ziernicka-Wojtaszek, A.; Zawora, T. Thermal Regions in Light of Contemporary Climate Change in Poland. Pol. J. Environ. Stud. 2011, 20, 1627–1632. [Google Scholar]
- Burroughs, W.J. Gardening and climate change. Weather 2002, 57, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Koźmiński, C.; Świątek, M. Effects of the Baltic Sea on air temperature and humidity and on wind speed at the Polish coast. Acta Agrophysica 2012, 19, 597–610. [Google Scholar]
- Linderholm, H.W.; Walther, A.; Chen, D. Twentieth-century trends in the thermal growing season in the Greater Baltic Area. Clim. Chang. 2007, 87, 405–419. [Google Scholar] [CrossRef]
- Więcław, M. Dobowy powietrza w Bydgoszczy w czasie wiosennych i jesiennych przymrozków w zależności od rodzaju masy powietrza. Pr. Stud. Geogr. 2011, 47, 425–431. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koźmiński, C.; Mąkosza, A.; Nidzgorska-Lencewicz, J.; Michalska, B. Air Frosts in Poland in the Thermal Growing Season (AT > 5 °C). Agriculture 2023, 13, 1228. https://doi.org/10.3390/agriculture13061228
Koźmiński C, Mąkosza A, Nidzgorska-Lencewicz J, Michalska B. Air Frosts in Poland in the Thermal Growing Season (AT > 5 °C). Agriculture. 2023; 13(6):1228. https://doi.org/10.3390/agriculture13061228
Chicago/Turabian StyleKoźmiński, Czesław, Agnieszka Mąkosza, Jadwiga Nidzgorska-Lencewicz, and Bożena Michalska. 2023. "Air Frosts in Poland in the Thermal Growing Season (AT > 5 °C)" Agriculture 13, no. 6: 1228. https://doi.org/10.3390/agriculture13061228
APA StyleKoźmiński, C., Mąkosza, A., Nidzgorska-Lencewicz, J., & Michalska, B. (2023). Air Frosts in Poland in the Thermal Growing Season (AT > 5 °C). Agriculture, 13(6), 1228. https://doi.org/10.3390/agriculture13061228