Effects of Oxygenated Brackish Water on Pakchoi (Brassica chinensis L.) Growth Characteristics Based on a Logistic Crop Growth Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Measurement Index and Method
2.3. The Logistic Model of Crop Growth
2.4. Correlation Analysis and Path Analysis
3. Results
3.1. The Relationship between Effective Accumulated Temperature and Plant Height and Root Length
3.2. Pakchoi Growth Dynamics
3.3. Cumulative Consumption of Nitrate Nitrogen under Different Dissolved Oxygen Concentration
3.4. Correlation Analysis between Pakchoi Fresh Weight and Various Factors under Different Dissolved Oxygen Concentrations
4. Discussion
4.1. Oxygenation Effects on Pakchoi Growth Characteristics
4.2. Establishment of Multiple Regression Equation Based on Key Factors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mu, L.; Liu, Y.H.; Chen, S.J. Alleviating water scarcity and poverty through water rights trading pilot policy: A quasi-natural experiment based approach. Sci. Total Environ. 2022, 823, 153318. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Shin, H. Agricultural reservoir operation strategy considering climate and policy changes. Sustainability 2022, 14, 9014. [Google Scholar] [CrossRef]
- Garcia-Tejero, I.F.; Duran-Zuazo, V.H. Plant water use efficiency for a sustainable agricultural development. Agronomy 2022, 12, 1806. [Google Scholar] [CrossRef]
- Ma, W.; Meng, L.; Wei, F. Spatiotemporal variations of agricultural water footprint and socioeconomic matching evaluation from the perspective of ecological function zone. Agric. Water Manag. 2021, 249, 106803. [Google Scholar] [CrossRef]
- Yuan, C.F.; Feng, S.Y.; Huo, Z.L.; Ji, Q.Y. Simulation of saline water irrigation for seed maize in arid northwest China based on SWAP model. Sustainability 2019, 11, 4264. [Google Scholar] [CrossRef] [Green Version]
- El-Fakharany, Z.M.; Salem, M.G. Mitigating climate change impacts on irrigation water shortage using brackish groundwater and solar energy. Energy Rep. 2021, 7, 608–621. [Google Scholar] [CrossRef]
- Hamdan, H.; Saidy, M.; Alameddine, I.; Al-Hindi, M. The feasibility of solar-powered small-scale brackish water desalination units in a coastal aquifer prone to saltwater intrusion: A comparison between electrodialysis reversal and reverse osmosis. J. Environ. Manag. 2021, 290, 112604. [Google Scholar] [CrossRef]
- Liu, B.X.; Wang, S.Q.; Kong, X.L.; Liu, X.J.; Sun, H.Y. Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain. Agric. Water Manag. 2019, 211, 98–110. [Google Scholar] [CrossRef]
- Nicolas, E.; Alarcon, J.J.; Mounzer, O.; Pedrero, F.; Nortes, P.A.; Alcobendas, R.; Romero-Trigueros, C.; Bayona, J.M.; Maestre-Valero, J.F. Long-Term Physiological and Agronomic Responses of Mandarin Trees to Irrigation with Saline Reclaimed Water. Agric. Water Manag. 2016, 166, 1–8. [Google Scholar] [CrossRef]
- Gebrehiwet, M.; Tafesse, N.T.; Habtu, S.; Alemaw, B.F.; Laletsang, K.; Lasarwe, R. The contribution of groundwater to the salinization of reservoir-based irrigation systems. Agronomy 2021, 11, 512. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, S.; Wu, L.; Huang, J.; Tian, C.; Zhang, J.; Cao, X.; Zhu, C.; Kong, Y.; Jin, Q.; et al. Effects of Nitrogen Fertilizer Reduction and Oxygen-Enhancing Irrigation on the Key Enzyme Activities of Nitrogen Metabolism and Nitrogen Utilization in Rice. Trans. Chin. Soc. Agric. Eng. 2022, 38, 81–90. [Google Scholar]
- Baram, S.; Weinstein, M.; Evans, J.F.; Berezkin, A.; Sade, Y.; Ben-Hur, M.; Bernstein, N.; Mamane, H. Drip irrigation with nanobubble oxygenated treated wastewater improves soil aeration. Sci. Hortic. 2022, 291, 110550. [Google Scholar] [CrossRef]
- Lu, J.; Li, X.N.; Yang, Y.L.; Jia, L.Y.; You, J.; Wang, W.R. Effect of hydrogen peroxide on seedling growth and antioxidants in two wheat cultivars. Biol. Plant. 2013, 57, 487–494. [Google Scholar] [CrossRef]
- Abd Elhady, S.A.; El-Gawad, H.G.; Ibrahim, M.F.M.; Mukherjee, S.; Elkelish, A.; Azab, E.; Gobouri, A.A.; Farag, R.; Ibrahim, H.A.; El-Azm, N.A. Hydrogen peroxide supplementation in irrigation water alleviates drought stress and boosts growth and productivity of potato plants. Sustainability 2021, 13, 899. [Google Scholar] [CrossRef]
- Ahmed, A.K.A.; Shi, X.N.; Hua, L.K.; Manzueta, L.; Qing, W.H.; Marhaba, T.; Zhang, W. Influences of air, oxygen, nitrogen, and carbon dioxide nanobubbles on seed germination and plant growth. J. Agric. Food Chem. 2018, 66, 5117–5124. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Ju, Z.L.; Wells, M.C.; Walter, R.B. Genomic approaches in the identification of hypoxia biomarkers in model fish species. J. Exp. Mar. Bio. Ecol. 2009, 381, S180–S187. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Tian, C.Y.; Li, C.J. Root growth and spatio-temporal distribution of three common annual halophytes in a saline desert, northern Xinjiang. J. Arid. Land. 2012, 4, 330–341. [Google Scholar] [CrossRef] [Green Version]
- de Bang, T.C.; Lay, K.S.; Scheible, W.R.; Takahashi, H. Small peptide signaling pathways modulating macronutrient utilization in plants. Curr. Opin. Plant Biol. 2017, 39, 31–39. [Google Scholar] [CrossRef]
- Wang, R.; Shi, W.M.; Li, Y.L. Link between aeration in the rhizosphere and P-acquisition strategies: Constructing efficient vegetable root morphology. Front. Environ. Sci. 2020, 10, 906893. [Google Scholar] [CrossRef]
- Zan, O.Y.; Tian, J.C.; Yan, X.F.; Shen, H. Effects of different concentrations of dissolved oxygen or temperatures on the growth, photosynthesis, yield and quality of lettuce. Agric. Water Manag. 2019, 228, 105896. [Google Scholar]
- Lopez-Pozos, R.; Martinez-Gutierrez, G.A.; Perez-Pacheco, R.; Urrestarazu, M. The effects of slope and channel nutrient solution gap number on the yield of tomato crops by a nutrient film technique system under a warm climate. Hortscience 2011, 46, 727–729. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.M.; Chen, L.P.; Chen, S.; Chu, G.; Wang, D.Y.; Zhang, X.F. Effects of rhizosphere oxygen concentration on root physiological characteristics and anatomical structure at the tillering stage of rice. Ann. Appl. Biol. 2020, 177, 61–73. [Google Scholar] [CrossRef]
- McMinn, A.; Pankowski, A.; Delfatti, T. Effect of hyperoxia on the growth and photosynthesis of polar sea ice microalgae. J. Phycol. 2005, 41, 732–741. [Google Scholar] [CrossRef]
- Huang, J.X.; Gomez-Dans, J.L.; Huang, H.; Ma, H.Y.; Wu, Q.L.; Lewis, P.E.; Liang, S.L.; Chen, Z.X.; Xue, J.H.; Wu, Y.T.; et al. Assimilation of remote sensing into crop growth models: Current status and perspectives. Agric. For. Meteorol. 2019, 276, 107609. [Google Scholar] [CrossRef]
- Shi, P.J.; Ishikawa, T.; Sandhu, H.S.; Hui, C.; Chakraborty, A.; Jin, X.S.; Tachihara, K.; Li, B.L. On the 3/4-exponent von Bertalanffy equation for ontogenetic growth. Ecol. Model. 2014, 276, 23–28. [Google Scholar] [CrossRef]
- Liu, F.L.; Liu, Y.H.; Su, L.J.; Tao, W.H.; Wang, Q.J.; Deng, M.J. Integrated Growth Model of Typical Crops in China with Regional Parameters. Water 2022, 14, 1139. [Google Scholar] [CrossRef]
- Yin, X.Y.; Goudriaan, J.; Lantinga, E.A.; Vos, J.; Spiertz, H.J. A flexible sigmoid function of determinate growth. Ann. Bot. 2003, 91, 361–371. [Google Scholar] [CrossRef]
- Zou, Y.F.; Saddique, Q.; Dong, W.J.; Zhao, Y.; Zhang, X.; Liu, J.C.; Ding, D.Y.; Feng, H.; Wendroth, O.; Siddique, K.H.M. Quantifying the compensatory effect of increased soil temperature under plastic film mulching on crop growing degree days in a wheat–maize rotation system. Field Crop. Res. 2021, 260, 107993. [Google Scholar] [CrossRef]
- Hocaoglu, O.; Gonulal, E.; Akcura, M. Modelling the effect of irrigation deficit on maize growth with Logistic regression. Commun. Soil Sci. Plan. 2023, 54, 1293–1305. [Google Scholar] [CrossRef]
- Herrera, J.M.; Stamp, P.; Liedgens, M. Interannual variability in root growth of spring wheat (Triticum aestivum L.) at low and high nitrogen supply. Eur. J. Agron. 2007, 26, 317–326. [Google Scholar] [CrossRef]
- Hammad, H.M.; Abbas, F.; Ahmad, A.; Bakhat, H.F.; Farhad, W.; Wilkerson, C.J.; Fahad, S.; Hoogenboom, G. Predicting kernel growth of maize under controlled water and nitrogen applications. Int. J. Plant Prod. 2020, 14, 609–620. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, J.D.; Zhang, Y.Q.; Li, J. Simulation of rice biomass accumulation by an extended logistic model including influence of meteorological factors. Int. J. Biometeorol. 2002, 46, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Shabani, A.; Sepaskhah, A.R.; Kamgar-Haghighi, A.A. Estimation of yield and dry matter of rapeseed using Logistic model under water salinity and deficit irrigation. Arch. Agron. Soil Sci. 2014, 60, 951–969. [Google Scholar] [CrossRef]
- Wang, K.; Su, L.J.; Wang, Q.J. Cotton growth model under drip irrigation with film mulching: A case study of Xinjiang, China. Agron. J. 2021, 113, 2417–2436. [Google Scholar] [CrossRef]
- Zhu, Z.C.; Friedman, S.P.; Chen, Z.J.; Zheng, J.N.; Sun, S.J. Dry matter accumulation in maize in response to film mulching and plant density in northeast China. Plants 2022, 11, 1411. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.F.; Li, X.F.; Khalid, M.; Xi, D.D.; Zhang, Z.H.; Zhu, Y.Y. Growth and physiological responses of selected pakchoi varieties to Plasmodiophora brassicae infection. J. Plant Pathol. 2020, 102, 459–467. [Google Scholar] [CrossRef]
- Jeon, J.; Lim, C.J.; Kim, J.K.; Park, S.U. Comparative metabolic profiling of green and purple pakchoi (Brassica Rapa Subsp. Chinensis). Molecules 2018, 23, 1613. [Google Scholar] [CrossRef] [Green Version]
- Ding, D.Y.; Feng, H.; Zhao, Y.; Hill, R.L.; Yan, H.M.; Chen, H.X.; Hou, H.J.; Chu, X.S.; Liu, J.C.; Wang, N.J.; et al. Effects of continuous plastic mulching on crop growth in a winter wheat-summer maize rotation system on the Loess Plateau of China. Agric. For. Meteorol. 2019, 271, 385–397. [Google Scholar] [CrossRef]
- Gu, S. Growing degree hours-a simple, accurate, and precise protocol to approximate growing heat summation for grapevines. Int. J. Biometeorol. 2016, 60, 1123–1134. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.C.; Wang, Q.J. Effects of oxygenated brackish water on light response characteristics and yield of pakchoi (Brassica chinensis L.). Trans. Chin. Soc. Agric. Eng. 2020, 36, 116–123. (In Chinese) [Google Scholar]
- Zhu, M.J.; Wang, Q.J.; Sun, Y.; Zhang, J.H. Effects of oxygenated brackish water on germination and growth characteristics of wheat. Agric. Water Manag. 2021, 245, 106520. [Google Scholar] [CrossRef]
- Licausi, F. Molecular elements of low-oxygen signaling in plants. Physiol. Plant. 2013, 148, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Smith, J.A.C.; Harberd, N.P.; Jiang, C.F. The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses. Plant Mol. Biol. 2016, 91, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Sultana, M.S.; Yamamoto, S.I.; Biswas, M.S.; Sakurai, C.; Isoai, H.; Mano, J. Histidine-containing dipeptides mitigate salt stress in plants by scavenging reactive carbonyl species. J. Agric. Food Chem. 2022, 70, 11169–11178. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Chatterjee, A.; Singh, S.; Rai, R.C.; Rai, S.; Rai, L.C. Functional characterization of Alr0765, a hypothetical protein from anabaena PCC 7120 involved in cellular energy status sensing, iron acquisition and abiotic sress management in E. coli using molecular, bio-chemical and computational approaches. Curr. Genom. 2020, 21, 295–310. [Google Scholar] [CrossRef]
- Fan, W.; Zhou, Z.; Wang, W.T.; Huo, M.X.; Zhang, L.L.; Zhu, S.Y.; Yang, W.; Wang, X.Z. Environmentally friendly approach for advanced treatment of municipal secondary effluent by integration of micro-nano bubbles and photocatalysis. J. Clean. Prod. 2019, 237, 117828. [Google Scholar] [CrossRef]
- Wang, Z.; Yi, K.Y.; Lin, Q.Y.; Yang, L.; Chen, X.S.; Chen, H.; Liu, Y.Q.; Wei, D.C. Free radical sensors based on inner-cutting graphene field-effect transistors. Nat. Commun. 2019, 10, 1544. [Google Scholar] [CrossRef] [Green Version]
- Smirnoff, N.; Arnaud, D. Hydrogen peroxide metabolism and functions in plants. New Phytol. 2019, 221, 1197–1214. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Takahsshi, M.; Chiba, K. Enhanced free-radical generation by shrinking microbubbles using a copper catalyst. Chemosphere 2009, 77, 1157–1160. [Google Scholar] [CrossRef]
- Lemke, M.D.; Woodson, J.D. Targeted for destruction: Degradation of singlet oxygen-damaged chloroplasts. Plant Signal. Behav. 2022, 17, 2084955. [Google Scholar] [CrossRef] [PubMed]
- Novriyanti, E.; Watanabe, M.; Makoto, K.; Takeda, T.; Hashidoko, Y.; Koike, T. Photosynthetic nitrogen- and water-use efficiency of acacia and eucalypt seedlings as afforestation species. Photosynthetica 2012, 50, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Sever, K.; Bogdan, S.; Skvorc, Z. Response of photosynthesis, growth, and acorn mass of pedunculate oak to different levels of nitrogen in wet and dry growing seasons. J. For. Res. 2023, 34, 167–176. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Cao, B.L.; Chen, Z.J.; Xu, K. Grafting enhances the photosynthesis and nitrogen absorption of tomato plants under low-nitrogen stress. J. Plant Growth Regul. 2022, 41, 1714–1725. [Google Scholar] [CrossRef]
- Pendergast, L.; Bhattarai, S.P.; Midmore, D.J. Benefits of oxygation of subsurface drip-irrigation water for cotton in a Vertosol. Crop Pasture Sci. 2013, 64, 1171–1181. [Google Scholar] [CrossRef]
- Tilly, N.; Aasen, H.; Bareth, G. Fusion of plant height and vegetation indices for the estimation of barley biomass. Remote Sens. 2015, 7, 11449–11480. [Google Scholar] [CrossRef] [Green Version]
Macronutrients | Micronutrients | Formula of FeEDTA Solution | |||
---|---|---|---|---|---|
Salts | Concentration/(g·L−1) | Salts | Concentration/(mg·L−1) | Category | Concentration in FeEDTA Solution/(g·L−1) |
Ca(NO3)2·4H2O | 1.18 | H3BO3 | 2.86 | FeSO4·7H2O | 5.56 |
KNO3 | 0.51 | MnCl2·4H2O | 1.81 | ||
MgSO4·7H2O | 0.49 | ZnSO4·7H2O | 0.22 | C10H14N2Na2O8·2H2O (EDTA-Na2) | 7.46 |
KH2PO4 | 0.14 | CuSO4·5H2O | 0.08 | ||
H2MoO4·H2O/Na2MoO4·2H2O | 0.02/0.03 |
Index | Dissolved Oxygen Concentration/(mg/L) | Hm(Mm)/cm | Hm′(Mm′)/cm | a1(a2) | b1(b2) | R2 | h(m)/cm |
---|---|---|---|---|---|---|---|
Plant height | 9.5 | 7.617 | 10.782 | 3.014 | −0.0045 | 0.997 | 3.165 |
12.5 | 10.013 | 12.543 | 2.355 | −0.004 | 0.994 | 2.529 | |
15.5 | 10.026 | 13.440 | 4.869 | −0.007 | 0.990 | 3.414 | |
18.5 | 10.278 | 14.291 | 5.068 | −0.0076 | 0.992 | 4.013 | |
22.5 | 8.679 | 12.455 | 4.736 | −0.0075 | 0.984 | 3.776 | |
Root length | 9.5 | 14.236 | 18.929 | 10.779 | −0.016 | 0.994 | 4.693 |
12.5 | 18.717 | 25.326 | 9.231 | −0.0134 | 0.992 | 6.609 | |
15.5 | 18.859 | 25.758 | 12.509 | −0.0191 | 0.994 | 6.899 | |
18.5 | 20.492 | 26.838 | 15.402 | −0.0223 | 0.991 | 6.346 | |
22.5 | 17.015 | 23.028 | 9.305 | −0.0137 | 0.995 | 6.013 |
Index | Dissolved Oxygen Concentration/(mg/L) | GDD0/°C | GDD1/°C | GDD2/°C | ΔGDD/°C |
---|---|---|---|---|---|
Plant height | 9.5 | 669.778 | 377.120 | 962.435 | 585.315 |
12.5 | 588.750 | 259.511 | 917.989 | 658.479 | |
15.5 | 695.571 | 507.435 | 883.708 | 376.274 | |
18.5 | 666.842 | 493.558 | 840.126 | 346.568 | |
22.5 | 631.467 | 455.872 | 807.061 | 351.189 | |
Root length | 9.5 | 673.688 | 591.378 | 673.688 | 164.620 |
12.5 | 688.881 | 590.600 | 787.161 | 196.561 | |
15.5 | 654.921 | 585.971 | 723.872 | 137.901 | |
18.5 | 690.673 | 631.616 | 749.729 | 118.113 | |
22.5 | 679.197 | 583.069 | 775.325 | 192.257 |
Dissolved Oxygen Concentration/(mg/L) | Cumulative Consumption of Nitrate Nitrogen/(mg/L) | Nitrogen Mass Fraction | Plant Height ΔGDD/°C | Root Length ΔGDD/°C |
---|---|---|---|---|
9.5 | 2594.70 ± 57.32 b | 3.65 ± 0.11 c | 585.32 ± 9.11 b | 164.62 ± 10.83 b |
12.5 | 2775.84 ± 20.91 a | 3.96 ± 0.10 b | 658.48 ± 11.08 a | 196.56 ± 3.90 a |
15.5 | 2849.53 ± 127.05 a | 4.09 ± 0.15 b | 376.27 ± 9.29 c | 137.90 ± 10.75 c |
18.5 | 1856.56 ± 40.32 c | 4.34 ± 0.11 a | 346.57 ± 21.04 d | 118.11 ± 5.33 d |
22.5 | 2815.78 ± 56.24 a | 4.00 ± 0.04 b | 351.19 ± 12.301 d | 192.26 ± 16.64 a |
Yield | DOC | AqE | LCP | LSP | Rd | Pnmax | Plant Height | Root Length | NMF | Plant Height ΔGDD | Root Length ΔGDD | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Yield | 1.000 | 0.292 | 0.760 | −0.203 | 0.647 | 0.745 | 0.989 ** | 0.585 | 0.325 | 0.973 ** | −0.63 | −0.896 * |
DOC | 1.000 | −0.248 | 0.687 | 0.657 | 0.555 | 0.169 | 0.567 | 0.442 | 0.426 | −0.821 | −0.057 | |
AqE | 1.000 | −0.647 | 0.011 | 0.368 | 0.840 | 0.271 | 0.144 | 0.620 | 0.018 | −0.662 | ||
LCP | 1.000 | 0.479 | 0.440 | −0.289 | 0.557 | 0.628 | −0.128 | −0.507 | 0.136 | |||
LSP | 1.000 | 0.776 | 0.550 | 0.650 | 0.424 | 0.742 | −0.961 ** | −0.679 | ||||
Rd | 1.000 | 0.715 | 0.968 ** | 0.842 | 0.705 | −0.741 | −0.754 | |||||
Pnmax | 1.000 | 0.563 | 0.329 | 0.93 * | −0.516 | −0.031 | ||||||
Plant height | 1.000 | 0.947 * | 0.526 | −0.633 | −0.593 | |||||||
Root length | 1.000 | 0.232 | −0.397 | −0.383 | ||||||||
NMF | 1.000 | −0.752 | −0.836 | |||||||||
Plant height ΔGDD | 1.000 | 0.544 | ||||||||||
Root length ΔGDD | 1.000 |
Independent Variable | Correlation Coefficient | Direct Path Coefficient | Indirect Path Coefficient | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total Indirect Effect | DOC | AqE | LCP | LSP | Rd | Pnmax | Plant Height | Root Length | NMF | Plant Height ΔGDD | Root Length ΔGDD | |||
DOC | 0.292 | −1.220 | 1.509 | −0.043 | 1.078 | −0.268 | 0.642 | 0.033 | 0.252 | −0.566 | 1.039 | −0.594 | −0.064 | |
AqE | 0.760 | 0.170 | 0.585 | 0.302 | −1.015 | −0.005 | 0.425 | 0.162 | 0.120 | −0.184 | 1.514 | 0.013 | −0.747 | |
LCP | −0.203 | 1.570 | −1.772 | −0.836 | −0.113 | −0.195 | 0.509 | −0.056 | 0.247 | −0.804 | −0.312 | −0.366 | 0.154 | |
LSP | 0.647 | −0.410 | 1.055 | −0.800 | 0.002 | 0.752 | 0.897 | 0.106 | 0.289 | −0.542 | 1.812 | −0.695 | −0.767 | |
Rd | 0.745 | 1.160 | −0.411 | −0.676 | 0.064 | 0.690 | −0.316 | 0.138 | 0.431 | −1.077 | 1.722 | −0.536 | −0.851 | |
Pnmax | 0.989 | 0.190 | 0.796 | −0.206 | 0.147 | −0.454 | −0.224 | 0.827 | 0.251 | −0.419 | 2.272 | −0.373 | −1.023 | |
Plant height | 0.585 | 0.440 | 0.140 | −0.690 | 0.047 | 0.874 | −0.265 | 1.119 | 0.109 | −1.211 | 1.284 | −0.457 | −0.669 | |
Root length | 0.325 | −1.280 | 1.605 | −0.538 | 0.025 | 0.986 | −0.173 | 0.973 | 0.063 | 0.421 | 0.567 | −0.287 | −0.432 | |
NMF | 0.973 | 2.440 | −1.469 | −0.518 | 0.108 | −0.200 | −0.302 | 0.815 | 0.179 | 0.234 | −0.297 | −0.544 | −0.944 | |
Plant height ΔGDD | −0.630 | 0.720 | −1.353 | 1.000 | 0.003 | −0.795 | 0.392 | −0.857 | −0.099 | −0.281 | 0.508 | −1.837 | 0.614 | |
Root length ΔGDD | −0.896 | 1.130 | −2.025 | 0.069 | −0.116 | 0.214 | 0.277 | −0.872 | −0.175 | −0.264 | 0.490 | −2.042 | 0.393 |
Independent Variable | Direct Decision | Joint Decision | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
DOC | AqE | LCP | LSP | Rd | Pnmax | Plant Height | Root Length | NMF | Plant Height ΔGDD | ||
DOC | 1.488 | ||||||||||
AqE | 0.029 | 0.103 | |||||||||
LCP | 2.465 | 2.631 | 0.345 | ||||||||
LSP | 0.168 | 0.657 | 0.002 | 0.617 | |||||||
Rd | 1.346 | 1.571 | 0.145 | 1.602 | 0.738 | ||||||
Pnmax | 0.036 | 0.078 | 0.054 | 0.173 | 0.086 | 0.315 | |||||
Plant height | 0.194 | 0.609 | 0.041 | 0.769 | 0.235 | 0.988 | 0.094 | ||||
Root length | 1.638 | 1.380 | 0.063 | 2.525 | 0.445 | 2.500 | 0.159 | 1.066 | |||
NMF | 5.954 | 3.815 | 0.262 | 3.952 | 1.297 | 5.451 | 0.562 | 2.120 | 5.681 | ||
Plant height ΔGDD | 0.518 | 1.443 | 0.004 | 1.145 | 0.568 | 1.238 | 0.141 | 0.401 | 0.732 | 2.351 | |
Root length ΔGDD | 1.277 | 0.157 | 0.254 | 0.484 | 0.630 | 1.977 | 0.389 | 0.590 | 1.108 | 3.160 | 0.885 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, Y.; Sun, Y.; Tao, W.; Su, L. Effects of Oxygenated Brackish Water on Pakchoi (Brassica chinensis L.) Growth Characteristics Based on a Logistic Crop Growth Model. Agriculture 2023, 13, 1345. https://doi.org/10.3390/agriculture13071345
Shan Y, Sun Y, Tao W, Su L. Effects of Oxygenated Brackish Water on Pakchoi (Brassica chinensis L.) Growth Characteristics Based on a Logistic Crop Growth Model. Agriculture. 2023; 13(7):1345. https://doi.org/10.3390/agriculture13071345
Chicago/Turabian StyleShan, Yuyang, Yan Sun, Wanghai Tao, and Lijun Su. 2023. "Effects of Oxygenated Brackish Water on Pakchoi (Brassica chinensis L.) Growth Characteristics Based on a Logistic Crop Growth Model" Agriculture 13, no. 7: 1345. https://doi.org/10.3390/agriculture13071345
APA StyleShan, Y., Sun, Y., Tao, W., & Su, L. (2023). Effects of Oxygenated Brackish Water on Pakchoi (Brassica chinensis L.) Growth Characteristics Based on a Logistic Crop Growth Model. Agriculture, 13(7), 1345. https://doi.org/10.3390/agriculture13071345