National Agricultural Science and Technology Parks in China: Distribution Characteristics, Innovation Efficiency, and Influencing Factors
Abstract
:1. Introduction
2. Research Framework
3. Materials and Methods
3.1. Data Source
3.2. Data Methods
3.2.1. Spatial Analysis Methods
- Nearest neighbor index
- 2.
- Analysis of the degree of spatial equilibrium
- 3.
- Kernel Density Analysis
- 4.
- Spatial autocorrelation analysis
3.2.2. Three-Stage DEA Model
3.2.3. Tobit Model
4. Results
4.1. Spatial Distribution Characteristics of NASTPs
4.1.1. Types of Spatial Distribution
4.1.2. Balanced Spatial Distribution
4.1.3. Spatial Distribution Density
4.1.4. Spatial Autocorrelation Analysis
4.2. Analysis of Innovation Efficiency in NASTPs
4.2.1. Selection of Variables
4.2.2. Stage 1: DEA Model Empirical Results
4.2.3. Stage 2: Empirical Results of SFA Model
4.2.4. Stage 3: Empirical Results of Adjusted DEA Model
4.3. Analysis of Factors Influencing IE in NASTPs
5. Discussion
5.1. Integration with Previous Studies
5.2. Comparative Study with Internationally Relevant Agricultural Parks
5.3. Research Limitations and Future Prospects
6. Conclusions and Policy Implications
6.1. Conclusions
6.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, Q.; Wu, Y.C.; Chen, X.Y.; Liang, Y.W. Do China’s National Agricultural Science and Technology Parks promote county economic development? An empirical examination based on multi-period DID methods. Agriculture 2023, 13, 213. [Google Scholar] [CrossRef]
- Jiang, H.P.; Zhang, C.M.; Song, L.L. The mode of technology transfer mechanism of National Agricultural Scientific and Technical Zones. Sci. Manag. Res. 2007, 25, 52–56. [Google Scholar]
- Wu, S.; Wu, Y.C.; Chen, X.Y. Development of Agricultural Science and Technology Parks in China: Evolution, problems and paths. J. Agric. Sci. Technol. 2019, 21, 1–7. [Google Scholar]
- Wu, S.; Wu, Y.C. Institutional change and construction of Agricultural Science and Technology Parks in China: From the perspective of institutional change. Mod. Econ. Res. 2020, 457, 117–123. [Google Scholar]
- Zhang, X.; Wang, J.; Zhang, S. Sci-Tech Parks and Regional Economic Development; China University of Geosciences Press: Wuhan, China, 2014. [Google Scholar]
- Cao, Y.P. Does the establishment of national innovation demonstration zone optimize regional innovation structure?—Empirical evaluation based on synthetic control methods. Manag. Rev. 2023, 35, 128–143. [Google Scholar]
- Mingaleva, Z.; Shaidurova, N.; Prajová, V. The role of technoparks in technological upgrading of the economy (using the example of agricultural production). Manag. Syst. Prod. Eng. 2018, 26, 241–245. [Google Scholar]
- Stone-Jovicich, S.; Percy, H.; McMillan, L.; Turner, J.A.; Chen, L.; White, T. Evaluating monitoring, evaluation and learning initiatives in the New Zealand and Australian agricultural research and innovation systems: The MEL2 framework. Eval. J. Australas. 2019, 19, 8–21. [Google Scholar] [CrossRef]
- Faure, G.; Chiffoleau, Y.; Goulet, F.; Temple, L.; Touzard, J.M. Introduction-Reviving Perspectives on Innovation in Agriculture and Food Systems; Cirad-Agritrop: Athena, Grece, 2019. [Google Scholar]
- Alarcón, S.; Sánchez, M. Is there a virtuo us circle relationship between innovation activities and exports? A comparison of food and agricultural firms. Food Policy 2016, 61, 70–79. [Google Scholar] [CrossRef]
- Henriques, I.C.; Sobreiro, V.A.; Kimura, H. Science and technology park: Future challenges. Technol. Soc. 2018, 53, 144–160. [Google Scholar] [CrossRef]
- Liliana, P.-N.; Kedia, B.L.; Datta, D.K. Effectiveness and Efficiency of Cross-Border Knowledge Transfer: An Empirical Examination. J. Manag. Stud. 2008, 45, 714–744. [Google Scholar]
- Hjaltadottir, R.E.; Makkonen, T.; Mitze, T. Inter-regional innovation cooperation and structural heterogeneity: Does being a rural, or border region, or both, make a difference? J. Rural. Stud. 2020, 74, 257–270. [Google Scholar] [CrossRef]
- Mingaleva, Z.; Aitkazina, M.A. Multi-agent model for financing innovative projects in agriculture. World. Appl. Sci. J. 2013, 24, 222–226. [Google Scholar]
- Luo, Q.Y.; Liu, Z.X.; Gao, M.J.; Liu, Y.; Yang, Y.D. Research on the development mechanism of modern agricultural parks in China. Chin. J. Agric. Resour. Reg. Plan. 2020, 41, 14–20. [Google Scholar]
- Koopmans, M.E.; Rogge, E.; Mettepenningen, E.; Knickel, K.; Šūmane, S. The role of multi-actor governance in aligning farm modernization and sustainable rural development. J. Rural. Stud. 2018, 59, 252–262. [Google Scholar] [CrossRef]
- Huo, M.; Zhang, L.; Xie, L.H.; Li, X.P. Research on innovation efficiency measurement and spatial pattern of national agrotechnology parks from value chain perspect. Chin. J. Agric. Res. Reg. Plan. 2022, 43, 72–80. [Google Scholar]
- Park, J.H. Brokerage activities in regional innovation networks: The case of Daegu Technopark in Korea. Int. J. Urban Sci. 2016, 20, 260–284. [Google Scholar] [CrossRef]
- Rhee, J.; Sung, S.; Yoon, J. Learning Organisation Activities and Innovativeness of Tech-based SMEs within Korean Technoparks: The Mediating Role of Learning Transfer. Sci. Technol. Soc. 2016, 21, 410–434. [Google Scholar]
- Li, X.P.; Huo, M.; Xu, X.G. Analysis on evaluation of innovation capability of national agricultural science and technology parks and spatial pattern based on CPM and Moran’s I index—Monitoring data of innovation capacity of 160 national agricultural science and technology parks. World Agric. 2020, 497, 47–55+73. [Google Scholar]
- Li, X.P.; Huo, M.; Fang, J.L. Analysis on regional differences and influencing factors of operational efficiency of Agricultural Science and Technology Parks in China—Based on monitoring data of 139 National Agriculrural Science and Technology Parks. Chin. J. Agric. Res. Reg. Plan. 2021, 42, 232–240. [Google Scholar]
- Qian, Z.C.; Wang, Z.H. Evaluation on innovation capability of Shandong Agricultural Science and Technology Parks based on analytic hierarchy process and obstacle degree model. Shandong Agric. Sci. 2021, 53, 144–150. [Google Scholar]
- Qinggen, X.; Jin, Z. Research on the impact of national agricultural science and technology parks on regional agricultural economic growth. J. Chin. Agric. Mech. 2022, 43, 215. [Google Scholar]
- Lan, X.; Li, Z.; Wang, Z. An investigation of the innovation efficacy of Chinese photovoltaic enterprises employing three-stage data envelopment analysis (DEA). Energy Rep. 2022, 8, 456–465. [Google Scholar] [CrossRef]
- Li, K.; Lin, B. Impact of energy conservation policies on the green productivity in China’s manufacturing sector: Evidence from a three-stage DEA model. Appl. Energy 2016, 168, 351–363. [Google Scholar] [CrossRef]
- Jia, K.Y.; Qiao, W.F.; Chai, Y.B.; Feng, T.; Wang, Y.H.; Ge, D.Z. Spatial distribution characteristics of rural settlements under diversified rural production functions: A case of Taizhou, China. Habitat Int. 2020, 102, 102201. [Google Scholar] [CrossRef]
- Dong, F.; Wang, Y.; Zheng, L.; Li, J.; Xie, S. Can industrial agglomeration promote pollution agglomeration? Evidence from China. J. Clean. Prod. 2020, 246, 118960. [Google Scholar] [CrossRef]
- Ma, B.B.; Chen, X.P.; Ma, K.K.; Pu, L.L. Spatial distribution, type structure and influencing factors of key rural tourism villages in China. Econ. Geogr. 2020, 40, 190–199. [Google Scholar]
- Ding, X.Y.; Zhao, Z.Y.; Zheng, J.; Yue, X.P.; Jin, H.; Zhang, Y.K. Community Gardens in China: Spatial distribution, patterns, perceived benefits and barriers. Sustain. Cities Soc. 2022, 84, 103991. [Google Scholar] [CrossRef]
- Xue, L.Q.; Wang, J.; Zhang, L.; Zhang, L.C.; Wei, G.H.; Zhu, B.L. Spatiotemporal analysis of ecological vulnerability and management in the Tarim River Basin, China. Sci. Total Environ. 2019, 649, 876–888. [Google Scholar] [CrossRef]
- Hu, X.J.; Ma, C.M.; Huang, P.; Guo, X. Ecological vulnerability assessment based on AHP-PSR method and analysis of its single parameter sensitivity and spatial autocorrelation for ecological protection—A case of Weifang City, China. Ecol. Indic. 2023, 125, 107464. [Google Scholar] [CrossRef]
- Fan, Z.W.; Liu, M.S.; Shen, W.Q.; Lin, L.S. GIS-based assessment on eco-vulnerability of Jiangxi Province. In Proceedings of the International Conference on Environmental Science and Information Application Technology, Wuhan, China, 4–5 July 2009; 3, pp. 426–431. [Google Scholar]
- Fried, H.O.; Lovell, C.A.K.; Schmidt, S.S.; Yaisawarng, S. Accounting for environmental effects and statistical noise in data envelopment analysis. J. Prod. Anal. 2002, 17, 157–174. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Li, J.; Guo, G.; Li, S.; Gong, Q. Evaluation for water resource system efficiency and influencing factors in western China: A two-stage network DEA-Tobit model. J. Clean. Prod. 2021, 328, 129674. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, Y.L.; Li, T.S.; Shi, Y. The spatial layout of National Agricultural Science and Technology Park and influencing factors. Sci. Tech. Pro. Policy 2023, 1–8. [Google Scholar] [CrossRef]
- Qian, Z.H.; Li, Y.Y. The values and influence factors of family farms’ efficiency. J. Manag. World 2020, 36, 168–181+219. [Google Scholar]
- Sha, D.C.; Hu, X.H.; Zhao, C.P. Innovation efficiency of innovative industrial clusters in China. J. Technol. Econ. 2021, 40, 18–27. [Google Scholar]
- Chen, S.; Wang, J.L.; Tan, L. Research on input-output efficiency of innovative industrial clusters in China based on three-stage DEA model. Inq. Econ. Issues 2019, 9, 148–157. [Google Scholar]
- Aldieri, L.; Brahmi, M.; Chen, X.; Vinci, C.P. Knowledge spillovers and technical efficiency for cleaner production: An economic analysis from agriculture innovation. J. Clean. Prod. 2021, 320, 128830. [Google Scholar] [CrossRef]
- Fukugawa, N. Effects of incorporating public innovation intermediaries on technology transfer performance: Evidence from patent licensing of Japan’s Kohsetsushi. Heliyon 2022, 10, e11139. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Estimation and inference in two-stage, semi-parametric models of production processes. J. Econom. 2007, 136, 31–64. [Google Scholar] [CrossRef]
- Buenstorf, G. Schumpeterian incumbents and industry evolution. J. Evol. Econ. 2016, 26, 823–836. [Google Scholar] [CrossRef]
- Pfeffer, J.; Salancik, G.R. The external control of organizations: A resource dependence perspective. Soc. Sci. Electron. Publ. 2003, 23, 123–133. [Google Scholar]
- Sun, X.; Li, M.; Xu, K.X. Lead firms in the non-linear industrial evolution. Sci. Sci. Manag. S T 2022, 43, 107–123. [Google Scholar]
- Liu, M.F.; Li, S.H. Innovation efficiency evaluation of Hi-Tech Development Zones based on the three-stage DEA model. Manag. Rev. 2016, 28, 42–52+155. [Google Scholar]
- Laspia, A.; Sansone, G.; Landoni, P.; Racanelli, D.; Bartezzaghi, E. The organization of innovation services in science and technology parks: Evidence from a multi-case study analysis in Europe. Technol. Forecast. Soc. 2021, 173, 121095. [Google Scholar] [CrossRef]
- Dong, Q.; Wang, A.; He, K. Impact of government incentives on the innovation output of high-tech enterprises from the perspective of the free trade zone: A case study of China. Transform. Bus. Econ. 2020, 19, 462–485. [Google Scholar]
- Li, J.S.; Xu, P.M.; Xu, J.; Wang, X.H. Evolutionary logic and dynamic mechanism of science and technology correspondent policy change. Sci. Technol. Manag. Res. 2021, 41, 18–25. [Google Scholar]
- Yuan, D.L.; Shang, D.; Li, Y.; Wu, X.M. Geographical distance of independent directors, high-speed rail, and corporate innovation. Technol. Anal. Strateg. 2022, 1–14. [Google Scholar] [CrossRef]
- Bolívar Ramos, M.T. New ventures’ collaborative linkages and innovation performance: Exploring the role of distance. J. Manag. Organ. 2019, 25, 26–41. [Google Scholar] [CrossRef]
- Fu, Y. The impact of government funding on research innovation: An empirical analysis of Chinese universities. Manag. Decis. Econ. 2023, 44, 285–296. [Google Scholar] [CrossRef]
- Jordan, N.D.; Lemken, T.; Liedtke, C. Barriers to resource efficiency innovations and opportunities for smart regulations—The case of Germany. Environ. Policy Gov. 2014, 24, 307–323. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.H.; Li, T.S.; Ren, W.Y.; Rui, Y. Spatial heterogeneity of agricultural science and technology parks technology diffusion: A case study of Yangling ASTP. Chin. Geogr. Sci. 2021, 31, 629–645. [Google Scholar] [CrossRef]
- Yang, X.; Liu, C.; Lan, J. Sustainable technology diffusion manufacturing outwards FDI firms: Evidence from China using numerical simulation methods. Sustainability 2023, 15, 3108. [Google Scholar] [CrossRef]
- Sun, Z.Q.; Li, H.H.; Liu, B.L. Research on comprehensive measurement and influencing factors of collaborative innovation efficiency of China’s Four Urban Clusters. Sci. Technol. Prog. Policy 2021, 38, 47–55. [Google Scholar]
- Li, B.W.; Xing, L.R.; Xu, X. Can Agricultural agglomeration increase farmers’ income?—Evidence from Freshwater aquaculture. J. Agr. Econ. 2019, 289, 39–51. [Google Scholar]
- Lu, Q.Y.; Zhang, X.Q.; Meng, X.H. Empirical analysis of the influence spatial correlation and influencing factors of ecological efficiency of grain planting in China. Econ. Probl. 2021, 504, 82–88+94. [Google Scholar]
- He, Y.H.; Lin, Y.; Zhou, G.H.; Zhu, Y.X. Spatial pattern and drivers of urbanization in China’s mid-level developing urban agglomeration: A case study of Chang-Zhu-Tan. Reg. Sustain. 2021, 2, 83–97. [Google Scholar] [CrossRef]
- Gong, B.L. Technology diffusion and regional productivity gaps in China’s agricultural sector. Econ. Res. J. 2022, 57, 102–120. [Google Scholar]
- Xu, S.B.; Li, X.W.; Li, G. Evaluation of innovation efficiency of artificial intelligence listed enterprises based on three-stage DEA. Sci. Technol. Manag. Res. 2020, 40, 165–172. [Google Scholar]
- Meng, T.; Xu, G.L. Evaluation of innovation efficiency of unicorn listed enterprises based on three stage DEA. Oper Res. Manag. Sci. 2021, 30, 206–212. [Google Scholar]
- Zhu, X.; Zhang, Y. Research on the interaction between agricultural sci-tech parks and regional economic and social development—Taking Jiangsu agricultural sci-tech parks as an example. Issues Agric. Econ. 2013, 34, 72–76. [Google Scholar]
- Steruska, J.; Simkova, N.; Pitner, T. Do science and technology parks improve technology transfer? Technol. Soc. 2019, 59, 101127. [Google Scholar] [CrossRef]
- Eto, H. Obstacles to emergence of high/new technology parks, ventures and clusters in Japan. Technol. Forecast. Soc. 2005, 72, 359–373. [Google Scholar] [CrossRef] [Green Version]
- Ng, W.K.B.; Appelmeulenbroek, R.; Cloodt, M.; Arentze, T. Exploring science park location choice: A stated choice experiment among Dutch technology-based firms. Technol. Forecast. Soc. 2022, 182, 121796. [Google Scholar] [CrossRef]
Type | Name | Symbol | Description |
---|---|---|---|
Input variables | Park area | km2 | Land area of the NASTPs |
R&D input | CNY 10 thousand | Total R&D investment by enterprises and government in the NASTPs | |
Service platform | number | The sum of the number of academician workstations, investment and financing platforms, agricultural products monitoring, and inspection platforms and agricultural products e-commerce platforms in the NASTPs | |
Output variables | Economic performance | CNY 10 thousand | Annual gross output of the NASTPs |
R&D achievements | number | Number of authorized patents | |
Environmental variables | Leading enterprises | number | Number of leading enterprises above municipal level in the NASTPs |
Income level | CNY | Per-capita disposable income of farmers in the NASTPs | |
Innovation support | number | Number of high-tech enterprises in the NASTPs | |
Science and technology training | number | Number of science and technology correspondent | |
Geographical distance | km | Distance from the prefecture-level city | |
Research projects | number | Number of major R&D tasks at provincial and ministerial level or above | |
Demonstration extension | number | Number of new technologies, products. and facilities introduced and promoted in the NASTPs |
NASTPs | IE | PTE | SE | RTS | ||||
---|---|---|---|---|---|---|---|---|
Stage1 | Stage3 | Stage1 | Stage3 | Stage1 | Stage3 | Stage1 | Stage3 | |
Beijing Fangshan | 0.767 | 0.343 | 0.801 | 0.635 | 0.957 | 0.54 | IRS | IRS |
Beijing Miyun | 0.381 | 0.259 | 0.413 | 0.62 | 0.922 | 0.418 | IRS | IRS |
Hebei Dachang | 1 | 0.766 | 1 | 0.957 | 1 | 0.8 | - | IRS |
Hebei Gu’an | 0.431 | 0.186 | 0.439 | 0.381 | 0.984 | 0.488 | IRS | IRS |
Hebei Zhuozhou | 0.886 | 1 | 1 | 1 | 0.886 | 1 | DRS | - |
Hebei Luanping | 0.512 | 0.618 | 0.575 | 0.623 | 0.89 | 0.991 | DRS | DRS |
Hebei Fengning | 0.206 | 0.301 | 0.207 | 0.373 | 0.993 | 0.808 | DRS | IRS |
Hebei Xinji | 0.379 | 0.445 | 0.38 | 0.539 | 0.997 | 0.827 | IRS | IRS |
Hebei Weixian | 0.253 | 0.264 | 0.267 | 0.502 | 0.95 | 0.526 | IRS | IRS |
Inner Mongolia Bayan Nur | 0.538 | 0.471 | 0.538 | 0.586 | 1 | 0.804 | - | IRS |
Inner Mongolia Tongliao | 0.069 | 0.179 | 0.075 | 0.3 | 0.922 | 0.596 | IRS | IRS |
Inner Mongolia Erdos | 0.2 | 0.28 | 0.213 | 0.428 | 0.936 | 0.653 | IRS | IRS |
Liaoning Jinzhou | 1 | 0.587 | 1 | 0.858 | 1 | 0.684 | - | IRS |
Jilin Bai Shan | 0.617 | 0.672 | 0.848 | 0.748 | 0.728 | 0.898 | DRS | DRS |
Heilongjiang Jiamusi | 1 | 1 | 1 | 1 | 1 | 1 | - | - |
Shanghai Chongming | 0.611 | 0.5 | 0.643 | 0.733 | 0.95 | 0.681 | IRS | IRS |
Jiangsu Zhenjiang | 0.646 | 0.748 | 0.684 | 0.82 | 0.945 | 0.913 | DRS | IRS |
Jiangsu Yangzhou | 0.164 | 0.228 | 0.194 | 0.391 | 0.848 | 0.583 | IRS | IRS |
Anhui Bozhou | 1 | 1 | 1 | 1 | 1 | 1 | - | - |
Anhui Xuancheng | 0.265 | 0.372 | 0.331 | 0.419 | 0.801 | 0.89 | DRS | IRS |
Anhui Lu’an | 0.282 | 0.249 | 0.421 | 0.603 | 0.671 | 0.414 | IRS | IRS |
Anhui Huainan | 0.452 | 0.328 | 0.493 | 0.585 | 0.916 | 0.561 | IRS | IRS |
Fujian Longyan | 0.303 | 0.43 | 0.303 | 0.486 | 0.998 | 0.885 | DRS | IRS |
Fujian Shaowu | 0.336 | 0.216 | 0.381 | 0.556 | 0.883 | 0.388 | IRS | IRS |
Fujian Sanming | 0.786 | 0.516 | 0.808 | 0.763 | 0.973 | 0.677 | IRS | IRS |
Jiangxi Yichun | 0.235 | 0.202 | 0.265 | 0.436 | 0.887 | 0.464 | IRS | IRS |
Shandong Weihai | 0.637 | 0.706 | 0.637 | 0.781 | 1 | 0.904 | - | IRS |
Shandong Heze | 0.442 | 0.323 | 0.443 | 0.449 | 0.998 | 0.718 | IRS | IRS |
Shandong Jinan | 1 | 0.555 | 1 | 0.881 | 1 | 0.631 | - | IRS |
Shandong Zaozhuang | 0.483 | 0.369 | 0.625 | 0.616 | 0.774 | 0.6 | IRS | IRS |
Shandong Weifang | 1 | 1 | 1 | 1 | 1 | 1 | - | - |
Shandong Liaocheng | 0.472 | 0.5 | 0.485 | 0.646 | 0.974 | 0.774 | IRS | IRS |
Shandong Qixia | 0.588 | 0.377 | 0.627 | 0.728 | 0.938 | 0.518 | IRS | IRS |
Shandong Zoucheng | 1 | 0.777 | 1 | 0.909 | 1 | 0.855 | - | IRS |
Shandong Bincheng | 0.353 | 0.423 | 0.353 | 0.485 | 1 | 0.873 | - | IRS |
Shandong Junan | 0.49 | 0.412 | 0.542 | 0.639 | 0.903 | 0.644 | IRS | IRS |
Henan Shangqiu | 0.388 | 0.48 | 0.486 | 0.513 | 0.798 | 0.936 | DRS | DRS |
Henan Luohe | 0.33 | 0.289 | 0.426 | 0.589 | 0.774 | 0.49 | IRS | IRS |
Henan Jiaozuo | 0.492 | 0.749 | 0.825 | 0.876 | 0.596 | 0.855 | DRS | DRS |
Henan Anyang | 0.843 | 0.961 | 1 | 0.967 | 0.843 | 0.994 | DRS | DRS |
Henan Zhumadian | 1 | 0.743 | 1 | 0.761 | 1 | 0.977 | - | DRS |
Henan Zhoukou | 0.669 | 0.838 | 1 | 0.947 | 0.669 | 0.885 | DRS | DRS |
Hubei Yichang | 1 | 1 | 1 | 1 | 1 | 1 | - | - |
Hubei Huangshi | 1 | 1 | 1 | 1 | 1 | 1 | - | - |
Hunan Ningxiang | 1 | 1 | 1 | 1 | 1 | 1 | - | - |
Hunan Chenzhou | 0.881 | 0.947 | 0.901 | 1 | 0.977 | 0.947 | DRS | IRS |
Hunan Shaoyang | 0.811 | 0.641 | 0.838 | 0.854 | 0.968 | 0.751 | DRS | IRS |
Guangdong Shaoguan | 1 | 1 | 1 | 1 | 1 | 1 | - | - |
Guangxi Hezhou | 0.486 | 0.187 | 0.601 | 0.667 | 0.808 | 0.281 | IRS | IRS |
Hainan Lingshui | 1 | 0.886 | 1 | 1 | 1 | 0.886 | - | IRS |
Chongqing Changshou | 0.517 | 0.333 | 0.762 | 0.618 | 0.678 | 0.539 | IRS | IRS |
Chongqing Jiangjin | 1 | 0.452 | 1 | 0.824 | 1 | 0.549 | - | IRS |
Chongqing Yongchuan | 1 | 0.995 | 1 | 1 | 1 | 0.995 | - | IRS |
Chongqing Fuling | 1 | 0.767 | 1 | 0.816 | 1 | 0.94 | - | IRS |
Sichuan Bazhong | 0.181 | 0.388 | 0.236 | 0.389 | 0.766 | 0.999 | DRS | - |
Sichuan Mianyang | 0.573 | 0.829 | 1 | 1 | 0.573 | 0.829 | DRS | DRS |
Sichuan Suining | 0.167 | 0.25 | 0.169 | 0.359 | 0.986 | 0.696 | IRS | IRS |
Guizhou Tongren | 0.074 | 0.121 | 0.078 | 0.243 | 0.946 | 0.501 | IRS | IRS |
Guizhou Liupanshui | 0.566 | 0.397 | 0.567 | 0.519 | 0.998 | 0.764 | IRS | IRS |
Guizhou Chishui | 0.331 | 0.545 | 0.336 | 0.667 | 0.985 | 0.817 | DRS | IRS |
Yunnan Xuanwei | 0.802 | 0.457 | 0.833 | 0.695 | 0.963 | 0.658 | IRS | IRS |
Yunnan Dali | 0.54 | 0.558 | 0.647 | 0.61 | 0.835 | 0.914 | DRS | IRS |
Yunnan Baoshan | 0.215 | 0.567 | 0.806 | 0.812 | 0.266 | 0.698 | DRS | DRS |
Yunnan Mile | 0.064 | 0.106 | 0.124 | 0.548 | 0.513 | 0.193 | IRS | IRS |
Tibet Naqu | 0.232 | 0.028 | 1 | 1 | 0.232 | 0.028 | IRS | IRS |
Shaanxi Tongchuan | 0.212 | 0.076 | 0.853 | 0.533 | 0.248 | 0.143 | IRS | IRS |
Gansu Baiyin | 0.435 | 1 | 0.678 | 1 | 0.643 | 1 | DRS | - |
Gansu Gannan | 0.093 | 0.152 | 0.144 | 0.402 | 0.646 | 0.379 | IRS | IRS |
Gansu Linxia | 0.386 | 0.552 | 0.451 | 0.576 | 0.856 | 0.958 | DRS | IRS |
Qinghai Haixi | 0.245 | 0.434 | 0.249 | 0.589 | 0.983 | 0.736 | DRS | IRS |
Qinghai Hainan | 1 | 0.576 | 1 | 0.707 | 1 | 0.815 | - | IRS |
Qinghai Haibei | 0.185 | 0.053 | 1 | 0.619 | 0.185 | 0.085 | IRS | IRS |
Ningxia Zhongwei | 1 | 0.797 | 1 | 1 | 1 | 0.797 | - | IRS |
Xinjiang Shawan | 0.712 | 0.438 | 0.769 | 0.797 | 0.926 | 0.55 | IRS | IRS |
Xinjiang Wensu | 0.535 | 0.348 | 0.589 | 0.67 | 0.909 | 0.519 | IRS | IRS |
Xinjiang Hu Yanghe | 0.936 | 0.877 | 0.959 | 0.914 | 0.975 | 0.959 | DRS | IRS |
Beijing Yanqing | 0.596 | 0.352 | 0.651 | 0.9 | 0.915 | 0.391 | IRS | IRS |
Inner Mongolia Hellinger | 0.341 | 0.426 | 0.342 | 0.476 | 0.995 | 0.895 | DRS | IRS |
Jilin Yanbian | 0.368 | 0.294 | 0.383 | 0.534 | 0.961 | 0.551 | IRS | IRS |
Henan Puyang | 0.235 | 0.238 | 0.291 | 0.506 | 0.807 | 0.47 | IRS | IRS |
Guizhou Bijie | 0.774 | 0.492 | 0.783 | 0.816 | 0.989 | 0.603 | DRS | IRS |
Yunnan Chuxiong | 0.242 | 0.291 | 0.266 | 0.446 | 0.909 | 0.652 | IRS | IRS |
Ningxia Yinchuan | 1 | 0.124 | 1 | 0.809 | 1 | 0.154 | - | IRS |
Xinjiang Hami | 0.18 | 0.071 | 0.28 | 0.804 | 0.642 | 0.088 | IRS | IRS |
Shenzhen Bao’an | 0.722 | 0.823 | 0.872 | 0.871 | 0.828 | 0.946 | DRS | IRS |
Mean value | 0.566 | 0.512 | 0.649 | 0.703 | 0.873 | 0.704 |
Environment Variables | Park Area Redundancy | R&D Input Redundancy | Service Platform Redundancy |
---|---|---|---|
Constants | −28.788 *** (2.403) | −18,480.622 *** (61.758) | −4.340 *** (1.135) |
x1 | 41.578 *** (3.388) | 5027.254 *** (15.508) | 1.511 (1.021) |
x2 | 13.488 *** (3.617) | 13,841.022 *** (223.597) | 2.940 *** (0.770) |
x3 | −625.229 *** (31.791) | −42,477.730 *** (14.191) | −15.796 *** (0.996) |
x4 | 40.893 *** (4.970) | 19,753.214 *** (88.108) | 5.542 *** (2.123) |
x5 | 39.067 *** (3.011) | 2537.944 *** (2.541) | 2.420 *** (0.905) |
x6 | 10.330 (4.841) | 8470.789 *** (98.243) | −3.871 *** (0.999) |
x7 | 0.996 *** (6.544) | 16,932.444 *** (290.831) | 5.059 *** (1.192) |
σ2 | 363,383.360 *** (1.003) | 818,995,890 *** (1.000) | 138.084 *** (1.002) |
γ | 1.000 *** (1.37964 × 10−7) | 1.000 *** (5.3593 × 10−7) | 1.000 *** (5.6266 × 10−6) |
Log | −585.315 | −931.840 | −268.737 |
LR | 83.966 *** | 43.136 *** | 46.927 *** |
Types | Grading Criteria | National Agricultural Science and Technology Park |
---|---|---|
Innovation Pioneer | PTE = 1 | Hebei Zhuozhou, Heilongjiang Jiamusi, Anhui Bozhou, Shandong Weifang, Hubei Yichang, Hubei Huangshi, Hunan Ningxiang, Guangdong Shaoguan, Gansu Baiyin |
SE = 1 | ||
Innovation Good | 0.9 ≤ PTE < 1 | Hebei Dachang, Shandong Zoucheng, Henan Anyang, Henan Zhoukou, Hunan Chenzhou, Hainan Lingshui, Chongqing Yongchuan, Sichuan Mianyang, Ningxia Zhongwei, Xinjiang Huyanghe |
0.75 ≤ SE < 1 | ||
SE Improvement | 0.9 ≤ PTE < 1 | Beijing Yanqing, Tibet Naqu |
0 ≤ SE < 0.75 | ||
PTE Improvement | 0 ≤ PTE < 0.9 | Hebei Luanping, Hebei Fengning, Hebei Xinji, Inner Mongolia Bayannur, Jilin Baishan, Jiangsu Zhenjiang, Anhui Xuancheng, Fujian Longyan, Shandong Weihai, Shandong Liaocheng, Shandong Bincheng, Henan Shangqiu, Henan Jiaozuo, Henan Zhumadian, Hunan Shaoyang, Chongqing Fuling, Sichuan Bazhong, Guizhou Liupanshui, Guizhou Chishui, Yunnan Dali, Gansu Linxia, Qinghai Hainan, Inner Mongolia Hellinger, Shenzhen Baoan |
0.75 ≤ SE < 1 | ||
Innovation Lag | 0 ≤ PTE < 0.9 | Beijing Fangshan, Beijing Miyun, Hebei Gu’an, Hebei Weixian, Inner Mongolia Tongliao, Inner Mongolia Erdos, Liaoning Jinzhou, Shanghai Chongming, Jiangsu Yangzhou, Anhui Lu’an, Anhui Huainan, Fujian Shaowu, Fujian Sanming, Jiangxi Yichun, Shandong Heze, Shandong Jinan, Shandong Zaozhuang, Shandong Qixia, Shandong Junan, Henan Luohe, Guangxi Hezhou, Chongqing Changshou, Chongqing Jiangjin, Sichuan Suining, Guizhou Tongren, Yunnan Xuanwei, Yunnan Baoshan, Yunnan Mile, Shaanxi Tongchuan, Gansu Gannan, Qinghai Haixi, Qinghai Haibei, Xinjiang Shawan, Xinjiang Wensu, Jilin Yanbian, Henan Puyang, Guizhou Bijie, Yunnan Chuxiong, Ningxia Yinchuan, Xinjiang Hami |
0 ≤ SE < 0.75 |
Variables | N | Min | Max | Mean | Standard Deviation |
---|---|---|---|---|---|
IE | 85 | 0.028 | 1 | 0.512 | 0.285 |
PTE | 85 | 0.243 | 1 | 0.703 | 0.213 |
SE | 85 | 0.028 | 1 | 0.704 | 0.253 |
x1 | 85 | 0 | 1 | 0.190 | 0.188 |
x2 | 85 | 0 | 1 | 0.222 | 0.173 |
x3 | 85 | 0 | 1 | 0.034 | 0.110 |
x4 | 85 | 0 | 1 | 0.124 | 0.182 |
x5 | 85 | 0 | 1 | 0.222 | 0.215 |
x6 | 85 | 0 | 1 | 0.094 | 0.153 |
x7 | 85 | 0 | 1 | 0.105 | 0.171 |
Variables | IE | PTE | SE |
---|---|---|---|
x1 | 0.627 *** (0.198) | 0.245 (0.172) | 0.587 *** (0.180) |
x2 | 0.448 ** (0.183) | 0.419 ** (0.165) | 0.234 (0.165) |
x3 | 2.139 * (1.147) | 0.538 (0.538) | 2.653 ** (1.028) |
x4 | −0.479 ** (0.213) | −0.139 (0.191) | −0.472 ** (0.190) |
x5 | 0.171 (0.138) | 0.002 (0.124) | 0.195 (0.124) |
x6 | 0.050 (0.255) | 0.106 (0.236) | −0.038 (0.228) |
x7 | 0.421 ** (0.179) | 0.320 * (0.169) | 0.278 * (0.161) |
Constants | 0.226 *** (0.071) | 0.544 *** (0.063) | 0.482 *** (0.064) |
Log likelihood | −13.650 | −10.936 | −3.281 |
Prob > chi2 | 0.000 | 0.025 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Wu, Y.; Yu, Q.; Chen, X. National Agricultural Science and Technology Parks in China: Distribution Characteristics, Innovation Efficiency, and Influencing Factors. Agriculture 2023, 13, 1459. https://doi.org/10.3390/agriculture13071459
Li S, Wu Y, Yu Q, Chen X. National Agricultural Science and Technology Parks in China: Distribution Characteristics, Innovation Efficiency, and Influencing Factors. Agriculture. 2023; 13(7):1459. https://doi.org/10.3390/agriculture13071459
Chicago/Turabian StyleLi, Shanwei, Yongchang Wu, Qi Yu, and Xueyuan Chen. 2023. "National Agricultural Science and Technology Parks in China: Distribution Characteristics, Innovation Efficiency, and Influencing Factors" Agriculture 13, no. 7: 1459. https://doi.org/10.3390/agriculture13071459
APA StyleLi, S., Wu, Y., Yu, Q., & Chen, X. (2023). National Agricultural Science and Technology Parks in China: Distribution Characteristics, Innovation Efficiency, and Influencing Factors. Agriculture, 13(7), 1459. https://doi.org/10.3390/agriculture13071459