Navigation of Apple Tree Pruning Robot Based on Improved RRT-Connect Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. RRT-Connect
2.2. Goal-Biased Strategy
2.3. Optimization for the Mechanism of Nearest Node Selection
2.4. Path Optimization
2.4.1. Pruning Process
2.4.2. Bezier Curve Smoothing Method
3. Results and Discussion
3.1. Computer Simulation
3.1.1. Optimal Probability Parameter Threshold
3.1.2. Performance Comparison of a Series of Algorithms
3.2. Field Experiments in an Apple Orchard
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zahid, A.; Mahmud, M.S.; He, L.; Heinemann, P.; Choi, D.; Schupp, J. Technological advancements towards developing a robotic pruner for apple trees: A review. Comput. Electron. Agric. 2019, 189, 106383. [Google Scholar] [CrossRef]
- He, L.; Zahid, A.; Mahmud, M.S. Robotic Tree Fruit Harvesting: Status, Challenges, and Prosperities. In Sensing, Data Managing, and Control Technologies for Agricultural Systems; Springer International Publishing: Cham, Switzerland, 2022; pp. 299–332. [Google Scholar] [CrossRef]
- Edwards, G.T.; Hinge, J.; Skou-Nielsen, N.; Villa-Henriksen, A.; Sørensen, C.A.G.; Green, O. Route planning evaluation of a prototype optimised infield route planner for neutral material flow agricultural operations. Biosyst. Eng. 2017, 153, 149–157. [Google Scholar] [CrossRef]
- Seyyedhasani, H.; Dvorak, J.S. Reducing field work time using fleet routing optimization. Biosyst. Eng. 2018, 169, 1–10. [Google Scholar] [CrossRef]
- Freitas, H.; Faiçal, B.S.; e Silva, A.V.C.; Ueyama, J. Use of UAVs for an efficient capsule distribution and smart path planning for biological pest control. Comput. Electron. Agric. 2020, 173, 105387. [Google Scholar] [CrossRef]
- Zhou, J.; He, Y. Research progress on navigation path planning of agricultural machinery. Trans. Chin. Soc. Agric. Mach. 2021, 52, 1–14. [Google Scholar] [CrossRef]
- Arad, B.; Balendonck, J.; Barth, R.; Ben-Shahar, O.; Edan, Y.; Hellström, T.; Hemming, J.; Kurtser, P.; Ringdahl, O.; Tielen, T.; et al. Development of a sweet pepper harvesting robot. J. Field Robot. 2020, 37, 1027–1039. [Google Scholar] [CrossRef] [Green Version]
- Silwal, A.; Davidson, J.R.; Karkee, M.; Mo, C.K.; Zhang, Q.; Lewis, K. Design, integration, and field evaluation of a robotic apple harvester. J. Field Robot. 2017, 34, 1140–1159. [Google Scholar] [CrossRef]
- Botterill, T.; Paulin, S.; Green, R.; Williams, S.; Lin, J.; Saxton, V.; Mills, S.; Chen, X.Q.; Corbett-Davies, S. A robot system for pruning grape vines. J. Field Robot. 2017, 34, 1100–1122. [Google Scholar] [CrossRef]
- Wang, Y.; He, Z.; Cao, D.; Ma, L.; Li, K.; Jia, L.; Cui, Y. Coverage path planning for kiwifruit picking robots based on deep reinforcement learning. Comput. Electron. Agric. 2023, 205, 107593. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Zhou, W.; Yao, Q.; Nie, J.; Qi, X. Robot Path Planning Navigation for dense planting red jujube orchards based on the joint improved A* and DWA algorithms under laser SLAM. Agriculture 2022, 12, 1445. [Google Scholar] [CrossRef]
- Raja, P.; Pugazhenthi, S. Optimal path planning of mobile robots: A review. Int. J. Phys. Sci. 2012, 7, 1314–1320. [Google Scholar] [CrossRef]
- Patle, B.K.; Pandey, A.; Parhi, D.R.K.; Jagadeesh, A.J.D.T. A review: On path planning strategies for navigation of mobile robot. Def. Technol. 2019, 15, 582–606. [Google Scholar] [CrossRef]
- Sarkar, R.; Barman, D.; Chowdhury, N. Domain knowledge based genetic algorithms for mobile robot path planning having single and multiple targets. J. King Saud Univ.-Comput. Inform. Sci. 2022, 34, 4269–4283. [Google Scholar] [CrossRef]
- Howden, W.E. The sofa problem. Comput. J. 1968, 11, 299–301. [Google Scholar] [CrossRef] [Green Version]
- LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning. 1998. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.1853&rep=rep1&type=pdf (accessed on 10 March 2022).
- Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R. Path planning and trajectory planning algorithms: A general overview. In Motion and Operation Planning of Robotic Systems; Carbone, G., Gomez-Bravo, F., Eds.; Springer: Cham, Switzerland, 2015; Volume 29, pp. 3–27. [Google Scholar] [CrossRef]
- Pehlivanoglu, Y.V.; Pehlivanoglu, P. An enhanced genetic algorithm for path planning of autonomous UAV in target coverage problems. Appl. Soft Comput. 2021, 112, 107796. [Google Scholar] [CrossRef]
- Karur, K.; Sharma, N.; Dharmatti, C.; Siegel, J.E. A survey of path planning algorithms for mobile robots. Vehicles 2021, 3, 448–468. [Google Scholar] [CrossRef]
- Warrier, A.R.; Nedunghat, P.; Bera, M.K.; Nath, K. Implementation of Classical Path Planning Algorithms for Mobile Robot Navigation: A Comprehensive Comparison. In Proceedings of the 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering, Maldives, Maldives, 16–18 November 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Dirik, M.; Kocamaz, F. Rrt-dijkstra: An improved path planning algorithm for mobile robots. J. Soft Comput. Artif. Intell. 2020, 1, 69–77. Available online: https://dergipark.org.tr/en/pub/jscai/issue/56697/784679 (accessed on 5 May 2023).
- Garip, Z.; Karayel, D.; Çimen, M.E. A study on path planning optimization of mobile robots based on hybrid algorithm. Concurr. Comput. Pract. Exp. 2022, 34, e6721. [Google Scholar] [CrossRef]
- Sánchez-Ibáñez, J.R.; Pérez-del-Pulgar, C.J.; García-Cerezo, A. Path planning for autonomous mobile robots: A review. Sensors 2021, 21, 7898. [Google Scholar] [CrossRef]
- Kavraki, L.E.; Svestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [Google Scholar] [CrossRef] [Green Version]
- LaValle, S.M.; Kuffner, J.J., Jr. Randomized kinodynamic planning. Int. J. Robot. Res. 2001, 20, 378–400. [Google Scholar] [CrossRef]
- Kuffner, J.J.; LaValle, S.M. RRT-connect: An efficient approach to single-query path planning. In Proceedings of the 2000 ICRA, Millennium Conference, IEEE International Conference on Robotics and Automation, Symposia Proceedings (Cat. No. 00CH37065), San Francisco, CA, USA, 24–28 April 2000; Volume 2, pp. 995–1001. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Huang, B.; Zeng, G.; Li, X. Fast path planning algorithm based on improved RRT-Connect. J. Wuhan Univ. 2019, 65, 283–289. [Google Scholar] [CrossRef]
- Zhao, X.; Cao, Z.; Geng, W.; Yu, Y.; Tan, M.; Chen, X. Path planning of manipulator based on RRT-Connect and Bezier curve. In Proceedings of the 9th IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Suzhou, China, 29 July–2 August 2019; pp. 649–653. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, Y.; Yao, X. An improved path planning algorithm for unmanned aerial vehicle based on RRT-Connect. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 4854–4858. [Google Scholar] [CrossRef]
- Xi, X.; Shi, Y.; Jin, Y. Obstacle avoidance path control method for agricultural machinery automatic driving based on optimized Bezier. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2019, 36, 82–88. [Google Scholar] [CrossRef]
- Mashayekhi, R.; Idris, M.Y.I.; Anisi, M.H.; Ahmedy, I.; Ali, I. Informed RRT*-connect: An asymptotically optimal single-query path planning method. IEEE Access 2020, 8, 19842–19852. [Google Scholar] [CrossRef]
p | Map 1 | Map 2 | Map 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Average Time/s | Success Rate | SD 1 | Average Time/s | Success Rate | SD 1 | Average Time/s | Success Rate | SD 1 | |
0.1 | 1.43 | 100% | 0.1950 | 9.28 | 100% | 0.4152 | 16.33 | 100% | 0.7199 |
0.2 | 1.03 | 100% | 0.1595 | 7.89 | 100% | 0.3640 | 14.11 | 100% | 0.6595 |
0.3 | 0.99 | 100% | 0.1576 | 6.66 | 100% | 0.2579 | 13.40 | 100% | 0.5849 |
0.4 | 0.95 | 100% | 0.1194 | 4.52 | 100% | 0.0948 | 10.24 | 100% | 0.4561 |
0.5 | 0.93 | 100% | 0.1086 | 5.63 | 100% | 0.1166 | 15.54 | 100% | 0.6736 |
0.6 | 0.91 | 100% | 0.0901 | 5.95 | 100% | 0.1952 | 19.45 | 100% | 0.8118 |
0.7 | 0.98 | 100% | 0.1565 | 6.75 | 100% | 0.2728 | 24.89 | 100% | 0.8709 |
0.8 | 1.03 | 100% | 0.1779 | 10.28 | 98% | 8.0709 | 28.86 | 100% | 0.9113 |
0.9 | 1.08 | 100% | 0.2074 | 13.50 | 95% | 9.3226 | 33.47 | 100% | 0.9967 |
Method | Result | Map 1 | Map 2 | Map 3 |
---|---|---|---|---|
RRT-Connect | Average length | 828.41 | 834.44 | 1066.65 |
Average time/s | 1.48 | 23.68 | 17.24 | |
Success rate | 100% | 100% | 100% | |
GSRRT-Connect | Average length | 728.79 | 743.71 | 1020.48 |
Average time/s | 0.97 | 5.59 | 13.26 | |
Success rate | 100% | 100% | 100% | |
GSORRT-Connect | Average length | 662.93 | 713.02 | 875.55 |
Average time/s | 1.32 | 5.81 | 13.93 | |
Success rate | 100% | 100% | 100% |
Result | Method | Total Path | Workspace 1 | Workspace 2 | Between Workspaces |
---|---|---|---|---|---|
Calculation time/s | RRT-Connect | 3.32 | 1.95 | 1.29 | 0.08 |
GSRRT-Connect | 2.76 | 1.57 | 1.07 | 0.12 | |
GSORRT-Connect | 5.41 | 2.94 | 2.11 | 0.22 | |
Informed-RRT*-connect | 6.03 | 3.59 | 2.13 | 0.31 | |
A* | 8.72 | 4.93 | 3.36 | 0.43 | |
Path length | RRT-Connect | 2848.82 | 1515.78 | 1257.99 | 75.05 |
GSRRT-Connect | 2360.22 | 1248.92 | 1035.09 | 76.21 | |
GSORRT-Connect | 1792.78 | 915.78 | 825 | 52 | |
Informed-RRT*-connect | 1845.11 | 961.28 | 825 | 58.83 | |
A* | 1895.87 | 1014.56 | 825 | 56.31 |
Method | Result | Workspace 1 | Workspace 2 |
---|---|---|---|
RRT-Connect | Computation time | 0.0963 | 0.1413 |
Path length | 0.0652 | 0.0299 | |
GSRRT-Connect | Computation time | 0.0832 | 0.0578 |
Path length | 0.0531 | 0.0205 | |
GSORRT-Connect | Computation time | 0.0401 | 0.0190 |
Path length | 0.0165 | 0 | |
Informed-RRT*-connect | Computation time | 0.0633 | 0.0284 |
Path length | 0.0201 | 0 | |
A* | Computation time | 0.0716 | 0.0294 |
Path length | 0.0328 | 0 |
Algorithm | Path Length/m | Time/s | Success Rate |
---|---|---|---|
GSORRT-Connect | 72.63 | 174 | 92.31% |
RRT-Connect | 106.95 | 267 | 73.01% |
Informed-RRT*-connect | 74.91 | 186 | 88.46% |
A* | 77.02 | 201 | 80.77% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Ma, S. Navigation of Apple Tree Pruning Robot Based on Improved RRT-Connect Algorithm. Agriculture 2023, 13, 1495. https://doi.org/10.3390/agriculture13081495
Li Y, Ma S. Navigation of Apple Tree Pruning Robot Based on Improved RRT-Connect Algorithm. Agriculture. 2023; 13(8):1495. https://doi.org/10.3390/agriculture13081495
Chicago/Turabian StyleLi, Yechen, and Shaochun Ma. 2023. "Navigation of Apple Tree Pruning Robot Based on Improved RRT-Connect Algorithm" Agriculture 13, no. 8: 1495. https://doi.org/10.3390/agriculture13081495
APA StyleLi, Y., & Ma, S. (2023). Navigation of Apple Tree Pruning Robot Based on Improved RRT-Connect Algorithm. Agriculture, 13(8), 1495. https://doi.org/10.3390/agriculture13081495