Classification and Detection of Rice Diseases Using a 3-Stage CNN Architecture with Transfer Learning Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Selection for Early Detection of Rice Diseases
2.2. Data Collection and Training
2.3. System Model
2.3.1. Transfer Learning
2.3.2. Progressive Re-Sizing
2.3.3. PreLU Activation
2.4. Dataset and Implementation Setup
3. Results and Discussion
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Laborte, A.G.; Gutierrez, M.A.; Balanza, J.G.; Saito, K.; Zwart, S.J.; Boschetti, M.; Murty, M.V.R.; Villano, L.; Aunario, J.K.; Reinke, R.; et al. RiceAtlas, a Spatial Database of Global Rice Calendars and Production. Sci. Data 2017, 4, 170074. [Google Scholar] [CrossRef] [PubMed]
- Fukagawa, N.K.; Ziska, L.H. Rice: Importance for Global Nutrition. J. Nutr. Sci. Vitaminol. 2019, 65, S2–S3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezvi, H.U.A.; Tahjib-Ul-Arif, M.; Azim, M.A.; Tumpa, T.A.; Tipu, M.M.H.; Najnine, F.; Dawood, M.F.A.; Skalicky, M.; Brestič, M. Rice and Food Security: Climate Change Implications and the Future Prospects for Nutritional Security. Food Energy Secur. 2023, 12, e430. [Google Scholar] [CrossRef]
- Agrios, G.N. Plant Diseases Caused by Viruses. In Plant Pathology, 5th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2005; pp. 723–824. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Peng, Z. Rice Diseases Detection and Classification Using Attention Based Neural Network and Bayesian Optimization. Expert Syst. Appl. 2021, 178, 114770. [Google Scholar] [CrossRef]
- Kumar, K.S.A.; Karthika, K.S. Abiotic and Biotic Factors Influencing Soil Health and/or Soil Degradation. In Soil Health; Springer: Cham, Switzerland, 2020; Volume 59, pp. 145–161. [Google Scholar]
- Latif, G.; Abdelhamid, S.E.; Mallouhy, R.E.; Alghazo, J.; Kazimi, Z.A. Deep Learning Utilization in Agriculture: Detection of Rice Plant Diseases Using an Improved CNN Model. Plants 2022, 11, 2230. [Google Scholar] [CrossRef]
- Phadikar, S.; Sil, J.; Das, A.K. Rice Diseases Classification Using Feature Selection and Rule Generation Techniques. Comput. Electron. Agric. 2013, 90, 76–85. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Handa, N.; Kaushik, Y.; Sharma, N.; Dixit, M.; Garg, M. Image Classification Using Convolutional Neural Networks. Commun. Comput. Inf. Sci. 2021, 1393, 510–517. [Google Scholar]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional Neural Networks: An Overview and Application in Radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Yi, S.; Zeng, N.; Liu, Y.; Zhang, Y. Identification of Rice Diseases Using Deep Convolutional Neural Networks. Neurocomputing 2017, 267, 378–384. [Google Scholar] [CrossRef]
- Rajmohan, R.; Pajany, M.; Rajesh, R.; Raman, D.R.; Prabu, U. Smart Paddy Crop Disease Identification and Management Using Deep Convolution Neural Network and SVM Classifier. Int. J. Pure Appl. Math. 2018, 118, 255–264. [Google Scholar]
- Simhadri, C.G.; Kondaveeti, H.K. Automatic Recognition of Rice Leaf Diseases Using Transfer Learning. Agronomy 2023, 13, 961. [Google Scholar] [CrossRef]
- Ho, N.; Kim, Y.C. Evaluation of Transfer Learning in Deep Convolutional Neural Network Models for Cardiac Short Axis Slice Classification. Sci. Rep. 2021, 11, 1839. [Google Scholar] [CrossRef]
- Ali, A.H.; Yaseen, M.G.; Aljanabi, M.; Abed, S.A. ChatGPT Transfer Learning: A New Promising Techniques. Mesopotamian J. Big Data 2023, 2023, 31–32. [Google Scholar] [CrossRef]
- Yang, D.; Ngoc, K.M.; Shin, I.; Hwang, M. DPReLU: Dynamic Parametric Rectified Linear Unit and Its Proper Weight Initialization Method. Int. J. Comput. Intell. Syst. 2023, 16, 11. [Google Scholar] [CrossRef]
- Choudhary, K.; DeCost, B.; Chen, C.; Jain, A.; Tavazza, F.; Cohn, R.; Park, C.W.; Choudhary, A.; Agrawal, A.; Billinge, S.J.L.; et al. Recent Advances and Applications of Deep Learning Methods in Materials Science. NPJ Comput. Mater. 2022, 8, 59. [Google Scholar] [CrossRef]
- Agrawal, A.; Choudhary, A. Deep Materials Informatics: Applications of Deep Learning in Materials Science. MRS Commun. 2019, 9, 779–792. [Google Scholar] [CrossRef] [Green Version]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef] [Green Version]
- Khirade, S.D.; Patil, A.B. Plant Disease Detection Using Image Processing. In Proceedings of the 2015 International Conference on Computing Communication Control and Automation, Pune, India, 26–27 February 2015; pp. 768–771. [Google Scholar] [CrossRef]
- Sahu, P.K.; Chattopadhyay, S. A Survey on Application Mapping Strategies for Network-on-Chip Design. J. Syst. Archit. 2013, 59, 60–76. [Google Scholar] [CrossRef]
- Mukherjee, M.; Pal, T.; Samanta, D. Damaged Paddy Leaf Detection Using Image Processing. J. Glob. Res. Comput. Sci. 2012, 3, 7–10. [Google Scholar]
- Islam, R.; Rafiqul, M. An Image Processing Technique to Calculate Percentage of Disease Affected Pixels of Paddy Leaf. Int. J. Comput. Appl. 2015, 123, 28–34. [Google Scholar] [CrossRef]
- Hu, G.; Wu, H.; Zhang, Y.; Wan, M. A Low Shot Learning Method for Tea Leaf’s Disease Identification. Comput. Electron. Agric. 2019, 163, 104852. [Google Scholar] [CrossRef]
- Chung, C.L.; Huang, K.J.; Chen, S.Y.; Lai, M.H.; Chen, Y.C.; Kuo, Y.F. Detecting Bakanae Disease in Rice Seedlings by Machine Vision. Comput. Electron. Agric. 2016, 121, 404–411. [Google Scholar] [CrossRef]
- Ding, W.; Taylor, G. Automatic Moth Detection from Trap Images for Pest Management. Comput. Electron. Agric. 2016, 123, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Arnal Barbedo, J.G. Plant Disease Identification from Individual Lesions and Spots Using Deep Learning. Biosyst. Eng. 2019, 180, 96–107. [Google Scholar] [CrossRef]
- Anami, B.S.; Malvade, N.N.; Palaiah, S. Deep Learning Approach for Recognition and Classification of Yield Affecting Paddy Crop Stresses Using Field Images. Artif. Intell. Agric. 2020, 4, 12–20. [Google Scholar] [CrossRef]
- Picon, A.; Seitz, M.; Alvarez-Gila, A.; Mohnke, P.; Ortiz-Barredo, A.; Echazarra, J. Crop Conditional Convolutional Neural Networks for Massive Multi-Crop Plant Disease Classification over Cell Phone Acquired Images Taken on Real Field Conditions. Comput. Electron. Agric. 2019, 167, 105093. [Google Scholar] [CrossRef]
- Kumar, P.; Negi, B.; Bhoi, N. Detection of Healthy and Defected Diseased Leaf of Rice Crop Using K-Means Clustering Technique. Int. J. Comput. Appl. 2017, 157, 24–27. [Google Scholar] [CrossRef]
- Atole, R.R.; Juan Bautista, S.; Sur, C.; Daechul Park, P. A Multiclass Deep Convolutional Neural Network Classifier for Detection of Common Rice Plant Anomalies. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 67–70. [Google Scholar]
- Pinki, F.; Khatun, T.; Islam, S. Content Based Paddy Leaf Disease Recognition and Remedy Prediction Using Support Vector Machine. In Proceedings of the 20th International Conference of Computer and Information Technology, Bhubaneshwar, India, 21–23 December 2017; pp. 22–24. [Google Scholar]
- Ramesh, S.; Vydeki, D. Recognition and Classification of Paddy Leaf Diseases Using Optimized Deep Neural Network with Jaya Algorithm. Inf. Process. Agric. 2020, 7, 249–260. [Google Scholar] [CrossRef]
- Liang, W.-J.; Zhang, H.; Zhang, G.-F.; Cao, H.-X. Rice Blast Disease Recognition Using a Deep Convolutional Neural Network. Sci. Rep. 2019, 9, 2869. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, K.; Shahidi, T.R.; Alam, S.; Momen, S. Rice Leaf Disease Detection Using Machine Learning Techniques. In Proceedings of the International Conference of Computer Science and Renewable Energies (ICCSRE), Agadir, Morocco, 22–24 July 2019; pp. 1–5. [Google Scholar]
- Gayathri Devi, T.; Neelamegam, P. Image Processing Based Rice Plant Leaves Diseases in Thanjavur, Tamilnadu. Clust. Comput. 2019, 22, 13415–13428. [Google Scholar] [CrossRef]
- Nalini, S.; Krishnaraj, N.; Jayasankar, T.; Vinothkumar, K.; Britto, A.S.F.; Subramaniam, K.; Bharatiraja, C. Paddy Leaf Disease Detection Using an Optimized Deep Neural Network. Comput. Mater. Contin. 2021, 68, 1117–1128. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Zhang, D.; Nanehkaran, Y.A.; Sun, Y. A Cognitive Vision Method for the Detection of Plant Disease Images. Mach. Vis. Appl. 2021, 32, 31. [Google Scholar] [CrossRef]
- Aqel, D.; Al-Zubi, S.; Mughaid, A.; Jararweh, Y. Extreme Learning Machine for Plant Diseases Classification: A Sustainable Approach for Smart Agriculture. Clust. Comput. 2022, 25, 2007–2020. [Google Scholar] [CrossRef]
- Archana, K.S.; Srinivasan, S.; Bharathi, S.P.; Balamurugan, R.; Prabakar, T.N.; Britto, A.S.F. A Novel Method to Improve Computational and Classification Performance of Rice Plant Disease Identification. J. Supercomput. 2022, 78, 8925–8945. [Google Scholar] [CrossRef]
- Narmadha, R.P.; Sengottaiyan, N.; Kavitha, R.J. Deep Transfer Learning Based Rice Plant Disease Detection Model. Intell. Autom. Soft Comput. 2022, 31, 1257–1271. [Google Scholar] [CrossRef]
- Foret, P.; Kleiner, A.; Mobahi, H.; Neyshabur, B. Sharpness-Aware Minimization for Efficiently Improving Generalization. Mach. Learn. 2021, 3, 79–89. [Google Scholar]
- Chaudhari, M.; Thapa, N.; Ismail, H.; Chopade, S.; Caragea, D.; Köhn, M.; Newman, R.H.; KC, D.B. DTL-DephosSite: Deep Transfer Learning Based Approach to Predict Dephosphorylation Sites. Front. Cell Dev. Biol. 2021, 9, 662983. [Google Scholar] [CrossRef]
- Su, J.; Xu, B.; Yin, H. A Survey of Deep Learning Approaches to Image Restoration. Neurocomputing 2022, 487, 46–65. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
- Gogoi, M.; Begum, S.A. Progressive 3-Layered Block Architecture for Image Classification. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 499–508. [Google Scholar] [CrossRef]
- Bera, S.; Shrivastava, V.K. Analysis of Various Optimizers on Deep Convolutional Neural Network Model in the Application of Hyperspectral Remote Sensing Image Classification. Int. J. Remote Sens. 2019, 41, 2664–2683. [Google Scholar] [CrossRef]
- Shabana, Y.M.; Abdel-Fattah, G.M.; Ismail, A.E.; Rashad, Y.M. Control of Brown Spot Pathogen of Rice (Bipolaris oryzae) Using Some Phenolic Antioxidants. Braz. J. Microbiol. 2008, 39, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nettleton, D.F.; Katsantonis, D.; Kalaitzidis, A.; Sarafijanovic-Djukic, N.; Puigdollers, P.; Confalonieri, R. Predicting Rice Blast Disease: Machine Learning versus Process-Based Models. BMC Bioinform. 2019, 20, 514. [Google Scholar] [CrossRef] [Green Version]
- Niones, J.T.; Sharp, R.T.; Donayre, D.K.M.; Oreiro, E.G.M.; Milne, A.E.; Oliva, R. Dynamics of Bacterial Blight Disease in Resistant and Susceptible Rice Varieties. Eur. J. Plant Pathol. 2022, 163, 1–17. [Google Scholar] [CrossRef]
- Chancellor, T.C.B.; Holt, J.; Villareal, S.; Tiongco, E.R.; Venn, J. Spread of Plant Virus Disease to New Plantings: A Case Study of Rice Tungro Disease. Adv. Virus Res. 2006, 65, 1–29. [Google Scholar] [CrossRef]
- Galdi, P.; Tagliaferri, R. Data Mining: Accuracy and Error Measures for Classification and Prediction. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2018; Volume 3, pp. 431–436. ISBN 9780128114322. [Google Scholar]
- Liu, S.; Wang, X.; Liu, M.; Zhu, J. Towards Better Analysis of Machine Learning Models: A Visual Analytics Perspective. Vis. Inform. 2017, 1, 48–56. [Google Scholar] [CrossRef]
- Brahimi, M.; Boukhalfa, K.; Moussaoui, A. Deep Learning for Tomato Diseases: Classification and Symptoms Visualization. Appl. Artif. Intell. 2017, 31, 299–315. [Google Scholar] [CrossRef]
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using Deep Learning for Image-Based Plant Disease Detection. Front. Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef] [Green Version]
- Picon, A.; Alvarez-Gila, A.; Seitz, M.; Ortiz-Barredo, A.; Echazarra, J.; Johannes, A. Deep Convolutional Neural Networks for Mobile Capture Device-Based Crop Disease Classification in the Wild. Comput. Electron. Agric. 2019, 161, 280–290. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Cubuk, E.D.; Zoph, B.; Mané, D.; Vasudevan, V.; Le, Q.V. AutoAugment: Learning Augmentation Strategies from Data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 113–123. [Google Scholar]
Year | Techniques | Target Data | Data Set | Number of Classes | Accuracy Rate (%) | Error Rate (%) | References |
---|---|---|---|---|---|---|---|
2012 | SVM/Baye’s Classifier | Rice Diseases | 450 | 2 | SVM = 68.10, Bayes = 79.50 | 20.5 | [24] |
2017 | CNN, HOG, SVM | Rice Diseases | 500 | 10 | CNN = 95.5 | 4.5 | [13] |
2015 | SVM | Rice leaves | - | 1 | SVM= 82.00 | 18 | [25] |
2015 | SVM, C-DCGAN | Tea leaves | 1500 | 3 | 90 | 10 | [26] |
2016 | SVM | Rice seedlings | 700 | 1 | SVM= 87.0 | 13.0 | [27] |
2016 | CNN | Insect pests | 1033 | 12 | 95.01 | 4.99 | [28] |
2019 | CNN | Different crop leaves | 1575 | 10 | 75.0 | 25.0 | [29] |
2020 | Deep-CNN | Multiple crops diseases | 30,000 | 12 | 92.89 | 7.11 | [30] |
2017 | KNN | Multiple crop plant disease | 121,955 | 17 | 92.0 | 8.0 | [31] |
2017 | K-means Clustering | Leaves | - | 2 | 78 | 22 | [32] |
2018 | AlexNet | Leaves | 600 | 3 | 91.23 | 8.77 | [33] |
2017 | SVM | Rice leaves | 50 | 7 | 92.0 | 8.0 | [34] |
2020 | ANN, DAE and DNN-JOA | Rice disease | 400 | 5 | 90.57 | 9.47 | [35] |
2018 | SVM/CNN | Rice disease leaves | 5808 | 2 | 95.83 | 4.17 | [36] |
2019 | SVM/CNN | Leaves | 700 | 4 | 91.37 | 8.63 | [37] |
2019 | SVM | Rice disease leaves | 970 | 2 | 96.7 | 3.3 | [38] |
2019 | DNN-CSA and 10-fold SVM | Rice disease leaves | 120 | 3 | 87.46 | 12.54 | [39] |
2021 | CNN | Grape leaves | 500 | 4 | 93.75 | 6.25 | [40] |
2022 | ELM | Lemon leaves | 73 | 4 | 94.0 | 6.0 | [41] |
2022 | NSVMBPN Network | Rice leaves | 790 | 3 | 95.2 | 4.8 | [42] |
2022 | DenseNet169-MLP | Rice leaves | 1500 | 3 | 97.68 | 2.32 | [43] |
Hyper-Parameters | Values |
---|---|
Optimizer | Adam |
Batch size | 32 |
Momentum | 0.8 |
Learning Rate | Decay learning rate |
Name of Class | Training Images | Validation Images |
---|---|---|
Brown Spot | 1770 | 443 |
Leaf Blast | 1860 | 465 |
Tungro | 1201 | 300 |
BLB | 1300 | 324 |
Healthy | 980 | 220 |
Training Stages | Image Size | Rand Augment | Dropout | |||
---|---|---|---|---|---|---|
Min | Max | Min | Max | Min | Max | |
First Training Stage | 64 | 224 | 5 | 10 | 0.1 | 0.3 |
Second Training Stage | 64 | 224 | 5 | 15 | 0.2 | 0.5 |
Third Training Stage | 64 | 224 | 5 | 20 | 0.1 | 0.5 |
Training Stages | Activation Function | Rand Augment | Dropout Rate | Image Size in Pixels | Accuracy | ||
---|---|---|---|---|---|---|---|
Min | Max | Min | Max | ||||
Stage I | ReLU | 5 | 10 | 0.1 | 0.3 | 64 × 64 | 68.61 |
128 × 128 | 75.73 | ||||||
224 × 224 | 86.55 | ||||||
PReLU | 5 | 10 | 0.1 | 0.3 | 64 × 64 | 71.77 | |
128 × 128 | 78.63 | ||||||
224 × 224 | 90.91 | ||||||
Stage II | ReLU | 5 | 15 | 0.2 | 0.5 | 64 × 64 | 69.90 |
128 × 128 | 76.65 | ||||||
224 × 224 | 87.79 | ||||||
PReLU | 5 | 15 | 0.2 | 0.5 | 64 × 64 | 71.95 | |
128 × 128 | 79.56 | ||||||
224 × 224 | 91.97 | ||||||
Stage III | ReLU | 5 | 20 | 0.1 | 0.5 | 64 × 64 | 70.09 |
128 × 128 | 76.89 | ||||||
224 × 224 | 89.99 | ||||||
PReLU | 5 | 20 | 0.1 | 0.5 | 64 × 64 | 72.57 | |
128 × 128 | 83.34 | ||||||
224 × 224 | 93.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gogoi, M.; Kumar, V.; Begum, S.A.; Sharma, N.; Kant, S. Classification and Detection of Rice Diseases Using a 3-Stage CNN Architecture with Transfer Learning Approach. Agriculture 2023, 13, 1505. https://doi.org/10.3390/agriculture13081505
Gogoi M, Kumar V, Begum SA, Sharma N, Kant S. Classification and Detection of Rice Diseases Using a 3-Stage CNN Architecture with Transfer Learning Approach. Agriculture. 2023; 13(8):1505. https://doi.org/10.3390/agriculture13081505
Chicago/Turabian StyleGogoi, Munmi, Vikash Kumar, Shahin Ara Begum, Neelesh Sharma, and Surya Kant. 2023. "Classification and Detection of Rice Diseases Using a 3-Stage CNN Architecture with Transfer Learning Approach" Agriculture 13, no. 8: 1505. https://doi.org/10.3390/agriculture13081505
APA StyleGogoi, M., Kumar, V., Begum, S. A., Sharma, N., & Kant, S. (2023). Classification and Detection of Rice Diseases Using a 3-Stage CNN Architecture with Transfer Learning Approach. Agriculture, 13(8), 1505. https://doi.org/10.3390/agriculture13081505