Production of Late Seedlings of Açai (Euterpe oleraceae) in an Aquaponic System with Tambaqui (Colossoma macropomum, Curvier, 1818)
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Design
2.2. Water Analysis
2.3. Fish Growth Performance
2.4. Plant Growth Performance
2.5. Statistical Analysis
3. Results
3.1. Water Quality
3.2. Plant Growth Performance
3.3. Fish Growth Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yep, B.; Zheng, Y. Aquaponic trends and challenges—A review. J. Clean. Prod. 2019, 228, 1586–1599. [Google Scholar] [CrossRef]
- Rakocy, J.E. Aquaponics-Integrating Fish and Plant Culture; Wiley-Blackwell: Oxford, UK, 2012; pp. 344–386. [Google Scholar] [CrossRef]
- Love, D.C.; Fry, J.P.; Genello, L.; Hill, E.S.; Frederick, J.A.; Li, X.; Semmens, K. An international survey of aquaponics practitioners. PLoS ONE 2014, 9, e102662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, J.Y.; Chien, Y.H. Effects of feeding frequency and photoperiod on water quality and crop production in a tilapia–water spinach raft aquaponics system. Int. Biodeterior. Biodegrad. 2013, 85, 693–700. [Google Scholar] [CrossRef]
- Delaide, B.; Delhaye, G.; Dermience, M.; Gott, J.; Soyeurt, H.; Jijakli, M.H. Plant and fish production performance, nutrient mass balances, energy and water use of the PAFF Box, a small-scale aquaponic system. Aquac. Eng. 2017, 78, 130–139. [Google Scholar] [CrossRef]
- Buzby, K.M.; Lin, L.S. Scaling aquaponic systems: Balancing plant uptake with fish output. Aquac. Eng. 2014, 63, 39–44. [Google Scholar] [CrossRef]
- Roy, K.; Kajgrova, L.; Mraz, J. TILAFeed: A bio-based inventory for circular nutrients management and achieving bioeconomy in future aquaponics. New Biotechnol. 2022, 70, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Azad, K.N.; Salam, M.A.; Azad, K.N. Aquaponics in Bangladesh: Current status and future prospects. J. Biosci. Agric. Res. 2016, 7, 669–677. [Google Scholar] [CrossRef] [Green Version]
- Krastanova, M.; Sirakov, I.; Ivanova-Kirilova, S.; Yarkov, D.; Orozova, P. Aquaponic systems: Biological and technological parameters. Biotechnol. Biotechnol. Equip. 2022, 36, 305–316. [Google Scholar] [CrossRef]
- Bandi, A.C.; Cristea, V.; Dediu, L.; Petrea, S.M.; Cretu, M.; Rahoveanu, A.T.; Mocuta, D.N.; Soare, I. The review of existing and in-progress technologies of the different subsystems required for the structural and functional elements of the model of multi-purpose aquaponic production system. Rom. Biotechnol. Lett. 2016, 21, 11621. [Google Scholar]
- Palm, H.W.; Knaus, U.; Appelbaum, S.; Goddek, S.; Strauch, S.M.; Vermeulen, T.; Jijakli, M.H.; Kotzen, B. Towards commercial aquaponics: A review of systems, designs, scales and nomenclature. Aquac. Int. 2018, 26, 813–842. [Google Scholar] [CrossRef]
- Baganz, G.F.; Junge, R.; Portella, M.C.; Goddek, S.; Keesman, K.J.; Baganz, D.; Staaks, G.; Shaw, C.; Lohrberg, F.; Kloas, W. The aquaponic principle—It is all about coupling. Rev. Aquac. 2022, 14, 252–264. [Google Scholar] [CrossRef]
- Adeleke, B.; Cassim, S.; Taylor, S. Pathways to low-cost aquaponic systems for sustainable livelihoods and economic development in poor communities: Defining critical success factors. Aquac. Int. 2022, 30, 1575–1591. [Google Scholar] [CrossRef]
- Petrea, Ș.M.; Simionov, I.A.; Antache, A.; Nica, A.; Oprica, L.; Miron, A.; Zamfir, C.G.; Neculiță, M.; Dima, M.F.; Cristea, D.S. An Analytical Framework on Utilizing Various Integrated Multi-Trophic Scenarios for Basil Production. Plants 2023, 12, 540. [Google Scholar] [CrossRef] [PubMed]
- Sterzelecki, F.C.; de Jesus, A.M.; Jorge JL, C.; Tavares, C.M.; de Souza AJ, N.; Santos MD, L.S.; Takata, R.; Melo NF AC, D.; Palheta GD, A. Açai palm, Euterpe oleracea, seed for aquaponic media and seedling production. Aquac. Eng. 2022, 98, 102270. [Google Scholar] [CrossRef]
- IBGE—Brazilian Institute of Geography and Statistics. PVS—2021—Plant Extraction and Forestry Production; IBGE: Rio de Janeiro, Brazil, 2023. [Google Scholar]
- CONAB—National Supply Company. Monthly Analysis: Açaí. December 2020. Available online: https://www.conab.gov.br/info-agro/analises-do-mercado-agropecuario-e-extrativista/analisesdo-mercado/histórico-mensal-de-açaí (accessed on 30 May 2023).
- Erlacher, W.A.; de Oliveira, F.L.; da Silva, D.M.N.; Quaresma, M.A.L.; Mendes, T.P. Estratégias de uso de caroço de açaí para formulação de substratos na produção de mudas de hortaliças. Magistra 2016, 28, 119–130. [Google Scholar]
- Almeida, A.V.; Melo, I.M.; Pinheiro, I.S.; Freitas, J.F.; Melo, A.C.S. Revalorização do caroço de açaí em uma beneficiadora de polpas do município de Ananindeua/PA: Proposta de estruturação de um canal reverso orientado pela PNRS e logística reversa. Rev. Gestão Da Produção Operações E Sist. 2017, 12, 59. [Google Scholar] [CrossRef]
- Gama, M.D.; Ribeiro, G.D.; Fernandes CD, F.; De Medeiros, I.M. Açaí (Euterpe spp.): Características, Formação de Mudas e Plantio para a Produção de Frutos; Circular Técnica, Embrapa: PortoVelho, Brazil, 2005; pp. 1–6. [Google Scholar]
- Carvalho, J.E.U.D.; Nascimento, W. Technological innovations in the propagation of Açai palm and Bacuri. Rev. Bras. Frutic. 2018, 40, e-679. [Google Scholar] [CrossRef] [Green Version]
- American Public Health Association (APHA); Water Pollution Control Federation. Standard Methods for the Examination of Water and Waste Water, 16th ed.; American Water Works Association (AWWA): Washington, DC, USA, 1995; p. 1268. [Google Scholar]
- Bolleter, W.T.; Bushman, C.J.; Tidwell, P.W. Spectrophotometric determination of ammonia as indophenol. Anal. Chem. 1961, 33, 592–594. [Google Scholar] [CrossRef]
- Goddek, S.; Joyce, A.; Kotzen, B.; Burnell, G.M. Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Springer Nature: Cham, Switzerland, 2019; p. 619. [Google Scholar] [CrossRef] [Green Version]
- Hamdy, A. Water Use Efficiency in Irrigated Agriculture: An Analytical Review. Water Use Efficiency and Water Productivity: WASAMED Project. 2007, pp. 9–19. Available online: http://om.ciheam.org/article.php?IDPDF=800773 (accessed on 30 May 2023).
- Rahman, M.M.; Nagelkerke, L.A.; Verdegem, M.C.; Wahab, M.A.; Verreth, J.A. Relationships among water quality, food resources, fish diet and fish growth in polyculture ponds: A multivariate approach. Aquaculture 2008, 275, 108–115. [Google Scholar] [CrossRef]
- Endut, A.; Jusoh, A.; Ali, N.; Wan Nik WN, S.; Hassan, A. Effect of flow rate on water quality parameters and plant growth of water spinach (Ipomoea aquatica) in an aquaponic recirculating system. Desalination Water Treat. 2009, 5, 19–28. [Google Scholar] [CrossRef]
- Graber, A.; Junge, R. Aquaponic Systems: Nutrient recycling from fish wastewater by vegetable production. Desalination 2009, 246, 147–156. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Y.; Shi, H.; Lee, C.T.; Hashim, H.; Zhang, Z.; Wu, W.M.; Li, C. Recovery of nutrients from fish sludge in an aquaponic system using biological aerated filters with ceramsite plus lignocellulosic material media. J. Clean. Prod. 2020, 258, 120886. [Google Scholar] [CrossRef]
- Resh, H.M. Cultivos Hidropónicos: Nuevas Técnicas de Producción; Mundi-Prensa: Madrid, Spain, 2001. [Google Scholar]
- Noborio, K. Measurement of soil water content and electrical conductivity by time domain reflectometry: A review. Comput. Electron. Agric. 2001, 31, 213–237. [Google Scholar] [CrossRef]
- Ivanova, M.B.; Kazantseva, T.I. Effect of water pH and total dissolved solids on the species diversity of pelagic zooplankton in lakes: A statistical analysis. Russ. J. Ecol. 2006, 37, 264–270. [Google Scholar] [CrossRef]
- Brix, H. Do macrophytes play a role in constructed treatment wetlands? Water Sci. Technol. 1997, 35, 11–17. [Google Scholar] [CrossRef]
- Abeysinghe, D.H.; Shanableh, A.; Rigden, B. Biofilters for water reuse in aquaculture. Water Sci. Technol. 1996, 34, 253–260. [Google Scholar] [CrossRef]
- Owatari, M.S.; Jesus GF, A.; de Melo Filho ME, S.; Lapa, K.R.; Martins, M.L.; Mouriño, J.L.P. Synthetic fibre as biological support in freshwater recirculating aquaculture systems (RAS). Aquac. Eng. 2018, 82, 56–62. [Google Scholar] [CrossRef]
- Kuhn, D.D.; Drahos, D.D.; Marsh, L.; Flick, G.J., Jr. Evaluation of nitrifying bacteria product to improve nitrification efficacy in recirculating aquaculture systems. Aquac. Eng. 2010, 43, 78–82. [Google Scholar] [CrossRef]
- Kasozi, N.; Abraham, B.; Kaiser, H.; Wilhelmi, B. The complex microbiome in aquaponics: Significance of the bacterial ecosystem. Ann. Microbiol. 2021, 71, 1. [Google Scholar] [CrossRef]
- Nogueira, R.J.M.C.; Moraes, J.A.P.V.; Burity, H.A.; Bezerra Neto, E. Alterações na resistência à difusão de vapor das folhas e relações hídricas em aceroleiras submetidas a déficit de água. Rev. Bras. Fisiol. Veg. 2001, 13, 75–87. [Google Scholar] [CrossRef]
- Ito, O.; Ella, E.; Kawano, N. Physiological basis of submergence tolerance in rainfed lowland rice ecosystem. Field Crops Res. 1999, 64, 75–90. [Google Scholar] [CrossRef]
- Silvestre, W.V.D.; Silva, P.A.; Palheta, L.F.; de Oliveira Neto, C.F.; de Melo Souza, R.O.R.; Festucci-Buselli, R.A.; Pinheiro, H.A. Differential tolerance to water deficit in two açai (Euterpe oleracea Mart.) plant materials. Acta Physiol. Plant. 2017, 39, 4. [Google Scholar] [CrossRef]
- Medina, M.; Jayachandran, K.; Bhat, M.G.; Deoraj, A. Assessing plant growth, water quality and economic effects from application of a plant-based aquafeed in a recirculating aquaponic system. Aquac. Int. 2016, 24, 415–427. [Google Scholar] [CrossRef]
- Fischer, H.; Romano, N.; Jones, J.; Howe, J.; Renukdas, N.; Sinha, A.K. Comparing water quality/bacterial composition and productivity of largemouth bass Micropterus salmoides juveniles in a recirculating aquaculture system versus aquaponics as well as plant growth/mineral composition with or without media. Aquaculture 2021, 538, 736554. [Google Scholar] [CrossRef]
- Aride PH, R.; Roubach, R.; Val, A.L. Tolerance response of tambaqui Colossoma macropomum (Cuvier) to water pH. Aquac. Res. 2007, 38, 588–594. [Google Scholar] [CrossRef]
- Silva, T.B.F.; dos Santos Silva, R.R.; do Nascimento Pinto, F.E.; da Silva-Matos, R.R.S.; Cordeiro, K.V.; Pereira, A.M.; Freitas, J.R.B.; Lopes, J.M. Creation of tambaqui associated to hydropony in a water recycling system. Res. Soc. Dev. 2020, 9, e543997543. [Google Scholar] [CrossRef]
- Da Costa, J.A.S.; Sterzelecki, F.C.; Natividade, J.; Souza, R.J.F.; de Carvalho, T.C.C.; de Melo, N.F.A.C.; Palheta, G.D.A. Residue from Açai Palm, Euterpe oleracea, as Substrate for Cilantro, Coriandrum sativum, Seedling Production in an Aquaponic System with Tambaqui, Colossoma macropomum. Agriculture 2022, 12, 1555. [Google Scholar] [CrossRef]
- Araújo, E.D.S.; Melo, N.A.D.; Lima, E.S.D.; Diniz, C.G. Construction of an aquaponics system for the consortium production of tomato (Solanum lycopersicum) and tambaqui (Colossoma macropomum). Cadernos Agroecol. 2018, 13, 1–6. [Google Scholar]
Compounds | Days | Control | 5 cm | 10 cm | 15 cm |
---|---|---|---|---|---|
Total ammonia (mg L−1) | 0 | 7.73 ± 2.86 a | 7.73 ± 2.86 b | 0.45 ± 0.08 b | 0.14 ± 0.03 b |
14 | 15.76 ± 14.77 a | 0.97 ± 0.67 b | 0.47 ± 0.18 b | 0.75 ± 0.82 b | |
21 | 13.55 ± 14.11 a | 0.26 ± 0.21 b | 0.17 ± 0.06 b | 0.10 ± 0.03 b | |
28 | 10.07 ± 12.44 a | 0.39 ± 0.28 b | 0.34 ± 0.16 b | 0.34 ± 0.18 b | |
Nitrite (mg L−1) | 0 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
14 | 0.03 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.01 | 0.03 ± 0.01 | |
21 | 0.03 ± 0.02 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.02 | |
28 | 0.01 ± 0.00 | 0.01 ± 0.02 | 0.02 ± 0.01 | 0.02 ± 0.00 | |
Nitrate (mg L−1) | 0 | 26.45 ± 4.70 a | 24.57 ± 0.10 a | 18.78 ± 12.33 ab | 2.14 ± 0.63 b |
14 | 36.16 ± 0.54 a | 33.85 ± 4.33 a | 20.40 ± 14.44 ab | 7.83 ± 0.47 b | |
21 | 33.99 ± 3.31 a | 30.08 ± 9.46 ab | 15.25 ± 15.04 b | 7.23 ± 0.07 c | |
28 | 30.15 ± 6.30 a | 29.31 ± 7.28 a | 17.02 ± 9.41 ab | 6.55 ± 1.69 b | |
Phosohate (mg L−1) | 0 | 5.63 ± 1.30 | 6.23 ± 0.80 | 6.06 ± 0.39 | 6.00 ± 0.21 |
14 | 7.77 ± 0.08 | 7.74 ± 0.27 | 6.48 ± 1.28 | 6.76 ± 0.61 | |
21 | 7.37 ± 0.77 | 7.60 ± 0.25 | 7.29 ± 0.56 | 6.77 ± 0.10 | |
28 | 6.89 ± 0.47 | 6.54 ± 0.38 | 6.61 ± 1.33 | 6.08 ± 0.96 |
Variables | Flooding Levels | |||
---|---|---|---|---|
Control (10 cm) | 5 cm | 10 cm | 15 cm | |
Temperature °C | 27.7 ± 0.06 a | 27.8 ± 0.06 a | 27.6 ± 0.07 ab | 27.4 ± 0.06 b |
Dissolved oxygen (mg L−1) | 5.37 ± 0.09 a | 5.13 ± 0.08 ab | 4.98 ± 0.10 b | 5.2 ± 0.09 ab |
pH | 6.4 ± 0.05 c | 6.85 ± 0.05 b | 6.99 ± 0.04 b | 7.16 ± 0.03 a |
Electrical conductivity (µS cm−1) | 423.2 ± 12.30 a | 344.0 ± 7.87 b | 328.9 ± 8.14 b | 266.5 ± 8.20 c |
Total dissolved solids (mg L−1) | 276.7 ± 7.70 a | 226.6 ± 5.80 b | 206.4 ± 6.00 b | 180.0 ± 7.61 c |
Development Parameters | Flooding Levels | |
---|---|---|
5 cm | 10 cm | |
Plant initial height (cm) | 12.3 ± 1.9 a | 12.3 ± 1.9 a |
Plant total height (cm) | 34.55 ± 0.72 a | 24.7 ± 0.57 b |
Aerial portion height (cm) | 20.61 ± 0.51 a | 13.41 ± 0.40 b |
Root height (cm) | 13.93 ± 0.40 a | 11.29 ± 0.33 b |
Collar diameter (mm) | 3.4 ± 0.071 | 3.56 ± 0.061 |
Total fresh mass (g) | 1.88 ± 0.03 | 1.83 ± 0.04 |
Aerial portion fresh mass (g) | 0.87 ± 0.03 a | 0.66 ± 0.02 b |
Root fresh mass (g) | 0.98 ± 0.03 b | 1.19 ± 0.04 a |
Growth Indexes | Flooding Levels | |||
---|---|---|---|---|
Control (10 cm) | 5 cm | 10 cm | 15 cm | |
Initial weight (g) | 1097.0 ± 50.0 | 1103.0 ± 57.6 | 1080.0 ± 56.3 | 1067.0 ± 54.8 |
Initial condition factor | 1.83 ± 0.12 | 1.95 ± 0.14 | 1.78 ± 0.13 | 2.05 ± 0.16 |
Final weight (g) | 1388.0 ± 69.6 | 1427.0 ± 76.6 | 1396.0 ± 71.1 | 1396.0 ± 65.1 |
Weight gain (g) | 291.3 ± 31.3 | 324.0 ± 35.9 | 315.6 ± 28.3 | 329.4 ± 36.4 |
Initial length (cm) | 39.12 ± 0.6 | 38.33 ± 0.7 | 39.26 ± 0.5 | 37.28 ± 0.6 |
Final length (cm) | 41.02 ± 0.9 | 42.6 ± 0.6 | 41.92 ± 0.7 | 41.8 ± 0.7 |
Final condition factor | 2.01 ± 0.11 | 1.84 ± 0.6 | 1.89 ± 0.12 | 1.91 ± 0.14 |
Feed conversion ratio | 2.07 ± 0.16 | 1.87 ± 0.18 | 1.87 ± 0.12 | 1.80 ± 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, E.T.d.S.; Pereira Junior, R.F.; Reis, V.S.d.; Gomes, B.d.J.F.; Owatari, M.S.; Luz, R.K.; Melo, N.F.A.C.d.; Santos, M.d.L.S.; Palheta, G.D.A.; Sterzelecki, F.C. Production of Late Seedlings of Açai (Euterpe oleraceae) in an Aquaponic System with Tambaqui (Colossoma macropomum, Curvier, 1818). Agriculture 2023, 13, 1581. https://doi.org/10.3390/agriculture13081581
Nascimento ETdS, Pereira Junior RF, Reis VSd, Gomes BdJF, Owatari MS, Luz RK, Melo NFACd, Santos MdLS, Palheta GDA, Sterzelecki FC. Production of Late Seedlings of Açai (Euterpe oleraceae) in an Aquaponic System with Tambaqui (Colossoma macropomum, Curvier, 1818). Agriculture. 2023; 13(8):1581. https://doi.org/10.3390/agriculture13081581
Chicago/Turabian StyleNascimento, Edileno Tiago de Sousa, Raimundo Formento Pereira Junior, Valéria Silva dos Reis, Bianca de Jesus Figueiredo Gomes, Marco Shizuo Owatari, Ronald Kennedy Luz, Nuno Filipe Alves Correia de Melo, Maria de Lourdes Souza Santos, Glauber David Almeida Palheta, and Fabio Carneiro Sterzelecki. 2023. "Production of Late Seedlings of Açai (Euterpe oleraceae) in an Aquaponic System with Tambaqui (Colossoma macropomum, Curvier, 1818)" Agriculture 13, no. 8: 1581. https://doi.org/10.3390/agriculture13081581
APA StyleNascimento, E. T. d. S., Pereira Junior, R. F., Reis, V. S. d., Gomes, B. d. J. F., Owatari, M. S., Luz, R. K., Melo, N. F. A. C. d., Santos, M. d. L. S., Palheta, G. D. A., & Sterzelecki, F. C. (2023). Production of Late Seedlings of Açai (Euterpe oleraceae) in an Aquaponic System with Tambaqui (Colossoma macropomum, Curvier, 1818). Agriculture, 13(8), 1581. https://doi.org/10.3390/agriculture13081581