The Impacts of Elevated CO2 Levels on Environmental Risk of Heavy Metal Pollution in Agricultural Soils: Applicable Remediation Approaches for Integrated Benefits
Abstract
:1. Introduction
2. Impacts of Elevated CO2 Levels on the Environmental Behavior of Heavy Metal Pollutants
3. The Applicable Approaches for Mitigating Heavy Metal Accumulation in Crop Grains
4. Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanderman, J.; Hengl, T.; Fiske, G.J. Fiske, Soil carbon debt of 12,000 years of human land use. Proc. Natl. Acad. Sci. USA 2017, 114, 9575–9580. [Google Scholar] [CrossRef]
- Salinger, M.J. Agriculture’s influence on climate during the Holocene. Agric. For. Meteorol. 2007, 142, 96–102. [Google Scholar] [CrossRef]
- Burney, J.A.; Davis, S.J.; Lobell, D.B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. USA 2010, 107, 12052–12057. [Google Scholar] [CrossRef]
- Wang, P.; Chen, H.; Kopittke, P.M.; Zhao, F.J. Cadmium contamination in agricultural soils of China and the impact on food safety. Environ. Pollut. 2019, 249, 1038–1048. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.W.; Ali, W.; Meng, B.; Abrar, M.M.; Lu, B.; Qin, C.; Zhao, L.; Feng, X. Mercury contamination status of rice cropping system in Pakistan and associated health risks. Environ. Pollut. 2020, 263, 114625. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, L.; Tang, Z.; Huang, X.Y.; Ma, J.F.; Zhao, F.J. Producing cadmium-free Indica rice by overexpressing OsHMA3. Environ. Int. 2019, 126, 619–626. [Google Scholar] [CrossRef]
- Tang, W.; Su, Y.; Gao, Y.; Zhong, H. Effects of Farming Activities on the Biogeochemistry of Mercury in Rice-Paddy Soil Systems. Bull. Environ. Contam. Toxicol. 2019, 102, 635–642. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Shen, H.; Li, Z.; Wang, L.; Wang, F.; Zhao, K.; Liu, X.; Wendroth, O.; Xu, J. Ten-year regional monitoring of soil-rice grain contamination by heavy metals with implications for target remediation and food safety. Environ. Pollut. 2019, 244, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Qian, M.; Cai, G.; Yang, J.; Zhu, Q. Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. J. Hazard. Mater. 2007, 143, 443–447. [Google Scholar] [CrossRef]
- Feng, J.; Shen, R.F.; Shao, J.F. Transport of cadmium from soil to grain in cereal crops: A review. Pedosphere 2021, 31, 3–10. [Google Scholar]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Guillén Bolaños, T.; Bindi, M.; Brown, S.; Camilloni, I.A.; Diedhiou, A.; Djalante, R.; Ebi, K.; et al. The human imperative of stabilizing global climate change at 1.5 degrees C. Science 2019, 365, eaaw6974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pörtner, H.O.; Roberts, D.C.; Adams, H.; Adler, C.; Aldunce, P.; Ali, E.; Begum, R.A.; Betts, R.; Kerr, R.B.; Biesbroek, R.; et al. (Eds.) Climate Change 2022: Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar]
- Rochayati, S.; Laing, G.D.; Rinklebe, J.; Meissner, R.; Verloo, M. Use of reactive phosphate rocks as fertilizer on acid upland soils in Indonesia: Accumulation of cadmium and zinc in soils and shoots of maize plants. J. Plant Nutr. Soil Sci. 2011, 174, 186–194. [Google Scholar] [CrossRef]
- AbdElgawad, H.; Schoenaers, S.; Zinta, G.; Hassan, Y.M.; Abdel-Mawgoud, M.; Alkhalifah, D.H.M.; Hozzein, W.N.; Asard, H.; Abuelsoud, W. Soil arsenic toxicity differentially impacts C3 (barley) and C4 (maize) crops under future climate atmospheric CO2. J. Hazard. Mater. 2021, 414, 125331. [Google Scholar] [CrossRef] [PubMed]
- Blanco, A.; Högy, P.; Zikeli, S.; Pignata, M.L.; Rodriguez, J.H. Assessment of elevated CO2 concentrations and heat stress episodes in soybean cultivars growing in heavy metal polluted soils: Crop nutritional quality and food safety. Environ. Pollut. 2022, 303, 119123. [Google Scholar] [CrossRef]
- Dong, J.; Hunt, J.; Delhaize, E.; Zheng, S.J.; Jin, C.W.; Tang, C. Impacts of elevated CO2 on plant resistance to nutrient deficiency and toxic ions via root exudates: A review. Sci. Total Environ. 2021, 754, 142434. [Google Scholar] [CrossRef]
- Guo, H.; Zhu, J.; Zhou, H.; Sun, Y.; Yin, Y.; Pei, D.; Ji, R.; Wu, J.; Wang, X. Elevated CO2 levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions. Environ. Sci. Technol. 2011, 45, 6997–7003. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Ai, F.; Du, W.; Yin, Y.; Guo, H. Climatic CO2 level-driven changes in the bioavailability, accumulation, and health risks of Cd and Pb in paddy soil–rice systems. Environ. Pollut. 2023, 324, 121396. [Google Scholar] [CrossRef]
- Yang, X.; Wang, D.; Tao, Y.; Shen, M.; Ma, C.; Cai, C.; Song, L.; Yin, B.; Zhu, C. Does elevated CO2 enhance the arsenic uptake by rice? Yes or maybe: Evidences from FACE experiments. Chemosphere 2023, 327, 138543. [Google Scholar] [CrossRef]
- Yang, X.; Wang, D.; Tao, Y.; Shen, M.; Wei, W.; Cai, C.; Ding, C.; Li, J.; Song, L.; Yin, B.; et al. Effects of elevated CO2 on the Cd uptake by rice in Cd-contaminated paddy soils. J. Hazard. Mater. 2023, 442, 130140. [Google Scholar] [CrossRef]
- Dias, M.C.; Monteiro, C.; Moutinho-Pereira, J.; Correia, C.; Gonçalves, B.; Santos, C. Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol. Plant. 2013, 35, 1281–1289. [Google Scholar] [CrossRef]
- Pugnaire, F.I.; Morillo, J.A.; Peñuelas, J.; Reich, P.B.; Bardgett, R.D.; Gaxiola, A.; Wardle, D.A.; Van Der Putten, W.H. Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci. Adv. 2019, 5, eaaz1834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, L.; Zhu, J.; Chen, G.; Zheng, X.; Oh, N.H.; Rufty, T.W.; Richter, D.D.; Hu, S. Atmospheric CO2 enrichment facilitates cation release from soil. Ecol. Lett. 2010, 13, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Wang, X.; Smith, P.; Fan, J.; Lu, Y.; Emmett, B.; Li, R.; Dorling, S.; Chen, H.; Liu, S.; et al. Soil quality both increases crop production and improves resilience to climate change. Nat. Clim. Chang. 2022, 12, 574–580. [Google Scholar] [CrossRef]
- Hu, S.; Chen, W.; Tong, K.; Wang, Y.; Jing, L.; Wang, Y.; Yang, L. Response of rice growth and leaf physiology to elevated CO2 concentrations: A meta-analysis of 20-year FACE studies. Sci. Total Environ. 2022, 807, 151017. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chang, Q.; Yuan, X.; Li, J.; Ayoko, G.A.; Frost, R.L.; Chen, H.; Zhang, X.; Song, Y.; Song, W. Cadmium transfer from contaminated soils to the human body through rice consumption in southern Jiangsu Province, China. Environ. Sci. Process. Impacts 2017, 19, 843–850. [Google Scholar] [CrossRef]
- Behnood, R.; Sodeifian, G. Synthesis of N doped-CQDs/Ni doped-ZnO nanocomposites for visible light photodegradation of organic pollutants. J. Environ. Chem. Eng. 2020, 8, 103821. [Google Scholar] [CrossRef]
- Behnood, R.; Sodeifian, G. Novel ZnCo2O4 embedded with S, N-CQDs as efficient visible-light photocatalyst. J. Photochem. Photobiol. A Chem. 2021, 405, 112971. [Google Scholar] [CrossRef]
- Li, Z.; Liang, Y.; Hu, H.; Shaheen, S.M.; Zhong, H.; Tack, F.M.; Wu, M.; Li, Y.F.; Gao, Y.; Rinklebe, J.; et al. Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety. Environ. Int. 2021, 156, 106749. [Google Scholar] [CrossRef]
- Wan, X.; Zeng, W.; Cai, W.; Lei, M.; Liao, X.; Chen, T. Progress and future prospects in co-planting with hyperaccumulators: Application to the sustainable use of agricultural soil contaminated by arsenic, cadmium, and nickel. Crit. Rev. Environ. Sci. Techonl. 2023. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, J.W.; Li, J.; Han, B. Designing future crops: Challenges and strategies for sustainable agriculture. Plant J. 2021, 105, 1165–1178. [Google Scholar] [CrossRef]
- Saad, N.S.M.; Neik, T.X.; Thomas, W.J.; Amas, J.C.; Cantila, A.Y.; Craig, R.J.; Edwards, D.; Batley, J. Advancing designer crops for climate resilience through an integrated genomics approach. Curr. Opin. Plant Biol. 2022, 67, 102220. [Google Scholar] [CrossRef] [PubMed]
- Krug, A.S.; BMDrummond, E.; Van Tassel, D.L.; Warschefsky, E.J. The next era of crop domestication starts now. Proc. Natl. Acad. Sci. USA 2023, 120, e2205769120. [Google Scholar] [CrossRef] [PubMed]
- Sui, F.Q.; Chang, J.D.; Tang, Z.; Liu, W.J.; Huang, X.Y.; Zhao, F.J. Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize. Plant Soil 2018, 433, 377–389. [Google Scholar] [CrossRef]
- Zhao, F.J.; Tang, Z.; Song, J.J.; Huang, X.Y.; Wang, P. Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food. Mol. Plant 2022, 15, 27–44. [Google Scholar] [CrossRef]
- Sun, L.; Tan, Y.; Chen, C. The road toward Cd-safe rice: From mass selection to marker-assisted selection and genetic manipulation. Crop J. 2023. [Google Scholar] [CrossRef]
- Golia, E.E. The impact of heavy metal contamination on soil quality and plant nutrition. Sustainable management of moderate contaminated agricultural and urban soils, using low cost materials and promoting circular economy. Sustain. Chem. Pharm. 2023, 33, 101046. [Google Scholar] [CrossRef]
- Lou, Y.; Xu, M.; Wang, W.; Sun, X.; Zhao, K. Return rate of straw residue affects soil organic C sequestration by chemical fertilization. Soil Tillage Res. 2011, 113, 70–73. [Google Scholar] [CrossRef]
- Khum-in, V.; Suk-in, J.; In-ai, P.; Piaowan, K.; Phaimisap, Y.; Supanpaiboon, W.; Phenrat, T. Combining biochar and zerovalent iron (BZVI) as a paddy field soil amendment for heavy cadmium (Cd) contamination decreases Cd but increases zinc and iron concentrations in rice grains: A field-scale evaluation. Process Saf. Environ. Prot. 2020, 141, 222–233. [Google Scholar] [CrossRef]
- Norton, G.J.; Williams, P.N.; Adomako, E.E.; Price, A.H.; Zhu, Y.; Zhao, F.J.; McGrath, S.; Deacon, C.M.; Villada, A.; Sommella, A.; et al. Lead in rice: Analysis of baseline lead levels in market and field collected rice grains. Sci. Total Environ. 2014, 485–486, 428–434. [Google Scholar] [CrossRef]
- Hu, S.; Wang, Y.; Yang, L. Response of rice yield traits to elevated atmospheric CO2 concentration and its interaction with cultivar, nitrogen application rate and temperature: A meta-analysis of 20 years FACE studies. Sci. Total Environ. 2020, 764, 142797. [Google Scholar] [CrossRef]
- Verma, S.; Bhatt, P.; Verma, A.; Mudila, H.; Prasher, P.; Rene, E.R. Microbial technologies for heavy metal remediation: Effect of process conditions and current practices. Clean Technol. Environ. Policy 2021, 25, 1485–1507. [Google Scholar] [CrossRef]
- Pande, V.; Pandey, S.C.; Sati, D.; Bhatt, P.; Samant, M. Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Front. Microbiol. 2022, 13, 824084. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, H.; Dai, C.; Wang, X.; Wang, L.; Xu, J.; Lu, Z. Microbial interactions enhanced environmental fitness and expanded ecological niches under dibutyl phthalate and cadmium co-contamination. Environ. Pollut. 2022, 306, 119362. [Google Scholar] [CrossRef] [PubMed]
- Saha, L.; Tiwari, J.; Bauddh, K.; Ma, Y. Recent developments in microbe–plant-based bioremediation for tackling heavy metal-polluted soils. Front. Microbiol. 2021, 12, 731723. [Google Scholar] [CrossRef]
- Guo, H.; Nasir, M.; Lv, J.; Dai, Y.; Gao, J. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing. Ecotoxicol. Environ. Saf. 2017, 144, 300–306. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, J.; Wang, H.; Lin, Q.; Chen, X.; Chen, Y. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol. Environ. Saf. 2007, 67, 75–81. [Google Scholar] [CrossRef]
- Zhang, C.; Nie, S.; Liang, J.; Zeng, G.; Wu, H.; Hua, S.; Liu, J.; Yuan, Y.; Xiao, H.; Deng, L.; et al. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Sci. Total Environ. 2016, 557–558, 785–790. [Google Scholar] [CrossRef]
- Enya, O.; Heaney, N.; Iniama, G.; Lin, C. Effects of heavy metals on organic matter decomposition in inundated soils: Microcosm experiment and field examination. Sci. Total Environ. 2020, 724, 138223. [Google Scholar] [CrossRef] [PubMed]
- Holtan-Hartwig, L.; Bechmann, M.; Høyås, T.R.; Linjordet, R.; Bakken, L.R. Heavy metals tolerance of soil denitrifying communities: N2O dynamics. Soil Biol. Biochem. 2002, 34, 1181–1190. [Google Scholar] [CrossRef]
- Shaaban, M.; Peng, Q.A.; Bashir, S.; Wu, Y.; Younas, A.; Xu, X.; Rashti, M.R.; Abid, M.; Zafar-ul-Hye, M.; Núñez-Delgado, A.; et al. Restoring effect of soil acidity and Cu on N2O emissions from an acidic soil. J. Environ. Manag. 2019, 250, 109535. [Google Scholar] [CrossRef]
- Ma, J.; Ullah, S.; Niu, A.; Liao, Z.; Qin, Q.; Xu, S.; Lin, C. Heavy metal pollution increases CH4 and decreases CO2 emissions due to soil microbial changes in a mangrove wetland: Microcosm experiment and field examination. Chemosphere 2021, 269, 128735. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, D.; Pandey, J. Carbon dioxide emission coupled extracellular enzyme activity at land-water interface predict C-eutrophication and heavy metal contamination in Ganga River, India. Ecol. Indic. 2019, 99, 349–364. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ju, W.; Chen, J.M.; Ciais, P.; Cescatti, A.; Sardans, J.; Janssens, I.A.; Wu, M.; Berry, J.A.; et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 2020, 370, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Du, E.; Terrer, C.; Pellegrini, A.F.; Ahlström, A.; van Lissa, C.J.; Zhao, X.; Xia, N.; Wu, X.; Jackson, R.B. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 2020, 13, 221–226. [Google Scholar] [CrossRef]
- Terrer, C.; Jackson, R.B.; Prentice, I.C.; Keenan, T.F.; Kaiser, C.; Vicca, S.; Fisher, J.B.; Reich, P.B.; Stocker, B.D.; Hungate, B.A.; et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Chang. 2019, 9, 684–689. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Ma, Y.; Zhang, S.; Wei, D.; Zhu, Y. An inventory of trace element inputs to agricultural soils in China. J. Environ. Manag. 2009, 90, 2524–2530. [Google Scholar] [CrossRef]
- Vácha, R. Heavy metal pollution and its effects on agriculture. Agronomy 2021, 11, 1719. [Google Scholar] [CrossRef]
- Hou, D.; O’Connor, D.; Igalavithana, A.D.; Alessi, D.S.; Luo, J.; Tsang, D.C.W.; Sparks, D.L.; Yamauchi, Y.; Rinklebe, J.; Ok, Y.S. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Rev. Earth Environ. 2020, 1, 366–381. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Q.; Wu, D.; Yin, Y.; Du, W.; Guo, H. A 24-epibrassinolide treatment and intercropping willow with alfalfa increase the efficiency of the phytoremediation of cadmium-contaminated soil. Sci. Total Environ. 2023, 854, 158471. [Google Scholar] [CrossRef]
- Li, N.; Jiang, L.; Li, X.; Su, Y. Enhancing phytoremediation of arsenic-contaminated soil by agronomic practices (drip irrigation and intercropping): Influence of soil organic matter. Sci. Total Environ. 2023, 891, 164463. [Google Scholar] [CrossRef]
- Wang, G.; Du, W.; Xu, M.; Ai, F.; Yin, Y.; Guo, H. Integrated assessment of Cd-contaminated paddy soil with application of combined ameliorants: A three-year field study. Bull. Environ. Contam. Toxicol. 2021, 107, 1236–1242. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhang, Q.; Du, W.; Lin, R.; Li, J.; Ai, F.; Yin, Y.; Ji, R.; Wang, X.; Guo, H. In-situ immobilization of cadmium-polluted upland soil: A ten-year field study. Ecotoxicol. Environ. Saf. 2021, 207, 111275. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Nagpal, A.K. Soil amendments: A tool to reduce heavy metal uptake in crops for production of safe food. Rev. Environ. Sci. Bio/Technol. 2018, 17, 187–203. [Google Scholar] [CrossRef]
- Raturi, G.; Chaudhary, A.; Rana, V.; Mandlik, R.; Sharma, Y.; Barvkar, V.; Salvi, P.; Tripathi, D.K.; Kaur, J.; Deshmukh, R.; et al. Microbial remediation and plant-microbe interaction under arsenic pollution. Sci. Total Environ. 2023, 864, 160972. [Google Scholar] [CrossRef]
- Zhang, X.; Gong, Z.; Allinson, G.; Li, X.; Jia, C. Joint effects of bacterium and biochar in remediation of antibiotic-heavy metal contaminated soil and responses of resistance gene and microbial community. Chemosphere 2022, 299, 134333. [Google Scholar] [CrossRef]
- Bridgham, S.D.; Cadillo-Quiroz, H.; Keller, J.K.; Zhuang, Q. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Glob. Chang. Biol. 2013, 19, 1325–1346. [Google Scholar] [CrossRef]
- Martins, C.S.; Nazaries, L.; Macdonald, C.A.; Anderson, I.C.; Singh, B.K. Water availability and abundance of microbial groups are key determinants of greenhouse gas fluxes in a dryland forest ecosystem. Soil Biol. Biochem. 2015, 86, 5–16. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 2010, 464, 579–582. [Google Scholar] [CrossRef]
- Ray, R.L.; Griffin, R.W.; Fares, A.; Elhassan, A.; Awal, R.; Woldesenbet, S.; Risch, E. Soil CO2 emission in response to organic amendments, temperature, and rainfall. Sci. Rep. 2020, 10, 5849. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M. Carbon Dioxide Emission from Soil. Agric. Res. 2013, 2, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Akinyede, R.; Taubert, M.; Schrumpf, M.; Trumbore, S.; Küsel, K. Temperature sensitivity of dark CO2 fixation in temperate forest soils. Biogeosciences 2022, 19, 4011–4028. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, Q.; Shan, N.; Guo, H. The Impacts of Elevated CO2 Levels on Environmental Risk of Heavy Metal Pollution in Agricultural Soils: Applicable Remediation Approaches for Integrated Benefits. Agriculture 2023, 13, 1607. https://doi.org/10.3390/agriculture13081607
Wang X, Zhang Q, Shan N, Guo H. The Impacts of Elevated CO2 Levels on Environmental Risk of Heavy Metal Pollution in Agricultural Soils: Applicable Remediation Approaches for Integrated Benefits. Agriculture. 2023; 13(8):1607. https://doi.org/10.3390/agriculture13081607
Chicago/Turabian StyleWang, Xiaojie, Qian Zhang, Nan Shan, and Hongyan Guo. 2023. "The Impacts of Elevated CO2 Levels on Environmental Risk of Heavy Metal Pollution in Agricultural Soils: Applicable Remediation Approaches for Integrated Benefits" Agriculture 13, no. 8: 1607. https://doi.org/10.3390/agriculture13081607
APA StyleWang, X., Zhang, Q., Shan, N., & Guo, H. (2023). The Impacts of Elevated CO2 Levels on Environmental Risk of Heavy Metal Pollution in Agricultural Soils: Applicable Remediation Approaches for Integrated Benefits. Agriculture, 13(8), 1607. https://doi.org/10.3390/agriculture13081607