Soilless Culture Applications for Early Development of Soybean Crop (Glycine max L. Merr)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location, Planting System and Growth Conditions
2.2. Treatments and Experimental Design
2.3. Crop Management and Measurements
2.4. Data Analysis
3. Results
3.1. Plant Height
3.2. Number of Leaves
3.3. SPAD Reading
3.4. Leaf Area
4. Discussion
4.1. Week Number Affected Plant Height and Number of Leaves
4.2. Nutrient Concentration Affected Number of Leaves and Leaf Area
4.3. Nutrient Concentration and Variety Interacted on Plant Height
4.4. Variety and Week Number Interacted on Number of Leaves and SPAD Reading
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cantliffe, D.J.; Shaw, N.L.; Jovicich, E.; Rodriguez, J.C.; Secker, I.; Karchi, Z. Passive ventilated high-roof greenhouse production of vegetables in a humid, mild winter climate. Acta Hortic. 2001, 559, 195–201. [Google Scholar] [CrossRef]
- Paradossi, A.; Malorgio, F.; Campiotti, C.; Tognoni, F.A. Comparison between two methods to control nutrient delivery to greenhouse melons grown in recirculating nutrient solution culture. Sci. Hortic. 2002, 92, 82–95. [Google Scholar] [CrossRef]
- Savvas, D.; Gianquinto, G.; Tuzel, Y.; Gruda, N. Soilless culture. In Good Agricultural Practices for Greenhouse Vegetable Crops; Baudoin, W., Nono-Womdim, R., Lutaladio, N., Hodder, A., Castilla, N., Leonardi, C., De Pascale, S., Qaryouti, M., Duffy, R., Eds.; Food and Agriculture Organization of The United Nations: Rome, Italy, 2013; pp. 6–57. [Google Scholar]
- Ma, Z.; Flynn, J.; Libra, G.; Shi, Z. Elevated CO2 Accelerates Depletion of Phosphorus by Common Bean (Phaseolus vulgaris) in association with Altered Leaf Biochemical Properties. Pedosphere 2017, 28, 422–429. [Google Scholar] [CrossRef]
- Thakulla, D.; Dunn, B.; Hu, B. Soilless Growing Mediums. OSU Ext. 2021, 1–8. Available online: https://www.researchgate.net/publication/355210200_Soilless_Growing_Mediums (accessed on 15 April 2023).
- Owen, J.S., Jr. Clay Amended Soilless Substrates: Increasing Water and Nutrient Efficiency in Containerized Crop Production. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2006; pp. 80–121. [Google Scholar]
- Hochmuth, G.J.; Chaverria, C.J.; Hochmuth, R.C.; Stapleton, S.C. Field soilless culture as an alternative to soil methyl bromide for tomato and pepper. Proc. Fla. State Hort. Soc. 2002, 115, 197–199. [Google Scholar]
- Paradiso, R.; Buonomo, R.; Dixon, M.A.; Barbieri, G.; De Pascale, S. Effect of bacterial root symbiosis and urea as source of nitrogen on performance of soybean plants grown hydroponically for Bioregenerative Life Support Systems (BLSSs). Front. Plant Sci. 2015, 6, 888. [Google Scholar] [CrossRef]
- Fehr, W.R.; Caviness, C.E. Stages of soybean development. Iowa State Univ. 1977, 80, 1–12. [Google Scholar]
- Zulfiqar, F. Effect of seed priming on horticultural crops. Sci. Hortic. 2021, 286, 110–197. [Google Scholar] [CrossRef]
- Li, S.X.; Wang, Z.H.; Malhi, S.S.; Li, S.Q.; Gao, Y.J.; Tian, X.H. Nutrient and water management effects on crop production, and nutrient and water use efficiency in dryland areas of China. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Hashim, M.; Siam, N.; Al-Dosari, A.; Asl-Gaadi, K.; Patil, V.; Tola, E.; Rangaswamy, M.; Samdani, M. Determination of water requirement and crop water productivity of crops grown in the Makkah region of Saudi Arabia. Aust. J. Basic Appl. Sci. 2012, 6, 196–206. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: New York, NY, USA, 1995. [Google Scholar]
- Bagale, S. Nutrient management for soybean crops. Int. J. Agron. 2021, 2021, 3304634. [Google Scholar] [CrossRef]
- Paradiso, R.; Buonomo, R.; Dixon, M.A.; Barbieri, G.; De Pascale, S. Soybean cultivation for Bioregenerative Life Support Systems (BLSSs): The effect of hydroponic system and nitrogen source. Adv. Space Res. 2014, 53, 574–584. [Google Scholar] [CrossRef]
- Purba, J.H.; Parmila, I.P.; Dadi, W. Effect of Soilless Media (hydroponic) on Growth and Yield of Two Varieties of Lettuce. Agric. Sci. 2021, 4, 154–165. Available online: http://agrisscience.scientific-work.org/index.phpagrisciencee (accessed on 15 April 2023).
- Hata, N.; Futamura, H. Production of soybean plants for hydroponic cultivation from seedling cuttings in a medium containing Rhizobium inoculum depending on various concentrations of nutrient solution and different nitrogen sources. J. Hortic. Res. 2020, 28, 71–82. [Google Scholar] [CrossRef]
- Haddad, M.N.; Abahri, A.S. Effects of Nutrients and Salinity on Yields, Growth and Nutrients distribution of Faba Beans Grown in Hydroponics System. Eur. J. Agric. Food Sci. 2022, 4, 40–49. [Google Scholar] [CrossRef]
- Aini, N.; Yamika, W.S.D.; Ulum, B. Effect of nutrient concentration, PGPR and AMF on plant growth, yield and nutrient uptake of hydroponic lettuce. Intl. J. Agric. Biol. 2019, 21, 175–183. [Google Scholar]
- Walters, K.J.; Currey, J.C. Effects of nutrient solution concentration and daily light integral on growth and nutrient concentration of several basil species in hydroponic production. Hortscience 2018, 53, 1319–1325. [Google Scholar] [CrossRef]
- Kang, Y.I.; Park, J.M.; Kim, S.H.; Kang, N.J.; Park, K.S.; Lee, S.Y.; Jeong, B.R. Effects of root zone ph and nutrient concentration on the growth and nutrient uptake of tomato seedlings. J. Plant Nutr. 2011, 34, 640–652. [Google Scholar] [CrossRef]
- Endres, G.; Kandel, H. Soybean: Growth and Management; North Dakota State University: Fargo, ND, USA, 2021; pp. 1–8. [Google Scholar]
- Ohyama, T.; Tewari, K.; Ishikawa, S.; Tanaka, K.; Kamiyama, S.; Ono, Y.; Hatano, S.; Ohtake, N.; Sueyoshi, K.; Hasegawa, H.; et al. Chapter 9: Role of nitrogen on growth and seed yield of soybean and a new fertilization technique to promote nitrogen fixation and seed yield, In Soybean-The Basis of Yield, Biomass and Productivity. Intech 2017, 153–185. [Google Scholar] [CrossRef]
- Kyei-Boahen, S.; Slinkard, A.E.; Walley, F.L. Evaluation of Rhizobial inoculation methods for chickpea. Agron. J. 2002, 94, 851–859. [Google Scholar] [CrossRef]
- Kontopoulou, C.K.; Giagkou, S.; Stathi, E.; Savvas, D.; Iannetta, P.P.M. Responses of hydroponically grown common bean fed with nitrogen-free nutrient solution to root inoculation with N2-fixing bacteria. Hortscience 2015, 50, 597–602. [Google Scholar] [CrossRef]
- Palta, J.P. Leaf chlorophyll content. Remote Sens. Rev. 1990, 5, 207–213. [Google Scholar] [CrossRef]
- Buttery, B.R.; Buzzell, R.I. The relationship between chlorophyll content and rate of photosynthesis in soybeans. Can. J. Plant Sci. 1977, 57, l–5. [Google Scholar] [CrossRef]
- Sestak, Z. Changes in the chlorophyll content as related to photosynthetic activity and age of leaves. Photochem. Photobiol. 1963, 2, 101–110. [Google Scholar] [CrossRef]
Nutrient | Nutrient Content (%) | ||
---|---|---|---|
Formulation 1 (Grow) | Formulation 2 (Bloom) | Formulation 3 (Micro) | |
Nitrate (NO3) | 1.8 | 0.3 | 4.5 |
Ammonium (NH4) | 0.6 | 0.4 | 0 |
Phosphorus pentoxide (P2O5) | 4.4 | 5.7 | 0 |
Potassium oxide (K2O) | 7.4 | 5.3 | 3.0 |
Magnesium oxide (MgO) | 0.8 | 2.1 | 0 |
Sulfur trioxide (SO3) | 2.2 | 5.6 | 0 |
Calcium oxide (CaO) | 0 | 0 | 6.0 |
Boron (B) | 0 | 0 | 0.015 |
Molybdenum (Mo) | 0 | 0 | 0.01 |
Copper (Cu) | 0 | 0 | 0.006 |
Manganese (Mn) | 0 | 0 | 0.04 |
Zinc (Zn) | 0 | 0 | 0.02 |
Iron (Fe) | 0 | 0 | 0.15 |
Nutrient | Nutrient Content (%) | |||
---|---|---|---|---|
0% | 50% | 100% | 150% | |
Nitrate (NO3) | 0 | 0.83 | 1.65 | 2.48 |
Ammonium (NH4) | 0 | 0.13 | 0.25 | 1.52 |
Phosphorus pentoxide (P2O5) | 0 | 1.27 | 2.53 | 3.80 |
Potassium oxide (K2O) | 0 | 1.97 | 3.93 | 5.89 |
Magnesium oxide (MgO) | 0 | 0.37 | 0.73 | 1.1 |
Sulfur trioxide (SO3) | 0 | 0.98 | 1.95 | 2.93 |
Calcium oxide (CaO) | 0 | 0.75 | 1.5 | 2.25 |
Boron (B) | 0 | 0.0019 | 0.004 | 0.006 |
Molybdenum (Mo) | 0 | 0.0013 | 0.003 | 0.038 |
Copper (Cu) | 0 | 0.008 | 0.015 | 0.023 |
Manganese (Mn) | 0 | 0.005 | 0.01 | 0.015 |
Zinc (Zn) | 0 | 0.003 | 0.005 | 0.008 |
Iron (Fe) | 0 | 0.019 | 0.038 | 0.057 |
Ferilizer | V1 and V2 | V3, V4 and V5 |
---|---|---|
Total Fertilizer in mL | ||
Formulation 1 (Grow) | 75 | 150 |
Formulation 2 (Bloom) | 37 | 75 |
Formulation 3 (Micro) | 37 | 75 |
Fertilizer | V1 and V2 | V3, V4 and V5 | ||||||
---|---|---|---|---|---|---|---|---|
Total Fertilizer in mL | ||||||||
0% | 50% | 100% | 150% | 0% | 50% | 100% | 150% | |
Formulation 1 (Grow) | 0 | 9.38 | 18.75 | 28.13 | 0 | 18.75 | 37.5 | 56.25 |
Formulation 2 (Bloom) | 0 | 4.63 | 9.25 | 13.88 | 0 | 9.38 | 18.75 | 28.13 |
Formulation 3 (Micro) | 0 | 4.63 | 9.25 | 13.88 | 0 | 9.38 | 18.75 | 28.13 |
Source | Sum of Squares | df | Mean Square | F | Sig. |
---|---|---|---|---|---|
Nutrient concentration (N) | 43.6 | 3 | 14.53 | 2.10 | 0.11 |
Variety (V) | 15.48 | 1 | 15.48 | 2.23 | 0.14 |
Week (W) | 1609.26 | 4 | 402.32 | 58.04 | 0.00 |
N × V | 127.52 | 3 | 42.51 | 6.13 | 0.00 |
N × W | 24.91 | 12 | 2.08 | 0.30 | 0.99 |
V × W | 14.39 | 4 | 3.60 | 0.52 | 0.72 |
N × V × W | 32.43 | 12 | 2.70 | 0.39 | 0.96 |
Error | 554.51 | 80 | 6.93 | ||
Total | 2422.13 | 119 |
Source | Sum of Squares | df | Mean Square | F | Sig. |
---|---|---|---|---|---|
Nutrient concentration (N) | 45.76 | 3 | 15.25 | 21.28 | 0.00 |
Variety (V) | 3.01 | 1 | 3.01 | 4.20 | 0.04 |
Week (W) | 1085.00 | 4 | 271.25 | 378.49 | 0.00 |
N × V | 4.56 | 3 | 1.52 | 2.12 | 0.10 |
N × W | 14.87 | 12 | 1.24 | 1.73 | 0.08 |
V × W | 13.87 | 4 | 3.47 | 4.84 | 0.00 |
N × V × W | 6.40 | 12 | 0.53 | 0.74 | 0.70 |
Error | 57.33 | 80 | 0.72 | ||
Total | 1230.79 | 119 |
Source | Sum of Squares | df | Mean Square | F | Sig. |
---|---|---|---|---|---|
Nutrient concentration (N) | 14.38 | 3 | 4.79 | 2.57 | 0.60 |
Variety (V) | 3.23 | 1 | 3.23 | 1.73 | 0.19 |
Week (W) | 284.24 | 4 | 71.06 | 38.08 | 0.00 |
N × V | 13.13 | 3 | 4.38 | 2.35 | 0.08 |
N × W | 22.72 | 12 | 1.89 | 1.01 | 0.44 |
V × W | 53.45 | 4 | 13.36 | 7.16 | 0.00 |
N × V × W | 15.08 | 12 | 1.26 | 0.67 | 0.90 |
Error | 149.30 | 80 | 1.87 | ||
Total | 555.52 | 119 |
Source | Sum of Squares | df | Mean Square | F | Sig. |
---|---|---|---|---|---|
Nutrient concentration (N) | 915.34 | 3 | 305.11 | 30.96 | 0.00 |
Variety (V) | 943.94 | 1 | 943.94 | 95.80 | 0.00 |
Week (W) | 644.78 | 4 | 161.20 | 16.36 | 0.00 |
N × V | 62.77 | 3 | 20.92 | 2.12 | 0.10 |
N × W | 37.56 | 12 | 3.13 | 0.32 | 0.98 |
V × W | 8.34 | 4 | 2.09 | 0.21 | 0.93 |
N × V × W | 27.01 | 12 | 2.25 | 0.23 | 1.00 |
Error | 788.30 | 80 | 9.85 | ||
Total | 3428.02 | 119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd Ghani, R.; Omar, S.; Jolánkai, M.; Tarnawa, Á.; Kende, Z.; Khalid, N.; Gyuricza, C.; Kassai, M.K. Soilless Culture Applications for Early Development of Soybean Crop (Glycine max L. Merr). Agriculture 2023, 13, 1713. https://doi.org/10.3390/agriculture13091713
Abd Ghani R, Omar S, Jolánkai M, Tarnawa Á, Kende Z, Khalid N, Gyuricza C, Kassai MK. Soilless Culture Applications for Early Development of Soybean Crop (Glycine max L. Merr). Agriculture. 2023; 13(9):1713. https://doi.org/10.3390/agriculture13091713
Chicago/Turabian StyleAbd Ghani, Rosnani, Suhana Omar, Márton Jolánkai, Ákos Tarnawa, Zoltán Kende, Noriza Khalid, Csaba Gyuricza, and Mária Katalin Kassai. 2023. "Soilless Culture Applications for Early Development of Soybean Crop (Glycine max L. Merr)" Agriculture 13, no. 9: 1713. https://doi.org/10.3390/agriculture13091713
APA StyleAbd Ghani, R., Omar, S., Jolánkai, M., Tarnawa, Á., Kende, Z., Khalid, N., Gyuricza, C., & Kassai, M. K. (2023). Soilless Culture Applications for Early Development of Soybean Crop (Glycine max L. Merr). Agriculture, 13(9), 1713. https://doi.org/10.3390/agriculture13091713