Foliar Fertilization of Crop Plants in Polish Agriculture
Abstract
:1. Introduction
2. Discussion
2.1. Nutritional Demands of Cereals, Rapeseed and Corn
2.2. Cereals
2.3. Rapeseed
2.4. Corn
2.5. Types of Foliar Fertilizers
2.6. Foliar Fertilizer Market
2.7. Foliar Fertilizers Containing Amino Acids
2.8. Foliar Fertilizers Containing Nano-Elements
2.9. Foliar Fertilizers Containing Silicon
2.10. Foliar Fertilizers for Biofortification
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. (Ed.) Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable. In The State of Food Security and Nutrition in the World; FAO: Rome, Italy, 2022; ISBN 978-92-5-136499-4. [Google Scholar]
- Hemathilake, D.M.K.S.; Gunathilake, D.M.C.C. Chapter 31—Agricultural Productivity and Food Supply to Meet Increased Demands. In Future Foods; Bhat, R., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 539–553. ISBN 978-0-323-91001-9. [Google Scholar]
- Nair, K.P. Soil Fertility and Nutrient Management. In Intelligent Soil Management for Sustainable Agriculture: The Nutrient Buffer Power Concept; Nair, K.P., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 165–189. ISBN 978-3-030-15530-8. [Google Scholar]
- United Nations. Sustainable Development. Available online: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 26 February 2023).
- European Commission. A Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 23 May 2023).
- EPRS. Rolnictwo Precyzyjne a Przyszłość Rolnictwa w Europie. In EPRS|Biuro Analiz Parlamentu Europejskiego, Dział prognoz Naukowych (STOA) PE 581.892; EPRS: Brussels, Belgium, 2016; ISBN 978-92-846-1033-4. [Google Scholar]
- Szewczuk, C.; Sugier, D. Ogólna Charakterystyka i Podział Nawozów Dolistnych Oferowanych Na Polskim Rynku. Ann. Univ. Mariae–Curie–Skłodowska Lub.–Pol. 2009, LXIV, 29–36. [Google Scholar] [CrossRef]
- Fernández, V.; Eichert, T. Uptake of Hydrophilic Solutes Through Plant Leaves: Current State of Knowledge and Perspectives of Foliar Fertilization. Crit. Rev. Plant Sci. 2009, 28, 36–68. [Google Scholar] [CrossRef]
- Fernández, V.; Sotiropoulos, T.; Brown, P. Foliar Fertilization: Scientific Principles and Field Pratices; International Fertilizer Industry Association: Paris, France, 2013; ISBN 979-10-92366-00-6. [Google Scholar]
- Ishfaq, M.; Kiran, A.; ur Rehman, H.; Farooq, M.; Ijaz, N.H.; Nadeem, F.; Azeem, I.; Li, X.; Wakeel, A. Foliar Nutrition: Potential and Challenges under Multifaceted Agriculture. Environ. Exp. Bot. 2022, 200, 104909. [Google Scholar] [CrossRef]
- Calicioglu, O.; Flammini, A.; Bracco, S.; Bellù, L.; Sims, R. The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions. Sustainability 2019, 11, 222. [Google Scholar] [CrossRef]
- Arora, N.K. Impact of Climate Change on Agriculture Production and Its Sustainable Solutions. Environ. Sustain. 2019, 2, 95–96. [Google Scholar] [CrossRef]
- Szewczuk, C.; Michalojc, Z. Praktyczne Aspekty Dolistnego Dokarmiania Roslin. Acta Agrophysica 2003, 85, 19–29. [Google Scholar]
- Jarecki, W.; Bobrecka-Jamro, D. Wpływ Dolistnie Stosowanego Mocznika z Mikrokomplexem Na Wielkość I Jakość Plonu Nasion Rzepaku Jarego (Influence Of Used on Leaves Urea with Microcomplex on Size and Quality). Zesz. Nauk. Uniw. Przyr. We Wrocławiu Rol. 2010, 97, 267–274. [Google Scholar]
- Liszewski, M.; Błażewicz, J. Wpływ Nawożenia Dolistnego Miedzią i Manganem Na Przydatność Słodowniczą Ziarna Jęczmienia (Badania Wstępne). Pol. J. Agron. 2015, 23, 18–23. [Google Scholar]
- Tobiasz-Salach, R.; Krochmal-Marczak, B.; Bobrecka-Jarmo, D. Ocena Wpływu Nawożenia Dolistnego Na Plonowanie i Skład Chemiczny Nasion Gryki (Fagopyrum Esculentum Moench). Fragm Agron 2018, 35, 106–114. [Google Scholar]
- Oleksy, A.; Staron, J.; Kolodziejczyk, M.; Kulig, B.; Brodowicz, T. Wpływ Dolistnego Nawożenia Mikro-i Makroelementowego Na Plonowanie Oraz Zawartość Tłuszczu w Nasionach Rzepaku. Fragm. Agron. 2019, 36, 54–66. [Google Scholar]
- Byszewski, W.; Moldovany, K.; Sadowska, A. Dolistne Żywienie Roślin. Postępy Nauk Rol. 172 R 1972, 75–94. [Google Scholar]
- Dziennik UstawLiszka-Skoczylas, M.; Żmudziński, D.; Rudnik, D. Biofortyfikacja Roślin Uprawnych Jako Metoda Walki z Deficytem Składników Mineralnych w Diecie Człowieka. In Składniki bioaktywne surowców i produktów roślinnych; Oddział Małopolski Polskiego Towarzystwa Technologów Żywności: Kraków, Poland, 2014; pp. 58–65. [Google Scholar]
- Grzebisz, W.; Korbas, M.; Rybacki, P.; Szczepaniak, W.; Wolna-Maruwka, A.; Woźnica, Z. Nawożenie Dolistne Roślin Uprawnych; Polskie Wydawnictwo Rolnicze: Poznań, Poland, 2019. [Google Scholar]
- Chojnacka, K.; Michalak, I.; Dmytryk, A.; Gramza, M.; Słowiński, A.; Górecki, H. Algal Extracts as Plant Growth Biostimulants. In Marine Algae Extracts; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 189–212. ISBN 978-3-527-67957-7. [Google Scholar]
- Soppelsa, S.; Kelderer, M.; Casera, C.; Bassi, M.; Robatscher, P.; Matteazzi, A.; Andreotti, C. Foliar Applications of Biostimulants Promote Growth, Yield and Fruit Quality of Strawberry Plants Grown under Nutrient Limitation. Agronomy 2019, 9, 483. [Google Scholar] [CrossRef]
- Souri, M.K. Aminochelate Fertilizers: The New Approach to the Old Problem; a Review. Open Agric. 2016, 1, 118–123. [Google Scholar] [CrossRef]
- Preininger, C.; Sauer, U.; Bejarano, A.; Berninger, T. Concepts and Applications of Foliar Spray for Microbial Inoculants. Appl. Microbiol. Biotechnol. 2018, 102, 7265–7282. [Google Scholar] [CrossRef]
- Dziennik Ustaw Ustawa z Dnia 10 Lipca 2007 r. o Nawozach i Nawożeniu, Nr 147, Poz. 1033. 14 August 2007. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20071471033 (accessed on 25 August 2023).
- Rozporządzenie Parlamentu Europejskiego i Rady (UE). 2019/1009 z Dnia 5 Czerwca 2019 r. Ustanawiające Przepisy Dotyczące Udostępniania Na Rynku Produktów Nawozowych UE, Zmieniające Rozporządzenia (WE) Nr 1069/2009 i (WE) Nr 1107/2009 Oraz Uchylające Rozporządzenie (WE) Nr 2003/2003. Parlamentu Europejskiego i Rady UE. 2019. Available online: https://eur-lex.europa.eu/eli/reg/2019/1009/oj (accessed on 25 August 2023).
- Korzeniowska, J. Response of Ten Winter Wheat Cultivars to Boron Foliar Applicatio. Ann. UMCS Agric. 2009, 63, 72–77. [Google Scholar]
- Błaszczyk, K. Wymagania Siedliskowe i Pokarmowe Pszenicy Ozimej. In Problematyka Nauk Przyrodniczych i Technicznych; Uniwersytet Przyrodniczy we Wrocławiu: Wroclaw, Poland, 2019; Volume 3, pp. 14–27. [Google Scholar]
- Niu, J.; Liu, C.; Huang, M.; Liu, K.; Yan, D. Effects of Foliar Fertilization: A Review of Current Status and Future Perspectives. J. Soil Sci. Plant Nutr. 2021, 21, 104–118. [Google Scholar] [CrossRef]
- Krysztoforski, M. Ekonomiczne i Środowiskowe Efekty Racjonalnego Nawożenia. In Ograniczenie Zanieczyszczenia Azotem Pochodzenia Rolniczego Metodą Poprawy Jakości Wód; S-PRINT: Warszawa, Poland, 2018; p. 3. ISBN 978-83-952011-0-3. [Google Scholar]
- Stanisławska-Glubiak, E.; Korzeniowska, J. Analiza Rynku Nawozów Mikroelementowych Na Tle Potrzeb Nawożenia Mikroelementami w Polsce. Stud. Rap. IUNG-PIB 2020, 63, 145–161. [Google Scholar] [CrossRef]
- Podleśna, A. Czynniki Kształtujące Pobieranie i Wykorzystanie Fosforu Przez Rośliny Oraz Jego Straty z Gleb Uprawnych. Stud. I Rap. IUNG-PIB 2019, 56, 59–76. [Google Scholar] [CrossRef]
- Tkaczyk, P.; Rutkowska, A. Zmiany Odczynu i Zasobności w Składniki Pokarmowe Gleb Uprawnych Lubelszczyzny. Ann. UMCS Sect. E Agric. 2020, 75, 3. [Google Scholar] [CrossRef]
- Pietrzak, S.; Juszkowska, D.; Nawalany, P. Zmiany Odczynu i Zasobności Gleb Użytków Zielonych w Polsce Między 2008 a 2016 Rokiem. Zagadnienia Doradz. Rol. 2019, 95, 50–71. [Google Scholar]
- GUS. Rocznik Statystyczny Rolnictwa; Główny Urząd Statystyczny: Warsaw, Poland, 2022. [Google Scholar]
- Rachoń, L.; Kawczyńska, M. Changes in the Structure of Sowing Area, Yields and Harvests of Cereal Crops in Poland in the Years 1965–2015. Ann. UMCS Sect. E Agric. 2018, 73, 4. [Google Scholar] [CrossRef]
- Raboanatahiry, N.; Li, H.; Yu, L.; Li, M. Rapeseed (Brassica Napus): Processing, Utilization, and Genetic Improvement. Agronomy 2021, 11, 1776. [Google Scholar] [CrossRef]
- Wielebski, F. Rola Siarki w Kształtowaniu Ilości i Jakości Plonu Rzepaku Ozimego. Rośliny Oleiste-Oilseed Crops 2015, 36, 39–59. [Google Scholar]
- Szulc, K. Strategie Nawożenia Rzepaku Mikroelementami. Farmer.pl 2015, 12 October 2015. Available online: https://www.farmer.pl/produkcja-roslinna/rosliny-oleiste/strategie-nawozenia-rzepaku-mikroelementami,59632.html (accessed on 25 August 2023).
- Kobus, A. Priorytetowe Mikroelementy w Rzepaku. Farmer.pl 2015, 13 April 2015. Available online: https://www.farmer.pl/produkcja-roslinna/rosliny-oleiste/priorytetowe-mikroelementy-w-rzepaku,55637.html (accessed on 25 August 2023).
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global Maize Production, Consumption and Trade: Trends and R&D Implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Lepiarczyk, A.; Filipek-Mazur, B.; Tabak, M.; Joniec, A. Wpływ Nawożenia Azotem i Siarką Na Plonowanie i Skład Chemiczny Ziarna Kukurydzy. Część I. Wielkość i Komponenty Plonu Ziarna Kukurydzy. Fragm. Agron. 2013, 30, 115–122. [Google Scholar]
- Księżak, J.; Bojarszczuk, J.; Staniak, M. Produkcyjność Kukurydzy i Sorga w Zależności Od Poziomu Nawożenia Azotem. Pol. J. Agron. 2012, 8, 20–28. [Google Scholar]
- Subedi, K.; Ma, B. Corn Crop Production: Growth, Fertilization and Yield. In Corn Crop Production: Growth, Fertilization and Yield; Danforth, A.T., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2011; pp. 1–85. [Google Scholar]
- Rehm, G.W. Sulfur in a Fertilizer Program for Corn. In Sulfur: A Missing Link between Soils, Crops, and Nutrition; Jez, J., Ed.; ASA-CSSA-SSSA: Madison, WI, USA, 2008; pp. 143–152. [Google Scholar]
- Podleśna, A.; Podleśny, J.; Klikocka, H. Wpływ Nawożenia Siarką i Azotem Na Azotowo-Fosforową Gospodarkę Kukurydzy. Przem. Chem. 2017, 96, 1374–1377. [Google Scholar] [CrossRef]
- Barczak, B.; Murawska, B.; Spychaj-Fabisiak, E. Zawartość Siarki i Azotu w Ziarnie Kukurydzy w Zależności Od Typu Gleby i Zastosowanego Nawożenia. Fragm. Agron. 2011, 28, 7–14. [Google Scholar]
- Korzeniowska, J.; Gembarzewski, H. Potrzeby Nawożenia Mikroelementami Kukurydzy Uprawianej Na Kiszonkę. Rocz. Glebozn. 1999, 50, 79–84. [Google Scholar]
- Świtkowski, M.; Kozera, W.; Barczak, B. Ocena Efektywności Dolistnego Nawożenia Zbóż. Nauka Niejedno Ma Imię 2015, T.3, 131–139. [Google Scholar]
- Pipiak, P.; Skwarek, M. Zastosowanie Nawozów Aminokwasowych w Rolnictwie. Technol. Jakość Wyr. 2020, 65, 144–157. [Google Scholar]
- Wang, D.; Deng, X.; Wang, B.; Zhang, N.; Zhu, C.; Jiao, Z.; Li, R.; Shen, Q. Effects of Foliar Application of Amino Acid Liquid Fertilizers, with or without Bacillus Amyloliquefaciens SQR9, on Cowpea Yield and Leaf Microbiota. PLoS ONE 2019, 14, e0222048. [Google Scholar] [CrossRef]
- Noroozlo, Y.A.; Souri, M.K.; Delshad, M. Stimulation Effects of Foliar Applied Glycine and Glutamine Amino Acids on Lettuce Growth. Open Agric. 2019, 4, 164–172. [Google Scholar] [CrossRef]
- Miri Nargesi, M.; Sedaghathoor, S.; Hashemabadi, D. Effect of Foliar Application of Amino Acid, Humic Acid and Fulvic Acid on the Oil Content and Quality of Olive. Saudi J. Biol. Sci. 2022, 29, 3473–3481. [Google Scholar] [CrossRef]
- Janmohammadi, M.; Amanzadeh, T.; Sabaghnia, N.; Dashti, S. Impact of Foliar Application of Nano Micronutrient Fertilizers and Titanium Dioxide Nanoparticles on the Growth and Yield Components of Barley under Supplemental Irrigation. Acta Agric. Slov. 2016, 107, 265–276. [Google Scholar] [CrossRef]
- Bozorgi, H.R. Effects of Foliar Spraying with Marine Plant Ascophyllum Nodosum Extract and Nano Iron Chelate Fertilizer on Fruit Yield and Several Attributes of Eggplant (Solanum Melongena L.). ARPN J. Agric. Biol. Sci. 2012, 7, 357–362. [Google Scholar]
- Mahdi, H.H.; Mutlag, L.A.; Mouhamad, R.S. Study the Effect of Khazra Iron Nano Chelate Fertilizer Foliar Application on Two Rapeseed Varieties. Rev. Bionatura 2019, 4, 841–845. [Google Scholar] [CrossRef]
- Vishekaii, Z.R.; Soleimani, A.; Fallahi, E.; Ghasemnezhad, M.; Hasani, A. The Impact of Foliar Application of Boron Nano-Chelated Fertilizer and Boric Acid on Fruit Yield, Oil Content, and Quality Attributes in Olive (Olea Europaea L.). Sci. Hortic. 2019, 257, 108689. [Google Scholar] [CrossRef]
- Manjili, M.J.; Bidarigh, S.; Amiri, E. Study the Effect of Foliar Application of Nano Chelate Molybdenum Fertilizer on the Yield and Yield Components of Peanut. Egypt. Acad. J. Biol. Sci. H Bot. 2014, 5, 67–71. [Google Scholar] [CrossRef]
- Shalaby, T.A.; Abd-Alkarim, E.; El-Aidy, F.; Hamed, E.-S.; Sharaf-Eldin, M.; Taha, N.; El-Ramady, H.; Bayoumi, Y.; Dos Reis, A.R. Nano-Selenium, Silicon and H2O2 Boost Growth and Productivity of Cucumber under Combined Salinity and Heat Stress. Ecotoxicol. Environ. Saf. 2021, 212, 111962. [Google Scholar] [CrossRef] [PubMed]
- Jaskulska, I.; Jaskulski, D. Efekty Stosowania Nanocząstek Srebra i Miedzi w Nawozach Dolistnych. Przem. Chem. 2020, 99, 250–253. [Google Scholar] [CrossRef]
- Meena, R.; Jat, G.; Jain, D. Impact of Foliar Application of Different Nano-Fertilizers on Soil Microbial Properties and Yield of Wheat. J. Environ. Biol. 2021, 42, 302–308. [Google Scholar] [CrossRef]
- Puppe, D.; Sommer, M. Chapter One—Experiments, Uptake Mechanisms, and Functioning of Silicon Foliar Fertilization—A Review Focusing on Maize, Rice, and Wheat. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2018; Volume 152, pp. 1–49. [Google Scholar]
- Trawczyński, C. Ocena Plonowania i Jakości Bulw Po Aplikacji Dolistnej Krzemu i Mikroelementów. Agron. Sci. 2021, 76, 1. [Google Scholar] [CrossRef]
- Basirat, M.; Mousavi, S.M. Effect of Foliar Application of Silicon and Salicylic Acid on Regulation of Yield and Nutritional Responses of Greenhouse Cucumber Under High Temperature. J. Plant Growth Regul. 2022, 41, 1978–1988. [Google Scholar] [CrossRef]
- Cakmak, I.; Kutman, U.B. Agronomic Biofortification of Cereals with Zinc: A Review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef]
- Smoleń, S.; Ledwożyw-Smoleń, I.; Strzetelski, P.; Sady, W.; Rożek, S. Wpływ Nawożenia Jodem i Azotem Na Efektywność Biofortyfikacji w Jod Oraz Na Jakość Biologiczną Marchwi. The Effect of Iodine and Nitrogen Fertilization on Efficiency Biofortification in Iodine as Well as on Biological Quality of Carrot. Ochr. Śr. Zasobów Nat. 2009, 40, 313–320. [Google Scholar]
- Rożek, S.; Smoleń, S.; Ledwożyw, I.; Strzetelski, P. Wstępna Ocena Wpływu Nawożenia i Dokarmiania Dolistnego Jodem Na Efektywność Biofortyfikacji Salaty w Jod Oraz Na Jej Sklad Mineralny. J. Elem. 2010, 15, 78–79. [Google Scholar]
- Janečka, L.; Jůzl, M.; Elzner, P.; Drápal, K.; Mareček, V. Impact of the Aplication of Foliar Fertilizers Containing Selenium on the Yield Indicators in Potatoes. Mendelnet 2011, 50–56. [Google Scholar]
- Darecki, A.; Saeid, A.; Górecki, H. Selen w Perspektywie Fortyfikacji Roślin o Znaczeniu Gospodarczym Dla Polski. Wiad. Chem. 2015, 69, 1067–1081. [Google Scholar]
Microelement | 1987–1993 | 1994–1999 | 2000–2012 | 2016–2017 | |
---|---|---|---|---|---|
Wheat | Rapeseed | ||||
Boron (B) | 75 | 79 | 74 | 19 | 45 |
Copper (Cu) | 37 | 34 | 34 | 30 | 14 |
Iron (Fe) | - | 28 | 21 | 21 | 10 |
Manganese (Mn) | 11 | 7 | 3 | 16 | 15 |
Molybdenum (Mo) | 23 | - | - | - | - |
Zinc (Zn) | 14 | 13 | 17 | 20 | 14 |
Crop Plant | B | Cu | Mn | Mo | Zn |
---|---|---|---|---|---|
Wheat | 1 | 3 | 3 | 0 | 1 |
Barley | 0 | 3 | 2 | 1 | 0 |
Rye | 0 | 0 | 2 | 0 | 0 |
Triticale | 0 | 1 | 1 | 0 | 0 |
Oats | 0 | 3 | 3 | 1 | 0 |
Rape | 3 | 1 | 2 | 2 | 0 |
Sugar beet | 3 | 2 | 3 | 2 | 1 |
Corn | 2 | 2 | 2 | 0 | 3 |
Species of Cereal | 2010 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|---|---|
dt ha−1 | ||||||||
Basic Cereals with Cereal Mixtures | 35.1 | 36.7 | 37.5 | 40.0 | 32.3 | 35.2 | 44.8 | 42.6 |
Winter wheat | 45.7 | 47.6 | 47.2 | 51.1 | 43.0 | 46.4 | 54.2 | 51.8 |
Spring wheat | 34.3 | 33.5 | 38.3 | 38.5 | 31.5 | 32.6 | 41.7 | 39.6 |
Rye | 26.9 | 27.8 | 28.9 | 30.6 | 24.2 | 27.2 | 35.1 | 33.1 |
Winter barley | 40.7 | 41.3 | 44.6 | 47.1 | 37.8 | 43.0 | 51.1 | 47.7 |
Spring barley | 33.0 | 33.0 | 35.8 | 38.0 | 29.5 | 32.1 | 40.0 | 37.8 |
Oats | 26.4 | 26.5 | 28.4 | 29.8 | 23.5 | 24.9 | 33.2 | 31.4 |
Winter triticale | 35.2 | 36.3 | 37.1 | 40.4 | 32.8 | 35.9 | 45.0 | 43.1 |
Spring triticale | 28.4 | 28.4 | 31.7 | 32.9 | 25.1 | 27.5 | 36.4 | 33.7 |
Winter cereal mixes | 30.9 | 30.9 | 32.4 | 34.4 | 28.2 | 30.6 | 38.1 | 36.6 |
Spring cereal mixes | 30.5 | 27.2 | 29.8 | 32.2 | 25.0 | 26.2 | 34.5 | 33.7 |
Use of the Corn Crop | 2010 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|
dt ha−1 | |||||||
Grain | 59.7 | 47.1 | 72.9 | 71.5 | 59.9 | 56.2 | 56.2 |
Forage | 437 | 357 | 493 | 487 | 426 | 406 | 459 |
Foliar Fertilizer | Chemical Composition | Type of Complexes/ Chelates | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P2O5 | K2O | MgO | SO3 | B | Cu | Fe | Mn | Mo | Zn | ||
Liquid fertilizers | ||||||||||||
Ekolist cereals | 127 | 38.1 | 38.1 | - | - | 0.13 | 11.4 | 8.9 | 10.1 | 0.06 | 8.9 | EDTA organic complexes |
Plonvit cereals | 195 | - | - | 26 | 59 | 0.18 | 11.7 | 10.4 | 14.3 | 0.06 | 13 | EDTA organic complexes |
Vital cereals | 198 | - | - | 66 | - | 1.32 | 3.3 | 6.6 | 11.8 | 0.16 | 13.2 | No |
Sarplon cereals | 245 | - | 34.3 | 10 | - | 1.32 | 6.6 | 13.2 | 19.8 | 0.26 | 4 | EDTA/DTPA |
Suplofol Micro Z | 204 | - | - | 27 | 68 | 2 | 6.8 | 13.6 | 25.9 | 0.2 | 13.6 | No |
Crystalline fertilizers | ||||||||||||
Maximus amino micro cereals | 11 | - | 70 | - | - | 3.4 | 50 | 20 | 40 | 0.4 | 20 | Glicyna |
Adob Micro cereals | 100 | - | 50 | - | 310 | - | 15 | 3 | 30 | 0.2 | 5 | EDTA |
Amino Ultra cereals | - | - | - | 20 | - | 1.6 | 16 | 65 | 65 | 0.7 | 49 | Glicyna |
Cereals forte | 50 | 150 | 150 | 78 | 20 | 0.2 | 10 | 1 | 10 | 0.01 | 0.04 | EDTA/DTPA |
Dr Green cereals | - | - | - | - | - | 5 | 50 | 60 | 80 | 0.5 | 20 | Micro Activ |
Opti cereals | 140 | 160 | 160 | 30 | 180 | - | 3 | 1.5 | 5 | 0.4 | 1.5 | EDTA/DTPA |
Suspension fertilizers | ||||||||||||
Yaravita Gramitrel | 64 | - | - | 250 | - | - | 50 | - | 150 | - | 80 | Oxide form |
Foliar Fertilizer | Chemical Composition | Type of Complexes/ Chelates | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P2O5 | K2O | MgO | SO3 | B | Cu | Fe | Mn | Mo | Zn | ||
Liquid fertilizers | ||||||||||||
Ekolist rape | 150 | 50 | 37.5 | - | - | 8.7 | 0.1 | 8.7 | 8.7 | 0.06 | 0.12 | Technology ACTIVE |
Plonvit rape | 186 | - | - | 31 | 31 | 6.2 | 1.2 | 6.2 | 6.2 | 0.06 | 6.2 | Technology INT |
Vital rape | 188 | - | - | 40 | - | 6.9 | 1.2 | 3.1 | 4.4 | 0.09 | 3.7 | No |
Sarplon rape | 285 | - | 30.4 | 12.4 | 1.45 | 5.3 | 2.38 | 2.38 | 16.8 | 0.53 | 2.4 | EDTA/DTPA |
Suplofol micro BR | 195 | - | - | 26 | 65 | 6.2 | 0.85 | 1 | 23.4 | 0.2 | 9.5 | No |
Crystalline fertilizers | ||||||||||||
Maximus Amino Micro rape | 110 | - | 70 | - | - | 20 | 15 | 30 | 40 | 0.4 | 15 | Glicyna |
Adob Micro rape | 47 | - | - | - | 135 | 100 | 5 | 3 | 15 | 1 | 3 | EDTA |
Rapeforte | 50 | 150 | 150 | 46 | 147 | 30 | 0.03 | 1.5 | 10 | 0.01 | 0.04 | EDTA/DTPA |
Dr Green rape | - | - | - | - | - | 100 | 2 | 25 | 50 | 0.5 | 20 | Micro Activ |
OPTI rape | 110 | 150 | 210 | 20 | 190 | 15 | 1 | 1.5 | 2 | 0.4 | 1.5 | EDTA |
Suspension fertilizers | ||||||||||||
Yaravita Gramitrel | 64 | - | - | 250 | - | - | 50 | - | 150 | - | 80 | Oxide form |
Foliar Fertilizer | Chemical Composition | Type of Complexes/ Chelates | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P2O5 | K2O | MgO | SO3 | B | Cu | Fe | Mn | Mo | Zn | ||
Liquid fertilizers | ||||||||||||
Ekolist corn | 75.6 | 126 | 37.8 | - | - | 6.3 | 1.2 | 7.5 | 2.5 | 0.06 | 11.3 | Technologia ACTIVE |
Plonvit corn | 195 | - | - | 26 | 54.6 | 5.2 | 7.8 | 9.1 | 9.1 | 0.065 | 14.3 | Technologia INT |
Vital corn | 203 | - | - | 69 | - | 1.6 | 4.1 | 6.7 | 13.5 | 0.13 | 17.6 | Brak |
Sarplon corn | 271 | - | 11.9 | 18.5 | - | 4 | 1.3 | 1.3 | 6.6 | 0.46 | 19.8 | EDTA |
Suplofol Micro K | 188 | - | - | 25 | 63 | 2.5 | 1.25 | 3.75 | 5 | 0.38 | 20 | No |
Crystalline fertilizers | ||||||||||||
Maximus Amino Micro corn | - | 110 | 70 | - | - | 20 | 20 | 20 | 30 | 0.4 | 50 | Glicyna |
Adob Mikro corn | 70 | 20 | - | 30 | 100 | 20 | 1 | 2 | 5 | 0.1 | 40 | EDTA |
Corn forte | 50 | 200 | 150 | 42 | 220 | 15 | 0.07 | 1 | 0.1 | 0.01 | 15 | EDTA. DTPA |
Dr Green corn | - | - | - | - | - | 5 | 2 | 60 | 70 | 0.5 | 80 | Micro Activ |
OPTI corn | 100 | 210 | 140 | 30 | 140 | 5 | 2 | 1 | 0.3 | 3 | 1 | EDTA |
Suspension fertilizers | ||||||||||||
YaraVita Zeatrel | - | 440 | 75 | 67 | - | - | - | - | - | - | 46 | Oxide form |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Januszkiewicz, R.; Kulczycki, G.; Samoraj, M. Foliar Fertilization of Crop Plants in Polish Agriculture. Agriculture 2023, 13, 1715. https://doi.org/10.3390/agriculture13091715
Januszkiewicz R, Kulczycki G, Samoraj M. Foliar Fertilization of Crop Plants in Polish Agriculture. Agriculture. 2023; 13(9):1715. https://doi.org/10.3390/agriculture13091715
Chicago/Turabian StyleJanuszkiewicz, Rafał, Grzegorz Kulczycki, and Mateusz Samoraj. 2023. "Foliar Fertilization of Crop Plants in Polish Agriculture" Agriculture 13, no. 9: 1715. https://doi.org/10.3390/agriculture13091715
APA StyleJanuszkiewicz, R., Kulczycki, G., & Samoraj, M. (2023). Foliar Fertilization of Crop Plants in Polish Agriculture. Agriculture, 13(9), 1715. https://doi.org/10.3390/agriculture13091715