The Impact of Mining Waste and Biogas Digestate Addition on the Durability of Soil Aggregates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Analysis
2.3. Statistical Analysis
3. Results
3.1. Soil Texture (PSD) and Total Organic Carbon (TOC)
3.2. The Content of Water-Stable Soil Aggregates (A5–10, A1–5, and A<1) and the Weighted Arithmetic Mean of the Aggregate Diameters (MWD)
4. Discussion
4.1. Changes in Soil Texture and Total Organic Carbon
4.2. Changes in the Aggregate Content
5. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Zhen, J.; Hu, W.; Chen, S.; Lizaga, I.; Zeraatpisheh, M.; Yang, X. Remote sensing of soil degradation: Progress and perspective. Int. Soil Water Conserv. Res. 2023, 11, 429–454. [Google Scholar] [CrossRef]
- Lal, R. Soil and sustainability agriculture. A review. Agron. Sustain. Dev. 2008, 28, 57–65. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Drewry, J.J.; Cameron, K.C.; Buchan, G.D. Pasture yield and soil physical property responses to soil compaction from treading and grazing—A review. Aust. J. Soil Res. 2008, 46, 237–256. [Google Scholar] [CrossRef]
- Pranagal, J.; Tomaszewska-Krojańska, D.; Smal, H.; Ligęza, S. Impact of selected waste applications on soil compaction. Agron. Sci. 2019, 74, 19–32. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Yang, X.M.; Tan, C.S. Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma 2008, 146, 466–474. [Google Scholar] [CrossRef]
- Angers, D.A.; Eriksen-Hamel, N.S. Full-inversion tillage and organic carbon distribution in soil profiles: A meta-analysis. Soil Sci. Soc. Am. J. 2008, 72, 1370–1374. [Google Scholar] [CrossRef]
- Hillel, D.; Rosenzweig, C. Conclusion: Agricultural solutions for climate change at global and regional scales. In Handbook of Climate Change and Agroecosystems: Global and Regional Aspects and Implications; Hillel, D., Rosenzweig, C., Eds.; ICP Series on Climate Change Impacts, Adaptation, and Mitigation vol. 2; Imperial College Press: London, UK, 2012; pp. 281–292. [Google Scholar]
- Cai, T.; Wang, Z.; Guo, C.; Huang, H.; Chai, H.; Zhang, C. Effects of Biochar and Manure Co-Application on Aggregate Stability and Pore Size Distribution of Vertisols. Int. J. Environ. Res. Public Health 2022, 19, 11335. [Google Scholar] [CrossRef]
- Yang, T.; Xing, X.; Gao, Y.; Ma, X. An Environmentally Friendly Soil Amendment for Enhancing Soil Water Availability in Drought-Prone Soils. Agronomy 2022, 12, 133. [Google Scholar] [CrossRef]
- Lilli, M.A.; Paranychianakis, N.V.; Lionoudakis, K.; Kritikaki, A.; Voutsadaki, S.; Saru, M.L.; Komnitsas, K.; Nikolaidis, N.P. The Impact of Sewage-Sludge- and Olive-Mill-Waste-Derived Biochar Amendments to Tomato Cultivation. Sustainability 2023, 15, 3879. [Google Scholar] [CrossRef]
- Pranagal, J.; Lipiec, J.; Domżał, H. Changes in pore size distribution and aggregate stability of two soils under long term tillage system. Int. Agrophysics 2005, 19, 165–174. [Google Scholar]
- Pranagal, J.; Podstawka-Chmielewska, E.; Słowińska-Jurkiewicz, A. Influence on selected physical properties of a Haplic Podzol during a ten-year fallow period. Pol. J. Environ. Stud. 2007, 16, 875–880. [Google Scholar]
- Meena, R.S.; Lal, R.; Yadav, G.S. Long-term impacts of topsoil depth and amendments on soil physical and hydrological properties of an Alfisol in central Ohio, USA. Geoderma 2020, 363, 114164. [Google Scholar] [CrossRef]
- Szostek, M.; Kosowski, P.; Szpunar-Krok, E.; Jańczak-Pieniążek, M.; Matłok, N.; Skrobacz, K.; Pieniążek, R.; Balawejder, M. The usefulness of ozone-stabilized municipal sewage sludge for fertilization of maize (Zea mays L.). Agriculture 2022, 12, 387. [Google Scholar] [CrossRef]
- Wojewódzki, P.; Lemanowicz, J.; Debska, B.; Haddad, S.A. soil enzyme activity response under the amendment of different types of biochar. Agronomy 2022, 12, 569. [Google Scholar] [CrossRef]
- Weber, J.; Karczewska, A.; Drozd, J.; Licznar, M.; Licznar, S.; Jamroz, E.; Kocowicz, A. Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts. Soil Biol. Biochem 2007, 39, 1294–1302. [Google Scholar] [CrossRef]
- Baran, S.; Pranagal, J.; Bik, M. Usefulness of mineral wool Grodan and sewage sludge in management of water properties in soils devastated during extraction of sulphur by Frash method. Miner. Resour. Manag. 2008, 24, 81–95. [Google Scholar]
- Paluszek, J. Physical quality of eroded luvisol fertilized with lignite. Adv. Agric. Sc. Probl. Issues 2009, 535, 305–312. [Google Scholar]
- Pranagal, J.; Kraska, P. 10-years studies of the soil physical condition after one-time biochar application. Agronomy 2020, 10, 1589. [Google Scholar] [CrossRef]
- Kowalczyk-Juśko, A.; Szymańska, M. Post-Fermentation Sludge—Fertilizer for Agriculture; FDPA: Warsaw, Poland, 2015; pp. 1–64. ISBN 978-83-937363-6-2.
- Różyło, K.; Oleszczuk, P.; Jośko, I.; Kraska, P.; Kwiecińska-Poppe, E.; Andruszczak, S. An ecotoxicological evaluation of soil fertilized with biogas residues or mining waste. Environ. Sci. Pollut. Res. 2015, 22, 7833–7842. [Google Scholar] [CrossRef]
- Stefaniuk, M.; Bartmiński, P.; Różyło, K.; Dębicki, R.; Oleszczuk, P. Ecotoxicological assessment of residues from different biogas production plants used as fertilizer for soil. J. Hazard. Mater. 2015, 298, 195–202. [Google Scholar] [CrossRef]
- Głowacka, A.; Szostak, B.; Klebaniuk, R. Effect of Biogas Digestate and Mineral Fertilisation on the Soil Properties and Yield and Nutritional Value of Switchgrass Forage. Agronomy 2020, 10, 490. [Google Scholar] [CrossRef]
- Różyło, K.; Gawlik-Dziki, U.; Świeca, M.; Różyło, R.; Pałys, E. Winter wheat fertilized with biogas residue and mining waste: Yielding and the quality of grain. J. Sci. Food Agric. 2016, 96, 3454–3461. [Google Scholar] [CrossRef] [PubMed]
- Pranagal, J.; Ligęza, S.; Smal, H. Impact of Effective Microorganisms (EM) application on the physical condition of Haplic Luvisol. Agronomy 2020, 10, 1049. [Google Scholar] [CrossRef]
- Blum, W.E.H. Basic concepts: Degradation, Resilience, and Rehabilitation. In Methods for Assessment of Soil Degradation; CRC Press: Boca Raton, FL, USA; New York, NY, USA, 1998. [Google Scholar]
- Reynolds, W.D.; Nurse, R.; Phillips, L.; Drury, C.F.; Yang, X.M.; Page, E.R. Characterizing mass-volume-density-porosity relationships in a sandy loam soil amended with compost. Can. J. Soil Sc. 2020, 100, 289–301. [Google Scholar] [CrossRef]
- Pranagal, J. The Physical State of Selected Silty Soils of on the Lublin Region; Dissertations University of Life Sciences in Lublin: Lublin, Poland, 2011; Volume 353, pp. 1–129. [Google Scholar]
- Pranagal, J.; Oleszczuk, P.; Tomaszewska-Krojańska, D.; Kraska, P.; Różyło, K. Effect of biochar application on the physical properties of Haplic Podzol. Soil Tillage Res. 2017, 174, 92–103. [Google Scholar] [CrossRef]
- Arshad, M.A.; Martin, S. Identifying critical limits for soil quality indicators in agro ecosystems. Agric. Ecosyst. Environ. 2002, 88, 153–160. [Google Scholar] [CrossRef]
- Abiven, S.; Menasseri, S.; Angers, D.A.; Leterme, P. Dynamics of aggregate stability and biological binding agents during decomposition of organic materials. Eur. J. Soil Sci. 2007, 58, 239–247. [Google Scholar] [CrossRef]
- WRB; IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Pranagal, J.; Ligęza, S.; Smal, H.; Gmitrowicz-Iwan, J. Effects of waste application (carboniferous rock and post-fermentation sludge) on soil quality. Land 2023, 12, 488. [Google Scholar] [CrossRef]
- IMWM-NRI. Climate of Poland 2022. Institute of Meteorology and Water Management—National Research Institute. 2023. Available online: https://www.imgw.pl/badania-nauka/klimat (accessed on 5 September 2023).
- Kondracki, J.A. Regional Geography of Poland; PWN Press: Warsaw, Poland, 2009; p. 441. ISBN 978-83-01-16022-7. [Google Scholar]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis. Vol. 1. Physical and Mineralogical Methods; Klute, A., Ed.; ASA-SSSA Inc.: Madison, WI, USA, 1986; pp. 425–444. [Google Scholar]
- ISO 11277: 2009(R2015); Soil Quality—Determination of Particle Size Distribution in Mineral Soil Material—Method by Sieving and Sedimentation. International Organization for Standardization: Geneve, Switzerland, 1998.
- USDA; Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2022.
- Mikheeva, I.V. Changes in the probability distributions of particle size fractions in chestnut soil of the Kulunda Steppe under the effect of natural and anthropogenic factors. Eurasian Soil Sci. 2010, 43, 1351–1361. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology 2012, 59, 2071–2096. [Google Scholar] [CrossRef]
- Pranagal, J. Intensity of agricultural land use and soil degradation processes. Adv. Agric. Sc. Probl. Issues 2009, 535, 321–329. [Google Scholar]
- Ligęza, S. Variability of the Contemporary Fluvisols of the Vistula River Near Puławy; Dissertations University of Life Sciences in Lublin: Lublin, Poland, 2016; Volume 385, pp. 1–131. [Google Scholar]
- Carter, M.; Bentley, S.P. Soil Properties and Their Correlations, 2nd ed.; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Du, Z.; Liu, S.; Li, K.; Ren, T. Soil organic carbon and physical quality as influenced by long-term application of residue and mineral fertiliser in the North China Plain. Aust. J. Soil Res. 2009, 47, 585–591. [Google Scholar] [CrossRef]
- Pranagal, J.; Podstawka-Chmielewska, E. Physical properties of a Rendzic Phaeozem during a ten-year period of fallowing under the conditions of south-eastern Poland. Geoderma 2012, 189–190, 262–267. [Google Scholar] [CrossRef]
- Wang, W.; Li, J.; Su, L.; Wang, Q. Soil air permeability model based on soil physical basic parameters. Nongye Jixie Xuebao. Trans. Chin. Soc. Agric. Mach. 2015, 46, 125–130. [Google Scholar] [CrossRef]
- Mentges, M.I.; Reichert, J.M.; Rodrigues, M.F.; Awe, G.O.; Mentges, L.R. Capacity and intensity soil aeration properties affected by granulometry, moisture, and structure in no-tillage soils. Geoderma 2016, 263, 47–59. [Google Scholar] [CrossRef]
- Iversen, B.V.; Schjønning, P.; Poulsen, T.G.; Moldrup, P. In-situ, on-situ and laboratory measurements of soil air permeability: Boundary conditions a measurement scale. Soil Sci. 2001, 166, 97–106. [Google Scholar] [CrossRef]
- Paluszek, J. Criteria of evaluation of physical quality of Polish arable soils. Acta Agroph. 2011, 191, 1–139. [Google Scholar]
- Githinji, L. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Arch. Agron. Soil Sci. 2014, 60, 457–470. [Google Scholar] [CrossRef]
- Kuncoro, P.H.; Koga, K.; Satta, N.; Muto, Y. A study on the effect of compaction on transport properties of soil gas and water I: Relative gas diffusivity, air permeability, and saturated hydraulic conductivity. Soil Tillage Res. 2014, 143, 172–179. [Google Scholar] [CrossRef]
- Asgarzadeh, H.; Mosaddeghi, M.R.; Dexter, A.R.; Mahboubi, A.A.; Neyshabouri, M.R. Determination of soil available water for plants: Consistency between laboratory and field measurements. Geoderma 2014, 226–227, 8–20. [Google Scholar] [CrossRef]
- Tisdall, J.M. Formation of soil aggregates and accumulation of soil organic matter. In Structure and Organic Matter Storage in Agricultural Soils; Carter, M.R., Stewart, D.A., Eds.; Lewis Publishers; CRC Press: Boca Raton, FL, USA, 1996; pp. 57–96. [Google Scholar]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Darboux, F.; Le Bissonnais, Y. Changes in structural stability with soil surface crusting: Con-sequences for erodibility estimation. Eur. J. Soil Sci. 2007, 58, 1107–1114. [Google Scholar] [CrossRef]
- Singh, M.J.; Khera, K.L. Physical indicators of soil quality in relation to soil erodibility under different land use. Arid Land Res. Manag. 2009, 23, 152–167. [Google Scholar] [CrossRef]
- Vermang, J.; Demeyer, V.; Cornelis, W.M. Aggregate stability and erosion response to antecedent water content of a loess soil. Soil. Sci. Soc. Am. J. 2009, 73, 718–726. [Google Scholar] [CrossRef]
- Ojeda, G.; Alcañiz, J.M.; Le Bissonnais, Y. Differences in aggregate stability due to various sewage sludge treatments on a Mediterranean calcareous soil. Agric. Ecosyst. Environ. 2008, 125, 48–56. [Google Scholar] [CrossRef]
- Malamoud, K.; McBratney, A.B.; Minasny, B.; Field, D.J. Modelling how carbon affect soil structure. Geoderma 2009, 149, 19–26. [Google Scholar] [CrossRef]
- Fiorini, A.; Boselli, R.; Maris, S.C.; Santelli, S.; Perego, A.; Acutis, M.; Brenna, S.; Tabaglio, V. Soil type and cropping system as drivers of soil quality indicators response to no-till: A 7-year study. Appl. Soil Ecol. 2020, 155, 103646. [Google Scholar] [CrossRef]
- Komissarov, M.; Gabbasova, I.; Garipov, T.; Suleymanov, R.; Sidorova, L. The Effect of Phosphogypsum and Turkey Litter Application on the Properties of Eroded Agrochernozem in the South Ural Region (Russia). Agronomy 2022, 12, 2594. [Google Scholar] [CrossRef]
- Paluszek, J. Effect of lignite fertilization on the quality of soil structure of eroded luvisol. Adv. Agric. Sc. Probl. Issues 2009, 535, 313–320. [Google Scholar]
- Le Bissonnais, Y. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 1996, 47, 425–437. [Google Scholar] [CrossRef]
- Barthès, B.; Roose, E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 2002, 47, 133–149. [Google Scholar] [CrossRef]
- Domżał, H.; Pranagal, J. Water-stable soil aggregates as an indicator of soil degradation caused by agricultural use. Fragm. Agronom. 1994, 11, 22–34. [Google Scholar]
- Fiorini, A.; Boselli, R.; Maris, S.C.; Santelli, S.; Ardenti, F.; Capra, F.; Tabaglio, V. May conservation tillage enhance soil C and N accumulation without decreasing yield in intensive irrigated croplands? Results from an eight-year maize monoculture. Agric. Ecosyst. Environ. 2020, 296, 106926. [Google Scholar] [CrossRef]
- Sun, X.; Yin, D.; Qin, F.; Yu, H.; Lu, W.; Yao, F.; He, Q.; Huang, X.; Yan, Z.; Wang, P.; et al. Revealing influencing factors on global waste distribution via deep-learning based dumpsite detection from satellite imagery. Nat. Commun. 2023, 14, 1444. [Google Scholar] [CrossRef] [PubMed]
- Wang, X. Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security. Land 2022, 11, 484. [Google Scholar] [CrossRef]
- Expósito, A.; Velasco, F. Exploring environmental efficiency of the European agricultural sector in the use of mineral fertilizers. J. Clean. Prod. 2020, 253, 119971. [Google Scholar] [CrossRef]
- Gmitrowicz-Iwan, J.; Ligęza, S.; Pranagal, J.; Smal, H.; Wójcikowska-Kapusta, H. Improving acidic sandy soil properties for plant growth with dam reservoir sediments in the face of soaring fertiliser prices. Soil Tillage Res. 2023, 234, 105843. [Google Scholar] [CrossRef]
No. | Treatment | Dose | |||||||
---|---|---|---|---|---|---|---|---|---|
Treatment | I | Control soil | None | ||||||
II | Mineral fertilisation * (kg ha−1) | N autumn | N spring | P | K | Mg | Ca | S | |
40 | 80 | 100 | 120 | 40 | 60 | 20 | |||
III | Mining waste (Mg ha−1) | Carboniferous rock | |||||||
200 | |||||||||
IV | Organic waste (m3 ha−1) | Biogas digestate | |||||||
60 | |||||||||
V | Mining (Mg ha−1) and organic (m3 ha−1) waste | Carboniferous rock | Biogas digestate | ||||||
200 | 60 |
Treatment | Depth cm | TOC, g kg−1 | Soil Fraction, mm | Soil Texture [38] | ||
---|---|---|---|---|---|---|
2.0–0.05 | 0.05–0.002 | <0.002 | ||||
I | 0–10 10–20 | 8.81–9.52 7.39–8.08 | 76 75 | 20 22 | 4 3 | LS |
II | 0–10 10–20 | 8.93–9.71 7.62–7.98 | 75 76 | 22 20 | 3 4 | LS |
III | 0–10 10–20 | 7.79–8.81 7.23–7.78 | 78 77 | 18 18 | 4 5 | LS |
IV | 0–10 10–20 | 13.62–15.69 11.78–12.31 | 68 69 | 26 26 | 6 5 | SL |
V | 0–10 10–20 | 14.23–15.57 11.19–12.14 | 71 70 | 24 24 | 5 6 | SL |
CV | 0.27 | 0.06 | 0.13 | 0.28 |
Properties | TOC | PSD2.0–0.05 | PSD0.05–0.002 | PSD<0.002 | A5–10 | A1–5 | A<1 |
---|---|---|---|---|---|---|---|
PSD2.0–0.05 | −0.431 | ||||||
PSD0.05–0.002 | −0.428 | −0.842 * | |||||
PSD<0.002 | 0.393 | −0.881 * | −0.897 * | ||||
A5–10 | 0.886 * | −0.451 | −0.102 | 0.054 | |||
A1–5 | 0.880 * | −0.631 * | −0.310 | 0.259 | 0.909 * | ||
A<1 | −0.870 * | −0.791 * | 0.578 * | 0.638 * | −0.815 * | −0.940 * | |
MWD | 0.908 * | −0.468 * | 0.288 | 0.436 | 0.948 * | 0.979 * | −0.917 * |
Property | Soil Layer cm | Treatment | CV | ||||
---|---|---|---|---|---|---|---|
I | II | III | IV | V | |||
A5–10, % | 0–10 10–20 | 0.5–0.9 0.3–0.8 | 0.4–0.9 0.3–0.8 | 0.2–0.9 0.2–0.8 | 1.9–3.6 1.8–3.2 | 1.7–3.1 1.6–3.2 | 0.82 |
A1–5, % | 0–10 10–20 | 8.9–11.3 9.4–12.1 | 8.3–10.1 8.6–10.2 | 7.4–8.6 8.1–8.8 | 15.9–17.3 16.7–17.8 | 16.1–17.3 16.8–17.9 | 0.32 |
A<1, % | 0–10 10–20 | 88.6–91.1 89.1–90.7 | 89.7–90.8 89.9–90.7 | 91.3–92.1 91.1–91.9 | 79.8–80.7 79.6–80.5 | 80.1–81.3 79.7–80.9 | 0.06 |
MWD, mm | 0–10 10–20 | 0.73–0.84 0.74–0.83 | 0.73–0.82 0.72–0.83 | 0.75–0.81 0.69–0.78 | 1.07–1.15 1.04–1.13 | 1.03–1.11 1.06–1.14 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pranagal, J.; Ligęza, S.; Gmitrowicz-Iwan, J. The Impact of Mining Waste and Biogas Digestate Addition on the Durability of Soil Aggregates. Agriculture 2023, 13, 1815. https://doi.org/10.3390/agriculture13091815
Pranagal J, Ligęza S, Gmitrowicz-Iwan J. The Impact of Mining Waste and Biogas Digestate Addition on the Durability of Soil Aggregates. Agriculture. 2023; 13(9):1815. https://doi.org/10.3390/agriculture13091815
Chicago/Turabian StylePranagal, Jacek, Sławomir Ligęza, and Joanna Gmitrowicz-Iwan. 2023. "The Impact of Mining Waste and Biogas Digestate Addition on the Durability of Soil Aggregates" Agriculture 13, no. 9: 1815. https://doi.org/10.3390/agriculture13091815
APA StylePranagal, J., Ligęza, S., & Gmitrowicz-Iwan, J. (2023). The Impact of Mining Waste and Biogas Digestate Addition on the Durability of Soil Aggregates. Agriculture, 13(9), 1815. https://doi.org/10.3390/agriculture13091815