Effect of Different Row Spacing and Sowing Density on Selected Photosynthesis Indices, Yield, and Quality of White Lupine Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
- I.
- Row spacing: 15 and 30 cm;
- II.
- Sowing density: 60, 75, and 90 plants per m2.
2.2. Soil Conditions
2.3. Weather Conditions
2.4. Biometric Measurements
2.5. Physiological Measurements
2.5.1. Relative Chlorophyll Content
2.5.2. Chlorophyll Fluorescence
2.5.3. Leaf Area Index
2.6. Analytical Methods
2.7. Determination of the Number of Nodules
2.8. Data Analysis Methods
3. Results and Discussion
3.1. White Lupine Seed Yield and Its Components
3.2. Protein Yield and Protein Content
3.3. Morphophysical Features of Plants
3.4. Chlorophyll Fluorescence Parameters
3.5. Number of Nodules on the Main Root and Lateral Roots
3.6. Correlations between Features
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Santi, A.L.; Corassa, G.M.; Gaviraghi, R.; Martin, T.N.; Bisognin, M.B.; Flora, L.P.D. White lupine yield under different sowing densities and row spacings. Rev. Bras. Eng. Agrícola Ambient. 2016, 20, 903–907. [Google Scholar] [CrossRef]
- Mahieu, S.; Germon, F.; Aveline, A.; Hauggaard-Nielsen, H.; Ambus, P.; Jansen, E.S. The influence of water stress on biomass and N accumulation, N partitioning between above and below ground parts and on N rhizodeposition during reproductive growth of pea (Pisum sativum L.). Soil Biol. Biochem. 2009, 41, 380–387. [Google Scholar] [CrossRef]
- Rovedder, A.P.M.; Eltz, F.L.F.; Drescher, M.S.; Dorneles, F.d.O.; Schenato, R.B. Espaçamento entre linhas e densidade de semeadura em revegetação com espécie de tremoço visando à recuperação de solo degradado. Ciência Rural 2010, 40, 1955–1960. [Google Scholar] [CrossRef]
- Jensen, E.S.; Hauggaard-Nielsen, H. How can increased use of biological N2 fixation in agriculture benefit the environment? Plant Soil 2003, 252, 177–186. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Harzic, N.; Carroni, A.M. Adaptation, diversity, and exploitation of global white lupin (Lupinus albus L.) landrace genetic resources. Field Crops Res. 2010, 119, 114–124. [Google Scholar] [CrossRef]
- Cargnelutti, F.A.; Toebe, M.; Burin, C.; Alves, B.M.; Facco, G.; Casarotto, G. Relações lineares entre caracteres de nabo forrageiro e de tremoço branco. Ciência Rural 2014, 4, 18–24. [Google Scholar] [CrossRef]
- Bevilacqua, G.A.P.; Antunes, I.F.; Zuchi, J.; Marques, R.L.L. Indicações técnicas para produção de sementes de plantas recuperadoras do solo para a agricultura familiar. Pelotas Embrapa Clima Temperado 2008, 227. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/CPACT-2009-09/11809/1/documento_227.pdf (accessed on 23 August 2023).
- Lucas, M.M.; Stoddard, F.L.; Annicchiarico, P.; Frías, J.; Martínez-Villaluenga, C.; Sussmann, D.; Duranti, M.; Seger, A.; Zander, P.M.; Pueyo, J.J. The future of lupin as a protein crop in Europe. Front. Plant Sci. 2015, 6, 705. [Google Scholar] [CrossRef]
- Faligowska, A.; Panasiewicz, K.; Szymańska, G.; Szukała, J.; Koziara, W.; Pszczółkowska, A. Productivity of white lupin (Lupinus albus L.) as an effect of diversified farming systems. Legum. Res. 2017, 40, 872–877. [Google Scholar] [CrossRef]
- Faligowska, A. Response of new yellow lupin varieties to inoculation with Bradyrhizobium sp. lupinus under Central European conditions. Agriculture 2023, 13, 1261. [Google Scholar] [CrossRef]
- Prusinski, J. White lupin (Lupinus albus L.)—Nutritional and health values in human nutrition—A review. Czech J. Food Sci. 2017, 35, 95–105. [Google Scholar] [CrossRef]
- Erbas, M.; Certel, M.; Uslu, M.K. Some chemical properties of white lupin seeds (Lupinus albus L.). Food Chem. 2005, 89, 341–345. [Google Scholar] [CrossRef]
- Zander, P.; Amjath-Babu, T.S.; Preissel, S.; Reckling, M.; Bues, A.; Schläfke, N.; Kuhlman, T.; Bachinger, J.; Uthes, S.; Stoddard, F.; et al. Grain legume decline and potential recovery in European agriculture: A review. Agron. Sustain. Dev. 2016, 36, 26. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Romani, M.; Pecetti, L. White lupin (Lupinus albus L.) variation for adaptation to severer drought stress. Plant Breed. 2018, 137, 782–789. [Google Scholar] [CrossRef]
- Reckling, M.; Döring, T.F.; Bergkvist, G.; Stoddard, F.L.; Watson, C.A.; Sedding, S.; Chmielewski, F.M.; Bachinger, J. Grain legume yields are as stable as other spring crops in long-term experiments across northern Europe. Agron. Sustain. Dev. 2018, 38, 63. [Google Scholar] [CrossRef]
- Staniak, M.; Szpunar-Krok, E.; Kocira, A. Responses of soybean to selected abiotic stresses—Photoperiod, temperature and water. Agriculture 2023, 13, 146. [Google Scholar] [CrossRef]
- Annicchiarico, P. Feed legumes for truly sustainable crop-animal systems. Ital. J. Agron. 2017, 12, 880. [Google Scholar] [CrossRef]
- Mülayim, M.; Tamkoç, A.; Babaoglu, M. Sweet white lupins versus local bitter genotype: Agronomic characteristics as affected by different planting densities in the Göller region of Turkey. Eur. J. Agron. 2002, 17, 181–189. [Google Scholar] [CrossRef]
- Hunegnaw, Y.; Alemayehu, G.; Ayalew, D.; Kassaye, M. Plant density and time of white lupine (Lupinus albus L.) relay cropping with tef (Eragrostis tef (Zucc.) Trotter) in additive design in the highlands of Northwest Ethiopia. Int. J. Agron. 2022, 2022, 8730191. [Google Scholar] [CrossRef]
- Helios, W.; Jama-Rodzeńska, A.; Serafin-Andrzejewska, M.; Kotecki, A.; Kozak, M.; Zarzycki, P.; Kuchar, L. Depth and sowing rate as factors affecting the development, plant density, height and yielding for two faba bean (Vicia faba L. var. minor) cultivars. Agriculture 2021, 11, 820. [Google Scholar] [CrossRef]
- Serafin-Andrzejewska, M.; Helios, W.; Jama-Rodzeńska, A.; Kotecki, A.; Kozak, M.; Zarzecki, P.; Kaliska, B. Effect of the depth and rate of sowing on the yield and yield components of determinate and indeterminate faba beans (Vicia faba var. minor L.) cultivars under conditions of Southwestern Poland. Agron. Sci. 2022, 77, 27–40. [Google Scholar] [CrossRef]
- Serafin-Andrzejewska, M.; Jama-Rodzeńska, A.; Helios, W.; Kotecki, A.; Kozak, M.; Białkowska, M.; Bárta, J.; Bártová, V. Accumulation of minerals in faba bean seeds and straw in relation to sowing density. Agriculture 2023, 13, 147. [Google Scholar] [CrossRef]
- Borowska, M.; Prusiński, J.; Kaszkowiak, E.; Olszak, G. The yield of indeterminate and determinate cultivars of white lupin (Lupinus albus L.) depending on plant density. Acta Sci. Pol. Agric. 2017, 16, 59–66. [Google Scholar]
- Faligowska, A.; Panasiewicz, K.; Szymańska, G.; Szukała, J.; Koziara, W. Influence of sowing method and sowing rate on productivity and seed quality of white lupine. Part I. Yield components and seed yield. Fragm. Agron. 2018, 35, 15–22. (In Polish) [Google Scholar] [CrossRef]
- Prusiński, J. Yield analysis of traditional and self-completing white lupin (Lupinus albus L.) varieties in relation to plant density. Biul. -Inst. Hod. Aklim. Rosl. 2002, 221, 175–187, (In Polish, Abstract in English). [Google Scholar]
- Podleśny, J. Dynamika wzrostu. rozwoju i plonowania dwóch różnych genotypów łubinu białego w zależności od zagęszczenia łanu. Fragm. Agron. 2007, 2, 261–272. (In Polish) [Google Scholar]
- Lang, J.; Váczi, P.; Barták, M.; Hájek, J.; Kintl, A.; Zikmundová, B.; Elbl, J. Stimulative Effects of Lupinus sp. and Melilotus albus Underseed on the Photosynthetic Performance of Maize (Zea mays) in Two Intercropping Systems. Agronomy 2023, 13, 163. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsec, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016, 38, 100–111. [Google Scholar] [CrossRef]
- Allakhverdiev, S.I.; Murata, N. Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of Photosystem II in Synechocystis sp. PCC 6803. Biochim. Biophys. Acta Bioenerg. 2004, 1657, 23–32. [Google Scholar] [CrossRef]
- Cheng, B.; Raza, A.; Wang, L.; Xu, M.; Lu, J.; Gao, Y.; Qin, S.; Zhang, Y.; Ahmad, I.; Zhou, T.; et al. Effects of Multiple Planting Densities on Lignin Metabolism and Lodging Resistance of the Strip Intercropped Soybean Stem. Agronomy 2020, 10, 1177. [Google Scholar] [CrossRef]
- Murchie, E.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 13, 3983–3998. [Google Scholar] [CrossRef]
- Tobiasz-Salach, R.; Jańczak-Pieniążek, M.; Migut, D.; Bobrecka-Jamro, D.; Stadnik, B.; Kačániová, M. Photosynthesis, yielding and quality of pea seeds depending on the row spacing and sowing density. J. Water Land Dev. 2022, 146–155. [Google Scholar] [CrossRef]
- Jańczak-Pieniążek, M.; Buczek, J.; Bobrecka-Jamro, D.; Szpunar-Krok, E.; Tobiasz-Salach, R.; Jarecki, W. Morphophysiology, productivity and quality of soybean (Glycine max (L.) Merr.) cv. Merlin in response to row spacing and seeding systems. Agronomy 2021, 11, 403. [Google Scholar] [CrossRef]
- Bleinholder, H.; Weber, E.; Feller, C.; Hess, M.; Wicke, H.; Meier, U.; Boom, T.; Lancashire, P.D.; Buhr, L.; Hack, H.; et al. Growth stages of mono- and dicotyledonous plants. In BBCH Monograph; Meier, U., Ed.; Julius Kühn-Institut (JKI): Braunschweig, Germany, 2001; pp. 1–160. [Google Scholar]
- IUSS Working Group WRB. International soil classification system for naming soils and creating legends for soil maps. In Word Reference Base for Soil Resources 2014, Update 2015; Word Soil Resources Reports No. 106; IUSS Working Group WRB: Rome, Italy, 2015. [Google Scholar]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, H.L.; Hamama, A.A.; Santen, E. White lupin performance and nutritional value as affected by planting date and row spacing. Agron. J. 2004, 96, 580–583. [Google Scholar] [CrossRef]
- Băbuțiu, L.; David, G. On the impact of row distance and of sowing density in white lupin (Lupinus albus L.). Res. J. Agric. Sci. 2010, 42, 11–13. [Google Scholar]
- Lopez-Bellido, L.; Fuentes, M.; Castillo, J.E. Growth and yield of white lupin under Mediterranean conditions. Effect of plant density. Agron. J. 2000, 92, 200–205. [Google Scholar] [CrossRef]
- Prusiński, J.; Borowska, M. Effect of planting density and row spacing on the yielding and morphological features of pea (Pisum sativum L.). Agronomy 2022, 12, 715. [Google Scholar] [CrossRef]
- Pospišil, A.; Pospišil, M. Influence of sowing density on agronomic traits of lupins (Lupinus spp.). Plant Soil Environ. 2016, 61, 422–425. [Google Scholar] [CrossRef]
- Koetz, E.; Moore, K.; Haskins, B.; Peter, M. The effect of fertilizer placement and row spacing on plant establishment and grain yield of three broad leaf (Lupinus albus) and three narrow-leaf (Lupinus angustifolius) lupin varieties. In Building Productive. Diverse and Sustainable Landscapes, Proceedings of the 17th ASA Conference, Hobart, Australia, 21–24 September 2015; Agronomy Australia Proceedings: Ingvordsen, CH, USA, 2015. [Google Scholar]
- Sadeghipour, O.; Abbasi, S. Soybean Response to Drought and Seed Inoculation. World Appl. Sci. J. 2012, 17, 55–60. Available online: http://www.idosi.org/wasj/wasj17(1)12/8.pdf (accessed on 23 August 2023).
- Kulig, B.; Klimek-Kopyra, A. Sowing date and fertilization level are effective elements increasing soybean productivity in rainfall deficit conditions in Central Europe. Agriculture 2023, 13, 115. [Google Scholar] [CrossRef]
- Prusinski, J. Effect of the interrow width and plant density on the yielding of white lupin. Agric. Food Sci. 2021, 30, 158–165. [Google Scholar] [CrossRef]
- Górynowicz, B.; Święcicki, W.; Pilarczyk, W.; Mikulski, W. The Dependence of Seed Yield and Its Components on Environmental Factors in Selected Legumes. Colloq. Biom. 2014, 44, 127–138. Available online: http://collbiom.up.lublin.pl/pl/Artykul.aspx?Tom=44&Strona=127 (accessed on 25 August 2023).
- Kuznetso, I.; Davletov, F.; Anokhina, N.; Akhmadullina, I.; Safin, N. Influence of weather condition on the field peas (Pisum sativum L. ssp. sativum) vegetation period and yield. Agron. Res. 2020, 18, 472–482. [Google Scholar] [CrossRef]
- Cordeiro, C.F.D.S.; Echer, F.R. Interactive effects of nitrogen-fixing bacteria inoculation and nitrogen fertilization on soybean yield in unfavorable edaphoclimatic environments. Sci. Rep. 2019, 30, 15606, Erratum in Sci. Rep. 2020, 10, 12115. [Google Scholar] [CrossRef]
- Szpunar-Krok, E.; Bobrecka-Jamro, D.; Pikuła, W.; Jańczak-Pieniążek, M. Effect of nitrogen fertilization and inoculation with Bradyrhizobium japonicum on nodulation and yielding of soybean. Agronomy 2023, 13, 1341. [Google Scholar] [CrossRef]
- Hussain, S.; Iqbal, N.; Brestic, M.; Raza, M.A.; Pang, T.; Langham, D.R.; Safdar, M.E.; Ahmeda, S.; Wena, B.; Gao, Y.; et al. Changes in morphology, chlorophyll fluorescence performance and Rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment. Sci. Total Environ. 2019, 658, 626–637. [Google Scholar] [CrossRef]
- Fritschi, F.B.; Ray, J.D. Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio. Photosynthetica 2007, 45, 92–98. [Google Scholar] [CrossRef]
- Gong, W.Z.; Jiang, C.D.; Wu, Y.S.; Chen, H.H.; Liu, W.Y.; Yang, W.Y. Tolerance vs. avoidance: Two strategies of soybean (Glycine max) seedlings in response to shade in intercropping. Photosynthetica 2015, 53, 259–268. [Google Scholar] [CrossRef]
- Sobko, O.; Hartung, J.; Zikeli, S.; Claupein, W.; Gruber, S. Effect of sowing density on grain yield, protein and oil content and plant morphology of soybean (Glycine max L. Merrill). Plant Soil Environ. 2019, 65, 594–601. [Google Scholar] [CrossRef]
- Komura, M.; Yamagishi, A.; Shibata, Y.; Iwasaki, I.; Itoh, S. Mechanism of strong quenching of photosystem II chlorophyll fluorescence under drought stress in a lichen, Physciella melanchla, studied by subpicosecond fluorescence spectroscopy. Biochim. Biophys. Acta Bioenerg. 2010, 1797, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Tobiasz-Salach, R.; Kalaji, H.M.; Mastalerczuk, G.; Bąba, W.; Bobrecka–Jamro, D.; Noras, K. Can Photosynthetic Performance of Oat (Avena sativa L.) Plants Be Used as Bioindicator for their Proper Growth Conditions? Chiang Mai J. Sci. 2019, 46, 880–895. Available online: https://cmudc.library.cmu.ac.th/frontend/Info/item/dc:85544 (accessed on 25 August 2023).
- Ashraf, M.; Harris, P.J.C. Photosynthesis under stressful environments: An overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Juzoń, K.; Czyczyło-Mysza, I.; Ostrowska, A.; Marcińska, I.; Skrzypek, E. Chlorophyll fluorescence for prediction of yellow lupin (Lupinus luteus L.) and pea (Pisum sativum L.) susceptibility to drought. Photosynthetica 2019, 57, 950–959. [Google Scholar] [CrossRef]
- Ueda, Y.; Konishi, M.; Yanagisawa, S. Molecular basis of the nitrogen response in plants. Soil Sci. Plant Nutr. 2017, 4, 329–341. [Google Scholar] [CrossRef]
- Zahran, H.H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 1999, 63, 968–989. [Google Scholar] [CrossRef] [PubMed]
- Kunert, K.J.; Vorster, B.J.; Fenta, B.A.; Kibido, T.; Dionisio, G.; Foyer, C.H. Drought stress responses in soybean roots and nodules. Front. Plant Sci. 2016, 7, 1015. [Google Scholar] [CrossRef]
- Bordeleau, L.M.; Prevost, D. Nodulation and nitrogen fixation in extreme environments. Plant Soil 1994, 161, 115–125. [Google Scholar] [CrossRef]
- Georgieva, N.A.; Kosev, V.I.; Genov, N.G.; Butnariu, M. Morphological and biological characteristics of white lupine cultivars (Lupinus albus L.). Rom. Agric. Res. 2018, 35, 109–119. [Google Scholar] [CrossRef]
Agrotechnical Treatments | Years of Research | |||
---|---|---|---|---|
2016 | 2017 | 2018 | 2019 | |
Sowing date | 31 March | 29 March | 09 April | 22 March |
Herbicide | 1 April Afalon dyspersyjny 450 SC (linuron) 1.25 dm3 ha−1 | 30.03. Afalon dyspersyjny 450 SC (linuron) 1 dm3 ha−1 | 9 April Boxer 800 EC (prosulfocarb) 4 dm3 ha−1 | 1 April Boxer 800 EC (prosulfocarb) 4 dm3 ha−1 |
Insecticide | 23 June Proteus 110 OD (tiachlopryd, deltamatryna) 0.75 dm3 ha−1 31 May Mospilan 20 SP (acetampityt) 0.2 kg·ha−1 | 5 June; 19 June Mospilan 20 SP (acetampityt) 0.2 kg·ha−1 | 23 May Mospilan 20 SP (acetampityt) 0.2 kg·ha−1 | 28 May Mospilan 20 SP (acetampityt) 0.2 kg·ha−1 |
Fungicide | 16 May, 30 May Gwarant 500 (chloralonil) SC 2 dm3 ha−1 | 23 May Gwarant 500 (chloralonil) SC 2 dm3 ha−1 | 23 May Gwarant 500 (chloralonil) SC 2 dm3 ha−1 | 19 May Gwarant 500 (chloralonil) SC 2 dm3 ha−1 |
Harvest date | 11 August | 09 August | 09 August | 05 August |
Ingredients | Years of Research | |||
---|---|---|---|---|
2016 | 2017 | 2018 | 2019 | |
pHKCl | 6.26 | 6.90 | 6.04 | 7.01 |
Humus content (%) | 0.996 | 1.16 | 1.10 | 1.19 |
Content (mg kg−1 in 0–60 cm) | ||||
P | 156.4 | 156.2 | 151.0 | 226.3 |
K | 189.7 | 191.4 | 150.1 | 173.0 |
Mg | 241.5 | 238.1 | 104.3 | 179.1 |
Fe | 1855.3 | 2784.3 | 1045.0 | 2059.3 |
Zn | 13.1 | 13.54 | 11.90 | 12.5 |
Mn | 192.6 | 371.40 | 114.00 | 319.9 |
Cu | 8.53 | 10.43 | 3.98 | 8.23 |
Month | 2016 | 2017 | 2018 | 2019 | 1956–2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|---|
Precipitation (mm) | Deviation from the long-term mean precipitation (%) | ||||||||
March | 38.9 | 15.6 | 40.9 | 24.3 | 35.5 | 9.6 | −56.2 | 15.2 | −31.9 |
April | 54.7 | 78.3 | 15.7 | 62.1 | 48.1 | 13.7 | 62.8 | −67.4 | 29.1 |
May | 41.5 | 111.9 | 68.8 | 182 | 39.2 | 5.5 | 285.4 | 75.5 | 464 |
June | 23.8 | 41.6 | 47.4 | 19.2 | 79.3 | −69.9 | −47.6 | −40.2 | −75.8 |
July | 151.6 | 44.4 | 108.3 | 45.1 | 101.6 | 49.2 | −56.3 | 6.2 | −55.9 |
August | 68.1 | 84 | 97.4 | 82.1 | 71.3 | −4.5 | 15.1 | 36.6 | 15.2 |
March–August | 63.10 | 62.63 | 63.08 | 69.13 | 62.50 | 0.95 | 0.2 | 0.92 | 10.6 |
Average air temperature (°C) | Deviation from the long-term mean temperature (°C) | ||||||||
March | 4.9 | 4.9 | 2.4 | 3.2 | 2.6 | 2.3 | 2.3 | −0.2 | 2.3 |
April | 9.8 | 6.8 | 12.2 | 10.4 | 8.8 | 1.0 | −2 | 3.4 | 1.6 |
May | 14.0 | 12.5 | 15.4 | 13.6 | 14.2 | −0.2 | −1.7 | 1.3 | −0.6 |
June | 18.6 | 17.4 | 16.9 | 21.5 | 17.5 | 1.1 | −0.1 | −0.6 | 4.0 |
July | 18.9 | 17.9 | 18.5 | 18.7 | 19.4 | −0.5 | −1.5 | −0.9 | −0.7 |
August | 17.6 | 18.2 | 18.5 | 20.3 | 18.1 | −0.5 | 0.1 | 0.4 | 2.20 |
March–July | 14.0 | 13.0 | 13.2 | 14.6 | 13.4 | 0.6 | −0.6 | −0.2 | 1.2 |
Row Spacing (R) | Planting Density (D) | Yield (t·ha−1) | Number of Pods per Plant (pcs.) | Number of Seeds per Plant (pcs.) | Seed Weight per Plant (g) | Weight of 1000 Seeds (g) |
---|---|---|---|---|---|---|
15 | 60 | 3.9 a ± 1.06 | 9.5 a ± 4.9 | 27.5 ab ± 12.0 | 7.22 bc ± 2.34 | 285 a ± 51.8 |
75 | 4.1 a ± 1.01 | 8.6 a ± 4.2 | 25.0 a ± 10.3 | 7.00 bc ± 2.26 | 288 a ± 49.0 | |
90 | 4.4 a ± 0.72 | 8.5 a ± 3.3 | 25.8 ab ± 8.1 | 6.13 a ± 2.02 | 286 a ± 56.9 | |
30 | 60 | 4.1 a ± 0.92 | 9.4 a ± 3.2 | 29.8 b ± 15.8 | 7.63 c ± 3.89 | 283 a ± 58.8 |
75 | 4.2 a ± 0.76 | 8.9 a ± 4.2 | 28.1 ab ± 13.1 | 7.18 bc ± 3.21 | 281 a ± 57.7 | |
90 | 4.4 a ± 0.91 | 8.5 a ± 4.7 | 27.2 ab ± 10.6 | 6.70 ab ± 3.26 | 288 a ± 54.3 | |
15 | 4.1 a ± 0.94 | 8.8 a ± 4.1 | 26.1 a ± 10.1 | 6.80 a ± 2.21 | 286 a ± 51.5 | |
30 | 4.3 a ± 0.86 | 8.9 a ± 5.2 | 28.4 b ± 13.1 | 7.20 b ± 3.42 | 284 a ± 55.8 | |
60 | 4.0 a ± 0.98 | 9.5 a ± 5.6 | 28.6 a ± 13.9 | 7.42 b ± 3.17 | 284 a ± 54.5 | |
75 | 4.1 a ± 0.88 | 8.7 a ± 4.1 | 26.5 a ± 11.7 | 7.09 b ± 2.74 | 285 a ± 52.8 | |
90 | 4.4 a ± 0.81 | 8.5 a ± 4.0 | 26.5 a ± 9.3 | 6.42 a ± 2.69 | 287 a ± 54.7 | |
Year (Y) | ||||||
2016 | 3.8 a ± 0.96 | 4.3 a ± 1.4 | 16.7 a ± 3.8 | 4.1 a ± 0.34 | 324 c ± 18.2 | |
2017 | 4.0 a ± 0.49 | 5.5 a ± 1.1 | 17.5 a ± 2.9 | 6.0 b ± 1.10 | 342 d ± 7.4 | |
2018 | 5.1 b ± 0.45 | 11.3 b ± 2.7 | 36.3 b ± 5.0 | 7.8 c ± 0.76 | 260 b ± 17.1 | |
2019 | 4.0 a ± 0.97 | 14.4 c ± 2.6 | 38.4 b ± 9.3 | 10.1 d ± 2.37 | 215 a ± 1.06 | |
Mean | 4.2 ± 0.90 | 8.9 ± 4.7 | 27.2 ± 11.7 | 7.00 ± 2.87 | 285 ±20.5 | |
R | ns | ns | ** | * | ns | |
D | ns | ns | ns | *** | ns | |
Y | *** | *** | *** | *** | *** | |
R × D | ns | ns | ns | ns | ns | |
R × Y | *** | *** | *** | *** | ns | |
D × Y | ns | *** | *** | * | ns | |
R × D ×Y | ns | ns | ns | ns | ns |
Row Spacing (R) | Planting Density (D) | Protein Yield (kg·ha−1) | Protein Content (%) |
---|---|---|---|
15 | 60 | 1393 a ± 416 | 35.1 a ± 2.6 |
75 | 1441 a ± 402 | 35.4 ba ± 2.8 | |
90 | 1578 a ± 310 | 35.9 b ± 2.6 | |
30 | 60 | 1450 a ± 329 | 35.3 a ± 2.0 |
75 | 1525 a ± 294 | 35.9 b ± 2.3 | |
90 | 1543 a ± 271 | 35.2 a ± 2.4 | |
15 | 1471 a ± 379 | 35.6 a ± 2.6 | |
30 | 1506 a ± 295 | 35.5 a ± 2.2 | |
60 | 1422 a ± 370 | 35.2 a ± 2.3 | |
75 | 1483 a ± 349 | 35.7 b ± 2.5 | |
90 | 1560 a ± 287 | 35.5 b ± 2.4 | |
Year (Y) | |||
2016 | 1451 a ± 369 | 38.5 d ± 0.5 | |
2017 | 1380 a ± 164 | 34.9 b ± 0.8 | |
2018 | 1829 b ± 175 | 36.2 c ± 1.4 | |
2019 | 1294 a ± 324 | 32.3 a ± 0.5 | |
Mean | 1488 ± 338 | 35.5 ± 2.4 | |
R | ns | ns | |
D | ns | ** | |
Y | *** | *** | |
R × D | ns | *** | |
R × Y | *** | *** | |
D × Y | ns | *** | |
R × D × Y | ns | *** |
Row Spacing (R) | Planting Density (D) | LAI | SPAD | Plant Height (cm) | 1st. Pod Height (cm) |
---|---|---|---|---|---|
15 | 60 | 2.7 ab ± 0.88 | 56.4 b ± 4.56 | 60.5 a ± 18.5 | 38.4 a ± 9.18 |
75 | 2.6 a ± 0.93 | 54.6 a ± 2.71 | 60.8 a ± 17.3 | 39.0 a ± 9.06 | |
90 | 2.9 c ± 0.62 | 55.2 a ± 3.42 | 61.4 a ± 16.1 | 41.2 ab ± 10.2 | |
30 | 60 | 2.3 a ± 0.87 | 57.6 abc ± 3.87 | 61.2 a ± 18.5 | 38.8 a ± 8.94 |
75 | 2.6 ab ± 0.86 | 57.2 cd ± 4.00 | 61.6 a ± 17.3 | 39.3 ab ± 8.09 | |
90 | 2.5 ab ± 0.73 | 55.7 abc ± 3.36 | 62.5 a ± 17.3 | 42.6 b ± 9.68 | |
15 | 2.8 b ± 0.83 | 55.4 a ± 3.65 | 60.9 a ± 17.3 | 39.6 a ± 9.45 | |
30 | 2.5 a ± 0.82 | 56.8 b ± 4.12 | 61.9 a ± 16.5 | 40.2 a ± 8.90 | |
60 | 2.5 a ± 0.89 | 57.0 b ± 4.68 | 61.1 a ± 18.2 | 38.6 a ± 8.92 | |
75 | 2.6 a ± 0.88 | 55.9 a ± 3.61 | 61.2 a ± 16.7 | 39.2 a ± 8.45 | |
90 | 2.7 a ± 0.70 | 55.4 a ± 3.35 | 61.9 a ± 16.1 | 41.9 b ± 9.95 | |
Year (Y) | |||||
2016 | 3.6 d ± 0.34 | 54.4 a ± 1.91 | 78.6 c ± 2.5 | 57.7 b ± 3.94 | |
2017 | 1.5 a ± 0.28 | 54.2 a ± 1.44 | 53.2 a ± 3.0 | 30.7 a ± 2.12 | |
2018 | 2.9 c ± 0.33 | 53.9 a ± 1.47 | 75.3 b ± 4.7 | 53.6 b ± 3.81 | |
2019 | 2.5 b ± 0.45 | 61.9 b ± 2.96 | 58.7 a ± 3.7 | 37.7 a ± 3.94 | |
Mean | 2.78 ± 0.83 | 56.1 ± 3.93 | 62.8 ± 16.8 | 41.2 ± 9.15 | |
R | *** | *** | ns | ns | |
D | * | *** | ns | *** | |
Y | *** | *** | *** | *** | |
R × D | * | * | ns | ns | |
R × Y | * | ns | * | ns | |
D × Y | * | ** | * | ns | |
R × D × Y | ns | ns | ns | ns |
Row Spacing (R) | Planting Density (D) | Fv/Fm | Fv/F0 | PI | RC/ABS |
---|---|---|---|---|---|
15 | 60 | 0.85 a ± 0.02 | 4.71 a ± 0.87 | 21.0 a ± 4.91 | 4.98 a ± 0.91 |
75 | 0.83 a ± 0.02 | 4.80 a ± 0.39 | 20.7 a ± 4.94 | 5.10 a ± 1.04 | |
90 | 0.85 a ± 0.02 | 4.76 a ± 0.74 | 20.3 a ± 5.04 | 5.05 a ± 0.79 | |
30 | 60 | 0.83 a ± 0.02 | 4.56 a ± 0.55 | 19.3 a ± 5.17 | 5.19 a ± 0.97 |
75 | 0.83 a ± 0.01 | 4.79 a ± 0.36 | 21.4 a ± 5.91 | 5.24 a ± 1.20 | |
90 | 0.84 a ± 0.05 | 4.54 a ± 0.64 | 18.8 a ± 4.21 | 4.85 a ± 0.82 | |
15 | 0.82 a ± 0.03 | 4.76 a ± 0.68 | 20.7 a ± 4.86 | 5.04 a ± 0.90 | |
30 | 0.82 a ± 0.03 | 4.63 a ± 0.53 | 19.8 a ± 5.16 | 5.09 a ± 1.00 | |
60 | 0.82 a ± 0.02 | 4.64 a ± 0.72 | 20.1 a ± 5.04 | 5.08 a ± 0.93 | |
75 | 0.82 a ± 0.02 | 4.80 a ± 0.37 | 21.0 a ± 5.37 | 5.17 a ± 1.11 | |
90 | 0.82 a ± 0.04 | 4.65 a ± 0.69 | 19.6 a ± 4.63 | 4.95 a ± 0.80 | |
Year (Y) | |||||
2016 | 0.84 b ± 0.01 | 5.29 d ± 0.34 | 23.6 b ± 3.43 | 5.33 c ± 0.51 | |
2017 | 0.83 b ± 0.01 | 4.88 c ± 0.21 | 18.3 a ± 2.16 | 4.48 a ± 0.41 | |
2018 | 0.81 a ± 0.04 | 4.47 b ± 0.38 | 16.5 a ± 3.12 | 4.51 a ± 0.49 | |
2019 | 0.81 a ± 0.02 | 4.13 a ± 0.68 | 22.6 b ± 6.44 | 5.96 d ± 1.21 | |
Mean | 0.82 ± 0.03 | 4.70 ± 0.61 | 20.2 ± 5.01 | 5.07 ± 0.95 | |
R | ns | ns | ns | ns | |
D | ns | ns | ns | ns | |
Y | *** | *** | *** | *** | |
R × D | ns | ns | ns | ** | |
R × Y | ns | ns | ns | * | |
D × Y | ns | * | * | ns | |
R × D × Y | ns | ns | ns | ns |
Row Spacing (R) | Planting Density (D) | Number of Nodules per Plant in Main Root (pcs.) | Number of Nodules per Plant in Lateral Roots (pcs.) |
---|---|---|---|
15 | 60 | 5.03 c ± 5.63 | 8.50 bc ± 9.45 |
75 | 3.17 abc ± 4.51 | 7.66 abc ± 8.76 | |
90 | 2.96 ab ± 3.36 | 4.20 a ± 2.88 | |
30 | 60 | 3.23 abc ± 4.43 | 5.26 ab ± 3.19 |
75 | 2.77 a ± 3.36 | 3.81 a ± 3.31 | |
90 | 4.87 bc ± 6.54 | 9.58 c ± 13.16 | |
15 | 3.72 a ± 4.56 | 6.79 a ± 7.64 | |
30 | 3.62 a ± 4.90 | 6.22 a ± 8.20 | |
60 | 4.13 a ± 5.04 | 6.88 a ± 7.09 | |
75 | 2.97 a ± 3.89 | 5.74 a ± 6.77 | |
90 | 3.92 a ± 5.18 | 6.89 a ± 9.71 | |
Year (Y) | |||
2016 | 1.02 a ± 0.52 | 4.01 a ± 2.63 | |
2017 | 10.38 b ± 4.38 | 1.95 a ± 0.78 | |
2018 | 2.46 a ± 2.69 | 16.33 b ± 10.31 | |
2019 | 0.82 a ± 0.56 | 3.72 a ± 2.50 | |
Mean | 3.67 ± 4.70 | 6.50 ± 7.88 | |
R | ns | ns | |
D | ns | ns | |
Y | *** | *** | |
R × D | * | *** | |
R × Y | ns | ns | |
D × Y | ns | ns | |
R × D × Y | ns | *** |
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1.000 | |||||||||||||||
2 | −0.527 | 1.000 | ||||||||||||||
3 | 0.430 | −0.705 | 1.000 | |||||||||||||
4 | 0.527 | −0.796 | 0.892 | 1.000 | ||||||||||||
5 | 0.311 | −0.590 | 0.865 | 0.863 | 1.000 | |||||||||||
6 | 0.345 | −0.035 | −0.464 | −0.293 | −0.606 | 1.000 | ||||||||||
7 | 0.697 | −0.771 | 0.350 | 0.497 | 0.196 | 0.481 | 1.000 | |||||||||
8 | 0.958 | −0.436 | 0.284 | 0.399 | 0.148 | 0.495 | 0.686 | 1.000 | ||||||||
9 | 0.419 | −0.251 | −0.059 | 0.041 | −0.288 | 0.624 | 0.448 | 0.517 | 1.000 | |||||||
10 | −0.022 | −0.208 | 0.621 | 0.531 | 0.618 | −0.706 | −0.187 | −0.153 | −0.175 | 1.000 | ||||||
11 | −0.061 | 0.458 | −0.596 | −0.460 | −0.524 | 0.439 | −0.169 | 0.042 | 0.185 | −0.451 | 1.000 | |||||
12 | −0.091 | 0.394 | −0.443 | −0.330 | −0.359 | 0.205 | −0.225 | −0.002 | 0.086 | −0.177 | 0.668 | 1.000 | ||||
13 | 0.152 | −0.070 | 0.346 | 0.396 | 0.369 | −0.344 | −0.141 | 0.069 | 0.099 | 0.607 | 0.224 | 0.148 | 1.000 | |||
14 | 0.050 | 0.095 | 0.070 | 0.142 | 0.114 | −0.184 | −0.196 | 0.032 | 0.215 | 0.390 | 0.433 | 0.403 | 0.775 | 1.000 | ||
15 | −0.376 | 0.419 | −0.340 | −0.363 | −0.105 | −0.168 | −0.365 | −0.385 | −0.635 | −0.265 | 0.090 | 0.043 | −0.347 | −0.311 | 1.000 | |
16 | 0.463 | −0.547 | 0.197 | 0.324 | 0.154 | 0.386 | 0.707 | 0.425 | 0.276 | −0.260 | −0.161 | −0.338 | −0.275 | −0.269 | −0.112 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tobiasz-Salach, R.; Jańczak-Pieniążek, M.; Augustyńska-Prejsnar, A. Effect of Different Row Spacing and Sowing Density on Selected Photosynthesis Indices, Yield, and Quality of White Lupine Seeds. Agriculture 2023, 13, 1845. https://doi.org/10.3390/agriculture13091845
Tobiasz-Salach R, Jańczak-Pieniążek M, Augustyńska-Prejsnar A. Effect of Different Row Spacing and Sowing Density on Selected Photosynthesis Indices, Yield, and Quality of White Lupine Seeds. Agriculture. 2023; 13(9):1845. https://doi.org/10.3390/agriculture13091845
Chicago/Turabian StyleTobiasz-Salach, Renata, Marta Jańczak-Pieniążek, and Anna Augustyńska-Prejsnar. 2023. "Effect of Different Row Spacing and Sowing Density on Selected Photosynthesis Indices, Yield, and Quality of White Lupine Seeds" Agriculture 13, no. 9: 1845. https://doi.org/10.3390/agriculture13091845
APA StyleTobiasz-Salach, R., Jańczak-Pieniążek, M., & Augustyńska-Prejsnar, A. (2023). Effect of Different Row Spacing and Sowing Density on Selected Photosynthesis Indices, Yield, and Quality of White Lupine Seeds. Agriculture, 13(9), 1845. https://doi.org/10.3390/agriculture13091845