The Impact of Research and Development Investment on Total Factor Productivity of Animal Husbandry Enterprises: Evidence from Listed Companies in China
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. The Impact of R&D Investment on TFP of Animal Husbandry Enterprises
2.2. The Moderating Effect of Executive Incentives in the Impact of R&D Investment on TFP in Animal Husbandry Enterprises
3. Materials and Methods
3.1. Data Source
3.2. Variables Selection
3.2.1. Dependent Variable
3.2.2. Core Independent Variable
3.2.3. Moderator Variables
3.2.4. Control Variables
3.3. Empirical Models
4. Results
4.1. Descriptive Statistical Analysis
4.1.1. Descriptive Statistical Analysis of Major Variables
4.1.2. Distribution Characteristics of TFP of Animal Husbandry Enterprises
4.2. The Impact of R&D Investment on TFP of Animal Husbandry Enterprises
4.3. Dealing with Endogeneity
4.3.1. Instrumental Variable Method
4.3.2. System Generalized Method of Moment (SYS GMM)
4.3.3. Propensity Score Matching Analysis (PSM)
4.4. Robustness Test
4.4.1. Exclude Specific Samples
4.4.2. Replace Variables
4.5. The Lagging Effect of R&D Investment
4.6. The Moderating Effect of Executive Incentives
4.7. Analysis of Heterogeneity
4.7.1. Heterogeneity of Enterprise Ownership
4.7.2. Heterogeneity of Enterprise Industry
4.7.3. Regional Heterogeneity in Which the Enterprise Is Located
5. Discussion
6. Conclusions
6.1. Conclusions
6.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of Food and Agriculture 2009: Livestock in the Balance; FAO: Rome, Italy, 2009; pp. 20–24. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Gerber, P.; Reid, R.S. Livestock, livelihoods and the environment: Understanding the trade-offs. Curr. Opin. Environ. Sustain. 2009, 1, 111–120. [Google Scholar] [CrossRef]
- Alders, R.G.; Campbell, A.; Costa, R.; Guèye, E.F.; Ahasanul, M.; Perezgrovas-Garza, R.; Rota, A.; Wingett, K. Livestock across the world: Diverse animal species with complex roles in human societies and ecosystem services. Anim. Front. 2021, 11, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Neethirajan, S. The role of sensors, big data and machine learning in modern animal farming. Sens. Bio-Sens. Res. 2020, 29, 100367. [Google Scholar] [CrossRef]
- Neethirajan, S.; Kemp, B. Digital Livestock Farming. Sens. Bio-Sens. Res. 2021, 32, 100408. [Google Scholar] [CrossRef]
- Solow, R.M. Technical Change and the Aggregate Production Function. Rev. Econ. Stat. 1957, 39, 312–320. [Google Scholar] [CrossRef]
- Pan, W.; Xie, T.; Wang, Z.; Ma, L. Digital economy: An innovation driver for total factor productivity. J. Bus. Res. 2022, 139, 303–311. [Google Scholar] [CrossRef]
- Sohag, K.; Chukavina, K.; Samargandi, N. Renewable energy and total factor productivity in OECD member countries. J. Clean. Prod. 2021, 296, 126499. [Google Scholar] [CrossRef]
- Ai, H.; Hu, S.; Li, K.; Shao, S. Environmental regulation, total factor productivity, and enterprise duration: Evidence from China. Bus. Strateg. Environ. 2020, 29, 2284–2296. [Google Scholar] [CrossRef]
- Song, M.; Peng, L.; Shang, Y.; Zhao, X. Green technology progress and total factor productivity of resource-based enterprises: A perspective of technical compensation of environmental regulation. Technol. Forecast. Soc. 2022, 174, 121276. [Google Scholar] [CrossRef]
- Peng, J.; Xie, R.; Ma, C.; Fu, Y. Market-based environmental regulation and total factor productivity: Evidence from Chinese enterprises. Econ. Model. 2021, 95, 394–407. [Google Scholar] [CrossRef]
- Ghobakhloo, M. Industry 4.0, digitization, and opportunities for sustainability. J. Clean. Prod. 2020, 252, 119869. [Google Scholar] [CrossRef]
- Wang, K.; Sun, T.; Xu, R. The impact of artificial intelligence on total factor productivity: Empirical evidence from China’s manufacturing enterprises. Econ. Chang. Restruct. 2023, 56, 1113–1146. [Google Scholar] [CrossRef]
- Xie, Z.; Wu, R.; Wang, S. How technological progress affects the carbon emission efficiency? Evidence from national panel quantile regression. J. Clean. Prod. 2021, 307, 127133. [Google Scholar] [CrossRef]
- Mohsin, M.; Taghizadeh-Hesary, F.; Iqbal, N.; Saydaliev, H.B. The role of technological progress and renewable energy deployment in green economic growth. Renew. Energy 2022, 190, 777–787. [Google Scholar] [CrossRef]
- Aghion, P.; Howitt, P. A Model of Growth Through Creative Destruction. Econometrica 1992, 60, 323–351. [Google Scholar] [CrossRef]
- Jones, C.I. The Past and Future of Economic Growth: A Semi-Endogenous Perspective. Annu. Rev. Econ. 2022, 14, 125–152. [Google Scholar] [CrossRef]
- Goto, A.; Suzuki, K. R&D Capital, Rate of Return on R&D Investment and Spillover of R&D in Japanese Manufacturing Industries. Rev. Econ. Stat. 1989, 71, 555. [Google Scholar] [CrossRef]
- Mao, D.F.; Li, J.; Peng, F. R&D Input and Corporate TFP: An Empirical Test Based on PSM and GPS Methods. Financ. Stud. 2013, 39, 134–144. [Google Scholar] [CrossRef]
- Feinberg, S.E.; Majumdar, S.K. Technology Spillovers from Foreign Direct Investment in the Indian Pharmaceutical Industry. J. Int. Bus. Stud. 2001, 32, 421–437. [Google Scholar] [CrossRef]
- Adams, J.D.; Jaffe, A.B. Bounding the Effects of R&D: An Investigation Using Matched Establishment-Firm Data. RAND J. Econ. 1996, 27, 700–721. [Google Scholar] [CrossRef]
- Xiao, Z.; Peng, H.; Pan, Z. Innovation, external technological environment and the total factor productivity of enterprises. Account. Financ. 2022, 62, 3–29. [Google Scholar] [CrossRef]
- Fernandes, A.M. Firm Productivity in Bangladesh Manufacturing Industries. World Dev. 2008, 36, 1725–1744. [Google Scholar] [CrossRef]
- Tang, E.Z.; Liu, H.Y.; Kong, X.Z. An empirical study of R&D investment and effectiveness of Chinese manufacturing firms. Econ. Manag. 2012, 26, 57–61. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Li, Q. R&D Investment and Total Factor Productivity: An Empirical Study of the Listed Companies in the Coastal Regions of China. J. Coastal Res. 2020, 106, 13–16. [Google Scholar] [CrossRef]
- Kong, D.M.; Pang, L.J. The lagged effect of R&D investment on productivity improvement: Micro evidence from industrial firms. Ind. Econ. Res. 2014, 6, 69–80. [Google Scholar] [CrossRef]
- Deng, L.Q. An empirical analysis of the contribution of R&D investment to TFP in China. Nanjing Soc. Sci. 2011, 4, 152–156. [Google Scholar] [CrossRef]
- Huang, J.; Cai, X.; Huang, S.; Tian, S.; Lei, H. Technological factors and total factor productivity in China: Evidence based on a panel threshold model. China Econ. Rev. 2019, 54, 271–285. [Google Scholar] [CrossRef]
- Beladi, H.; Deng, J.; Hu, M. Cash flow uncertainty, financial constraints and R&D investment. Int. Rev. Financ. Anal. 2021, 76, 101785. [Google Scholar] [CrossRef]
- Kartadjumena, E.; Rodgers, W. Executive Compensation, Sustainability, Climate, Environmental Concerns, and Company Financial Performance: Evidence from Indonesian Commercial Banks. Sustainability 2019, 11, 1673. [Google Scholar] [CrossRef]
- Zhou, B.; Li, Y.; Sun, F.; Zhou, Z. Executive compensation incentives, risk level and corporate innovation. Emerg. Mark. Rev. 2021, 47, 100798. [Google Scholar] [CrossRef]
- Al Farooque, O.; Buachoom, W.; Hoang, N. Interactive effects of executive compensation, firm performance and corporate governance: Evidence from an Asian market. Asia Pac. J. Manag. 2019, 36, 1111–1164. [Google Scholar] [CrossRef]
- Kothari, S.P.; Leone, A.J.; Wasley, C.E. Performance matched discretionary accrual measures. J. Account. Econ. 2005, 39, 163–197. [Google Scholar] [CrossRef]
- Makri, M.; Lane, P.J.; Gomez-Mejia, L.R. CEO incentives, innovation, and performance in technology-intensive firms: A reconciliation of outcome and behavior-based incentive schemes. Strateg. Manag. J. 2006, 27, 1057–1080. [Google Scholar] [CrossRef]
- Han, I.; Chuang, C. The Impacts of R&D Investment on Company Performance: US vs. Taiwanese Technology-Intensive Industry. Rev. Pac. Basin Financ. 2011, 14, 171–194. [Google Scholar] [CrossRef]
- Xue, Q.; Li, G. The impact of R&D investment on financial performance of GEM companies-the moderating effect of executive incentives. Financ. Account. Mon. 2015, 32, 123–128. [Google Scholar] [CrossRef]
- Chen, X. Empirical analysis of the moderating effects of executive incentives, R&D investment and firm performance. Stat. Decis. Making 2017, 1, 178–181. [Google Scholar] [CrossRef]
- Schumpeter, J.A. The Theory of Economic Development; Harvard University Press: Cambridge, MA, USA, 1912. [Google Scholar] [CrossRef]
- Schumpeter, J.A.; Stiglitz, J.E. Capitalism, Socialism and Democracy; Taylor & Francis Group: Florence, Italy, 2010. [Google Scholar]
- Segerstrom, P. Innovation, Imitation, and Economic Growth. J. Political Econ. 1991, 99, 807–827. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, Z.; Yang, L. How to optimize the allocation of research resources? An empirical study based on output and substitution elasticities of universities in Chinese provincial level. Socio-Econ. Plan. Sci. 2020, 69, 100707. [Google Scholar] [CrossRef]
- Braun, D.; Guston, D.H. Principal-agent theory and research policy: An introduction. Sci. Public Policy 2003, 30, 302–308. [Google Scholar] [CrossRef]
- Ross, S. The economic theory of agency: The principal’s problem. Am. Econ. Rev. 1973, 63, 134–139. [Google Scholar] [CrossRef]
- Qiao, M.; Chen, S.; Xu, S. Equity incentive contract characteristics and company operational performance—An empirical study of Chinese listed companies. PLoS ONE 2023, 18, e0281244. [Google Scholar] [CrossRef] [PubMed]
- Harris, O.; Karl, J.B.; Lawrence, E. CEO compensation and earnings management: Does gender really matters? J. Bus. Res. 2019, 98, 1–14. [Google Scholar] [CrossRef]
- Qian, T.; Yang, C. State-Owned Equity Participation and Corporations’ ESG Performance in China: The Mediating Role of Top Management Incentives. Sustainability 2023, 15, 11507. [Google Scholar] [CrossRef]
- Xu, X.L.; Shen, T.; Zhang, X.; Chen, H.H. The role of innovation investment and executive incentive on financial sustainability in tech-capital-labor intensive energy company: Moderate effect. Energy Rep. 2020, 6, 2667–2675. [Google Scholar] [CrossRef]
- Liu, G.; Lu, D.; Yang, J. Innovation for promotion: The effect of executive involvement on inventors’ innovation choice. J. Corp. Financ. 2023, 80, 102394. [Google Scholar] [CrossRef]
- Ding, N.; Gu, L.; Peng, Y. Fintech, financial constraints and innovation: Evidence from China. J. Corp. Financ. 2022, 73, 102194. [Google Scholar] [CrossRef]
- Bernard, D.; Blackburne, T.; Thornock, J. Information flows among rivals and corporate investment. J. Financ. Econ. 2020, 136, 760–779. [Google Scholar] [CrossRef]
- Olley, G.S.; Pakes, A. The Dynamics of Productivity in the Telecommunications Equipment Industry. Econometrica 1996, 64, 1263–1297. [Google Scholar] [CrossRef]
- Levinsohn, J.; Petrin, A. Estimating Production Functions Using Inputs to Control for Unobservables. Rev. Econ. Stud. 2003, 70, 317–341. [Google Scholar] [CrossRef]
- Sánchez Serrano, A. Loan renegotiation and the long-term impact on total factor productivity. Lat. Am. J. Cent. Bank. 2022, 3, 100074. [Google Scholar] [CrossRef]
- Wu, X.; Zeng, S. R&D Investment, Internal Control and Enterprise Performance: An Empirical Study Based on the Listed Companies in China of the Core Industry of the Digital Economy. Sustainability 2022, 14, 16700. [Google Scholar] [CrossRef]
- Bell, A.; Jones, K. Explaining Fixed Effects: Random Effects Modeling of Time-Series Cross-Sectional and Panel Data. Political Sci. Res. Methods 2014, 3, 133–153. [Google Scholar] [CrossRef]
- Wang, Z.G. How corporate R&D investment affects innovation strategy choice-based on the perspective of government support and market competition. East China Econ. Manag. 2023, 37, 54–65. [Google Scholar] [CrossRef]
- He, Y.L.; Liu, G.C. The impact of R&D investment on credit risk of small and medium-sized enterprises--Based on the perspective of digital inclusive finance. China Sci. Technol. Forum 2023, 8, 86–96. [Google Scholar] [CrossRef]
- Liu, G.Q. Analysis of incentive effect of tax preference and financial subsidy policy—An empirical study based on the perspective of information asymmetry theory. Manag. World 2016, 10, 62–71. [Google Scholar] [CrossRef]
- Song, M.; Zhou, P.; Si, H.T. Financial Technology and Enterprise Total Factor Productivity-Perspective of “Enabling” and Credit Rationing. China Ind. Econ. 2021, 4, 138–155. [Google Scholar] [CrossRef]
- Wooldridge, J.M. On estimating firm-level production functions using proxy variables to control for unobservables. Econ. Lett. 2009, 104, 112–114. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, Z. Technological innovation and productivity of start-ups-Evidence from VC/PE-backed firms. J. Manag. Eng. 2014, 28, 56–64. [Google Scholar] [CrossRef]
Sectors | Company Names (Location) |
---|---|
Livestock and poultry breeding (16) | Dongrui Shares (Heyuan City, Guangdong Province, China), Fortune Shares (Sanhe City, Hebei Province, China), Huaying agriculture (Diaochuan County, Henan Province, China), Giantstar Farming and Husbandry (Leshan City, Sichuan Province, China), Lihua Shares (Changzhou City, Jiangsu Province, China), Luo Niushan (Haikou City, Hainan Province, China), Minhe Shares (Penglai City, Shandong Province, China), Minhe Shares (Nanyang City, Henan Province, China), Shennong Group (Kunming City, Yunnan Province, China), Sunner Development (Glossy County, Fujian Province, China), Tianshan Biological (Changji, Xinjiang Uygur Autonomous Region, China), Wen’s Shares (Yunfu City, Guangdong Province, China), Xiangjia Shares (Changde City, Hunan Province, China), Xiaoming Shares (Yinchuan City, Ningxia Hui Autonomous Region, China), Xinwufeng (Changsha City, Hunan Province, China), Yisheng Shares (Yantai City, Shandong Province, China) |
Feed production (16) | Aonong Biological (Zhangzhou City, Fujian Province, China), Dabeinong (Beijing, China), Haida Group (Guangzhou City, Guangdong Province, China), Wellhope Shares (Shenyang City, Liaoning Province, China), Jinxinnong (Shenzhen City, Guangdong Province, China), Kingkey Smart Agriculture (Shenzhen City, Guangdong Province, China), Drive (Guangzhou City, Guangdong Province, China), Tangrenshen (Zhuzhou City, Hunan Province, China), Tech-Bank Shares (Yuyao City, Zhejiang Province, China), Tecon Biology (Urumqi City, Xinjiang Uygur Autonomous Region, China), Tianma Technology (Fuqing City, Fujian Province, China), Tongwei Shares (Chengdu City, Sichuan Province, China), New Hope (Mianyang City, Sichuan Province, China), Yuehai Feeds (Zhanjiang City, Guangdong Province, China), Zhengbang Technology (Nanchang City, Jiangxi Province, China), Zhenghong Technology (Yueyang City, Hunan Province, China) |
Meat product processing (12) | Springsnow Foods (Laiyang City, Shandong Province, China), Delis (Zhucheng City, Shandong Province, China), Guanghong Holdings (Heshan City, Guangdong Province, China), Huatong Shares (Yiwu City, Zhejiang Province, China), Huangshanghuang (Nanchang City, Jiangxi Province, China), Jinzi Ham (Jinhua City, Zhejiang Province, China), Juewei Foods (Changsha City, Hunan Province, China), Longda Meishi (Laiyang City, Shandong Province, China), Shanghai Maling (Shanghai City, China), Shuanghui Development (Luohe City, Henan Province, China), Xiantan Shares (Yantai City, Shandong Province, China), Yike Foods (Suqian City, Jiangsu Province, China) |
Dairy product processing (15) | Beingmate (Hangzhou City, Zhejiang Province, China), Bright Dairy (Shanghai City, China), Royal Group (Nanning City, Guangxi Zhuang Autonomous Region, China), Juneyao Health (Yichang City, Hubei Province, China), Maiquer (Changji, Xinjiang Uygur Autonomous Region, China), Milkground (Shanghai City, China), Sanyuan Shares (Beijing City, China), Tianrun Dairy (Urumqi, Xinjiang Uygur Autonomous Region, China), Western Animal Husbandry (Shihezi City, Xinjiang Uygur Autonomous Region, China), New Hope Dairy (Chengdu City, Sichuan Province, China), Panda Dairy (Wenzhou City, Zhejiang Province, China), Yantang Dairy (Guangzhou City, Guangdong Province, China), Yiming Foods (Wenzhou City, Zhejiang Province, China), Yili Shares (Hohhot City, Inner Mongolia, China), Zhuangyuan Pasture (Lanzhou City, Gansu Province, China) |
Animal healthcare (13) | Hile Biotechnology (Shanghai City, China), Hvsen Biotechnology (Wuhan City, Hubei Province, China), Jinhe Biotechnology (Hohhot City, Inner Mongolia, China), Keqian Biotechnology (Wuhan City, Hubei Province, China), Lifecome Biochemistry (Nanping City, Fujian Province, China), Pulike (Luoyang City, Henan Province, China), Ringpu Biotechnology (Tianjin City, China), Shenlian Biotechnology (Shanghai City, China), Bio-technology (Hohhot City, Inner Mongolia, China), Vland Shares (Qingdao City, Shandong Province, China), Vtr Bio-Tech (Zhuhai City, Guangdong Province, China), Winsun Biotechnology (Guangzhou City, Guangdong Province, China), Zhongmu Shares (Beijing City, China) |
Variable Types | Variable Names | Abbreviations | Variable Definitions and Formulas |
---|---|---|---|
Dependent Variable | Total factor productivity of animal husbandry enterprises | TFP | Calculated using the LP method |
Core Independent Variable | Research and development investment | RD | Natural logarithm of research and development investment amount |
Moderator Variables | Executive shareholding | ES | (Number of shares held by executives/total number of shares of the enterprise) × 100 |
Executive compensation | EC | Natural logarithm of executive compensation | |
Control Variables | Enterprise size | Size | Natural logarithm of total assets at year-end |
Enterprise age | Age | Natural logarithm of the number of years an enterprise has been listed | |
Gearing ratio | GR | Total liabilities/total assets | |
Return on net assets | ROA | Net profit/total assets | |
Board size | BZ | Number of board of directors | |
Ratio of independent directors | RID | Number of independent directors/number of directors | |
Power balance with shareholder structure | PBSS | 2nd–5th largest shareholder shareholding ratio/1st largest shareholder shareholding ratio | |
Duality | DUA | The two positions of chairman and general manager are combined into 1, otherwise it is 0 |
Variables | Obs | Mean | SD | Min | Median | Max |
---|---|---|---|---|---|---|
TFP | 596 | 14.930 | 1.076 | 12.596 | 14.790 | 17.171 |
RD | 596 | 17.324 | 1.560 | 13.546 | 17.437 | 20.527 |
ES | 596 | 6.958 | 13.595 | 0.000 | 0.335 | 56.143 |
EC | 596 | 15.132 | 0.934 | 12.665 | 15.086 | 17.594 |
Size | 596 | 22.189 | 1.165 | 20.013 | 22.050 | 25.532 |
Age | 596 | 1.953 | 0.908 | 0.000 | 2.079 | 3.332 |
GR | 596 | 0.404 | 0.181 | 0.052 | 0.404 | 0.853 |
ROA | 596 | 0.042 | 0.075 | −0.249 | 0.044 | 0.248 |
BZ | 596 | 8.232 | 1.413 | 5.000 | 9.000 | 12.000 |
RID | 596 | 37.613 | 5.894 | 30.000 | 33.330 | 60.000 |
PBSS | 596 | 0.740 | 0.562 | 0.043 | 0.602 | 2.600 |
DUA | 596 | 0.331 | 0.471 | 0.000 | 0.000 | 1.000 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
RD | 0.288 *** | 0.112 *** | 0.112 *** | 0.105 *** | 0.105 *** |
(12.01) | (4.65) | (4.75) | (4.30) | (4.38) | |
Size | 0.284 *** | 0.243 *** | 0.196 *** | 0.199 *** | |
(5.01) | (4.27) | (2.80) | (2.86) | ||
Age | 0.074 | 0.110 ** | 0.063 | 0.077 | |
(1.78) | (2.49) | (1.30) | (1.63) | ||
GR | 0.174 | 0.080 | 0.089 | 0.059 | |
(0.91) | (0.43) | (0.51) | (0.35) | ||
ROA | 1.642 *** | 1.540 *** | 1.705 *** | 1.655 *** | |
(6.12) | (5.56) | (6.30) | (6.42) | ||
BZ | 0.050 ** | 0.043** | 0.036 | 0.035 | |
(2.57) | (2.06) | (1.66) | (1.60) | ||
RID | 0.008 | 0.006 | 0.004 | 0.005 | |
(1.95) | (1.39) | (1.00) | (1.03) | ||
PBSS | −0.144 ** | −0.146 ** | −0.125 | −0.102 | |
(−2.16) | (−2.07) | (−1.88) | (−1.72) | ||
DUA | −0.030 | −0.033 | −0.016 | −0.026 | |
(−0.70) | (−0.76) | (−0.36) | (−0.52) | ||
Constant | 9.860 *** | 5.773 *** | 6.811 *** | 8.052 *** | 8.011 *** |
(22.99) | (5.10) | (5.87) | (5.45) | (5.43) | |
Enterprise fixed effect | N | N | Y | Y | Y |
Year fixed effect | N | N | N | Y | Y |
Province fixed effect | N | N | N | N | Y |
Obs | 596 | 596 | 596 | 596 | 596 |
R2 | 0.416 | 0.609 | 0.612 | 0.637 | 0.643 |
Variables | 2SLS | SYS GMM | |
---|---|---|---|
First-Stage | Second-Stage | ||
(1) | (2) | (3) | |
Dmean | 0.718 *** | ||
(8.14) | |||
Taxinc | 0.618 *** | ||
(2.85) | |||
RD | 0.103 ** | 0.180 *** | |
(2.15) | (4.35) | ||
L.TFP | 0.792 *** | ||
(10.11) | |||
Control variables | Y | Y | Y |
Enterprise fixed effect | Y | Y | Y |
Year fixed effect | Y | Y | Y |
Province fixed effect | Y | Y | Y |
Obs | 596 | 596 | 377 |
R2 | 0.629 | 0.643 | |
Wald chi2 (Prob > chi2) | 110,233.37 (0.0000) |
Variables | Matching Methods | Treatment Group | Control Group | Average Treatment Effect | Standard Error | T-Stat |
---|---|---|---|---|---|---|
TFP | K-nearest neighbor matching | 15.228 | 14.903 | 0.325 | 0.115 | 2.83 *** |
Radius matching | 15.228 | 14.432 | 0.795 | 0.074 | 10.77 *** | |
Kernel Matching | 15.228 | 14.960 | 0.267 | 0.100 | 2.68 *** |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
RD | 0.111 *** | 0.110 *** | 0.106 *** | 0.106 *** |
(4.50) | (4.46) | (4.36) | (4.37) | |
Size | 0.193 ** | 0.193 ** | 0.186 ** | 0.190 *** |
(2.64) | (2.65) | (2.62) | (2.70) | |
Age | 0.194 ** | 0.195 ** | 0.069 | 0.070 |
(2.51) | (2.46) | (1.44) | (1.46) | |
GR | 0.021 | 0.022 | 0.075 | 0.076 |
(0.13) | (0.13) | (0.44) | (0.44) | |
ROA | 1.661 *** | 1.660 *** | 1.679 *** | 1.673 *** |
(6.81) | (6.78) | (6.71) | (6.70) | |
BZ | 0.037 | 0.038 | 0.036 | 0.036 |
(1.59) | (1.60) | (1.63) | (1.62) | |
RID | 0.005 | 0.005 | 0.004 | 0.004 |
(1.05) | (1.04) | (0.96) | (0.97) | |
PBSS | −0.110 | −0.111 | −0.100 | −0.100 |
(−1.85) | (−1.86) | (−1.64) | (−1.64) | |
DUA | −0.013 | −0.014 | −0.024 | −0.026 |
(−0.24) | (−0.25) | (−0.48) | (−0.51) | |
Constant | 7.956 *** | 7.949 *** | 7.958 *** | 7.983 *** |
(5.10) | (5.07) | (5.32) | (5.36) | |
Enterprise fixed effect | Y | Y | Y | Y |
Year fixed effect | Y | Y | Y | Y |
Province fixed effect | Y | Y | Y | Y |
Obs | 552 | 533 | 596 | 596 |
R2 | 0.643 | 0.644 | 0.612 | 0.618 |
Variables | (1) | (2) | (3) |
---|---|---|---|
L.RD | 0.037 | ||
(1.18) | |||
L2.RD | 0.009 | ||
(0.28) | |||
L3.RD | −0.001 | ||
(−0.02) | |||
Control variables | Y | Y | Y |
Enterprise fixed effect | Y | Y | Y |
Year fixed effect | Y | Y | Y |
Province fixed effect | Y | Y | Y |
Obs | 519 | 448 | 386 |
R2 | 0.596 | 0.588 | 0.609 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
RDsum | 0.198 *** | 0.067 ** | 0.072 ** | 0.076 ** |
(11.05) | (2.26) | (2.19) | (2.05) | |
Control variables | N | Y | Y | Y |
Enterprise fixed effect | N | N | Y | Y |
Year fixed effect | N | N | N | Y |
Obs | 596 | 596 | 596 | 596 |
R2 | 0.439 | 0.591 | 0.594 | 0.621 |
Variables | 2SLS | |
---|---|---|
(1) | (2) | |
RD | 0.083 | 0.100 ** |
(1.68) | (2.12) | |
ES | 0.001 | |
(0.35) | ||
RD × ES | 0.002 *** | |
(3.03) | ||
EC | 0.080 | |
(1.56) | ||
RD × EC | −0.032 *** | |
(−3.83) | ||
Control variables | Y | Y |
Enterprise fixed effect | Y | Y |
Year fixed effect | Y | Y |
Province fixed effect | Y | Y |
Obs | 594 | 594 |
R2 | 0.648 | 0.660 |
Underidentification test (p-value) | 0.0000 | 0.0000 |
Weak identification test | 23.932 | 25.072 |
Sargan statistic (p-value) | 2.104 (0.1469) | 3.685 (0.0549) |
Variables | (1) | (2) |
---|---|---|
State-Owned Enterprise | Non-State-Owned Enterprise | |
RD | 0.099 | 0.124 *** |
(1.89) | (4.84) | |
Control variables | Y | Y |
Enterprise fixed effect | Y | Y |
Year fixed effect | Y | Y |
Province fixed effect | Y | Y |
Constant | 4.020 | 7.952 *** |
(1.03) | (5.83) | |
Obs | 133 | 463 |
R2 | 0.718 | 0.660 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
Livestock and Poultry Breeding | Feed Production | Meat Product Processing | Dairy Product Processing | Animal Healthcare | |
RD | 0.127 ** | 0.079 | 0.159 *** | −0.048 | 0.025 |
(2.19) | (1.81) | (5.68) | (−1.05) | (0.35) | |
Control variables | Y | Y | Y | Y | Y |
Enterprise fixed effect | Y | Y | Y | Y | Y |
Year fixed effect | Y | Y | Y | Y | Y |
Province fixed effect | Y | Y | Y | Y | Y |
Constant | 4.998 ** | 11.825 *** | 6.658 *** | 3.148 | 2.290 |
(2.62) | (7.22) | (4.27) | (0.99) | (1.10) | |
Obs | 118 | 161 | 88 | 133 | 96 |
R2 | 0.764 | 0.735 | 0.877 | 0.750 | 0.820 |
Variables | (1) | (2) | (3) |
---|---|---|---|
Eastern China | Central China | Western China | |
RD | 0.134 *** | 0.123 ** | −0.050 |
(5.35) | (2.43) | (−0.61) | |
Control variables | Y | Y | Y |
Enterprise fixed effect | Y | Y | Y |
Year fixed effect | Y | Y | Y |
Province fixed effect | Y | Y | Y |
Constant | 5.448 *** | 8.309 *** | 13.249 *** |
(4.23) | (4.30) | (4.54) | |
Obs | 345 | 150 | 101 |
R2 | 0.702 | 0.703 | 0.683 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Wang, M.; Sun, Y.; Nan, Z. The Impact of Research and Development Investment on Total Factor Productivity of Animal Husbandry Enterprises: Evidence from Listed Companies in China. Agriculture 2023, 13, 1846. https://doi.org/10.3390/agriculture13091846
Yan Z, Wang M, Sun Y, Nan Z. The Impact of Research and Development Investment on Total Factor Productivity of Animal Husbandry Enterprises: Evidence from Listed Companies in China. Agriculture. 2023; 13(9):1846. https://doi.org/10.3390/agriculture13091846
Chicago/Turabian StyleYan, Zhaohui, Mingli Wang, Yumeng Sun, and Zihui Nan. 2023. "The Impact of Research and Development Investment on Total Factor Productivity of Animal Husbandry Enterprises: Evidence from Listed Companies in China" Agriculture 13, no. 9: 1846. https://doi.org/10.3390/agriculture13091846
APA StyleYan, Z., Wang, M., Sun, Y., & Nan, Z. (2023). The Impact of Research and Development Investment on Total Factor Productivity of Animal Husbandry Enterprises: Evidence from Listed Companies in China. Agriculture, 13(9), 1846. https://doi.org/10.3390/agriculture13091846