Assessment of the Economic Profitability of Fattening Selected Chicken Genotypes in an Organic Farm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Birds, Nutrition, Maintenance, and Procedures
2.2. Statistical Analysis
3. Results
3.1. Rearing Conditions and Bird Health
3.2. Feed Consumption, Bird Growth, and Costs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sundrum, A. Organic livestock farming: A critical review. Livest. Prod. Sci. 2001, 67, 207–215. [Google Scholar] [CrossRef]
- Mottet, A.; Tempio, G. Global Poultry Production: Current State and Future Outlook and challenges. Worlds Poult. Sci. J. 2017, 73, 245–256. [Google Scholar] [CrossRef]
- European Union: Poultry and Products Annual 28 December 2022. Attaché Report (GAIN) E42022-0065 Poultry and Products Annual. Available online: https://www.fas.usda.gov/data/european-union-poultry-and-products-annual-1 (accessed on 12 September 2023).
- Relić, R.; Sossidou, E.; Dedousi, A.; Perić, L.; Božičković, I.; Đukić-Stojčić, M. Behavioral and health problems of poultry related to rearing systems. Ankara Univ. Vet. Fak. Derg. 2019, 66, 423–428. [Google Scholar] [CrossRef]
- Brzezina, N.; Biely, K.; Helfgott, A.; Kopainsky, B.; Vervoort, J.; Mathijs, E. Development of Organic Farming in Europe at the Crossroads: Looking for the Way Forward through System Archetypes Lenses. Sustainability 2017, 9, 821. [Google Scholar] [CrossRef]
- Pavlovski, Z.; Škrbić, Z.; Lukić, M.; Petričević, V.; Trenkovski, S. The effect of genotype and housing system on production results of fattening chickens. Biotechnol. Anim. Husb. 2009, 25, 221–229. [Google Scholar] [CrossRef]
- Średnicka-Tober, D.; Barański, M.; Seal, C.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Eyre, M.; et al. Composition differences between organic and conventional meat: A systematic literature review and meta-analysis. Br. J. Nutr. 2016, 115, 994–1011. [Google Scholar] [CrossRef] [PubMed]
- Dal Bosco, A.; Mattioli, S.; Cartoni Mancinelli, A.; Cotozzolo, E.; Castellini, C. Extensive Rearing Systems in Poultry Production: The Right Chicken for the Right Farming System. A Review of Twenty Years of Scientific Research in Perugia University, Italy. Animals 2021, 11, 1281. [Google Scholar] [CrossRef]
- Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No. 834/2007. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R0848 (accessed on 12 September 2023).
- Napolitano, F.; Girolami, A.; Braghieri, A. Consumer liking and willingness to pay for high welfare animal-based products. Trends Food Sci. Technol. 2010, 21, 537–543. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the Yields of Organic and Conventional Agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef]
- Gržinić, G.; Piotrowicz-Cieślak, A.; Klimkowicz-Pawlas, A.; Górny, R.L.; Ławniczek-Wałczyk, A.; Piechowicz, L.; Olkowska, E.; Potrykus, M.; Tankiewicz, M.; Krupka, M.; et al. Intensive Poultry Farming: A Review of the Impact on the Environment and Human Health. Sci. Total Environ. 2023, 858, 160014. [Google Scholar] [CrossRef]
- Rocha, A.G.; Dilkin, P.; Montanhini Neto, R.; Schaefer, C.; Mallmann, C.A. Growth performance of broiler chickens fed on feeds with varying mixing homogeneity. Vet. Anim. Sci. 2022, 17, 100263. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.V.S.; Quinteiro-Filho, W.M.; Ribeiro, A.; Ferraz-de-Paula, V.; Pinheiro, M.L.; Baskeville, E.; Akamine, A.T.; Astolfi-Ferreira, C.S.; Ferreira, A.J.P.; Palermo-Neto, J. Overcrowding stress decreases macrophage activity and increases Salmonella Enteritidis invasion in broiler chickens. Avian Pathol. 2014, 43, 82–90. [Google Scholar] [CrossRef] [PubMed]
- England, A.; Gharib-Naseri, K.; Kheravii, S.K.; Wu, S.B. Influence of sex and rearing method on performance and flock uni-formity in broilers-implications for research settings. Anim. Nutr. 2022, 7, 276–283. [Google Scholar]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef] [PubMed]
- Kpomasse, C.C.; Oke, O.E.; Houndonougbo, F.M.; Tona, K. Broiler production challenges in the tropics: A review. Vet. Med. Sci. 2021, 7, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Tůmová, E.; Chodová, D.; Skřivanová, E.; Laloučková, K.; Šubrtová-Salmonová, H.; Ketta, M.; Machander, V.; Cotozzolo, E. Research Note: The effects of genotype, sex, and feeding regime on performance, carcasses characteristic, and microbiota in chickens. Poult. Sci. 2021, 100, 760–764. [Google Scholar] [CrossRef]
- Gornowicz, E.; Pietrzak, M.; Stanisławski, D.; Steppa, R.; Lewko, L.; Kryza, A. Meat quality characteristics of chickens raised organically and intensively. Sci. Ann. Pol. Soc. Anim. Prod. 2017, 13, 33–41. [Google Scholar] [CrossRef]
- Rizzi, C.; Contiero, B.; Cassandro, M. Growth patterns of Italian local chicken populations. Poult. Sci. 2013, 92, 2226–2235. [Google Scholar] [CrossRef]
- Tufarelli, V.; Ragni, M.; Laudadio, V. Feeding Forage in Poultry: A Promising Alternative for the Future of Production Systems. Agriculture 2018, 8, 81. [Google Scholar] [CrossRef]
- Karlsson, J.O.; Röös, E. Resource-Efficient Use of Land and Animals—Environmental Impacts of Food Systems Based on Organic Cropping and Avoided Food-Feed Competition. Land Use Policy 2019, 85, 63–72. [Google Scholar] [CrossRef]
- Kumar, M.; Dahiya, S.P.; Ratwan, P. Backyard Poultry Farming in India: A Tool for Nutritional Security and Women Empowerment. Biol. Rhythm. Res. 2021, 52, 1476–1491. [Google Scholar] [CrossRef]
- Van Loo, E.J.; Caputo, V.; Nayga, R.M., Jr.; Meullenet, J.-F.; Ricke, S.C. Consumers’ willingness to pay for organic chicken breast: Evidence from choice experiment. Food Qual. Prefer. 2011, 22, 603–613. [Google Scholar] [CrossRef]
- Staudigel, M.; Trubnikov, A. High price premiums as barriers to organic meat demand? A hedonic analysis considering species, cut and retail outlet. Aust. J. Agric. Econ. 2022, 66, 309–334. [Google Scholar] [CrossRef]
- Sandøe, P.; Hansen, H.O.; Forkman, B.; van Horne, P.; Houe, H.; de Jong, I.C.; Kjær, J.B.; Nielsen, S.S.; Palmer, C.; Rhode, H.L.H.; et al. Market driven initiatives can improve broiler welfare—A comparison across five European countries based on the Benchmark method. Poult. Sci. 2022, 101, 101806. [Google Scholar] [CrossRef]
- Choi, J.; Kong, B.; Bowker, B.C.; Zhuang, H.; Kim, W.K. Nutritional Strategies to Improve Meat Quality and Composition in the Challenging Conditions of Broiler Production: A Review. Animals 2023, 18, 1386. [Google Scholar] [CrossRef]
- Horsted, K.; Allesen-Holm, B.H.; Hermansen, J.E. The effect of breed and feed-type on the sensory profile of breast meat in male broilers reared in an organic free-range system. Br. Poult. Sci. 2010, 51, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Sundrum, A. Protein supply in organic poultry and pig production. In Proceedings of the 1st International Federation of Organic Agriculture Movements International Conference on Animals in Organic Production, St. Paul, MN, USA, 23–25 August 2006; IFOAM: Bonn, Germany, 2006; pp. 195–199. [Google Scholar]
- NRC. Nutrient Requirements of Poultry, 9th ed.; Natlural Academic Press: Washington, DC, USA, 1994. [Google Scholar]
- Wolde, S.; Negesse, T.; Melesse, A. The effect of dietary protein concentration on nutrient utilization of Rhode Island Red chicken in Wolaita (southern Ethiopia). Trop. Subtrop. Agroecosyst. 2011, 14, 271–278. [Google Scholar]
- Milczarek, A.; Pachnik, M.; Osek, M.; Swinarska, R. Rearing Performance and Carcass Composition of Broiler Chickens Fed Rations Containing Guar Meal at Graded Levels. Agriculture 2022, 12, 1385. [Google Scholar] [CrossRef]
- Junghans, A.; Deseniß, L.; Louton, H. Data evaluation of broiler chicken rearing and slaughter-An exploratory study. Front. Vet. Sci. 2022, 6, 957786. [Google Scholar] [CrossRef]
- Tůmová, E.; Chodová, D.; Volek, Z.; Ebeid, T.A.; Ketta, M.; Skřivanová, V. A comparative study on the effect of quantitative feed restriction in males and females of broiler chickens, rabbits and nutrias. I. Performance and carcass composition. Czech J. Anim. Sci. 2022, 67, 47–54. [Google Scholar] [CrossRef]
- Krauß, M.; Keßler, J.; Prochnow, A.; Kraatz, S.; Drastig, K. Water productivity of poultry production: The influence of different broiler fattening systems. Food. Energy Secur. 2015, 4, 76–85. [Google Scholar] [CrossRef]
- Bianchi, M.; Petracci, M.; Sirri, F.; Folegatti, E.; Franchini, A.; Meluzzi, A. The influence of the season and market class of broiler chickens on breast meat quality traits. Poult. Sci. 2007, 86, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Cygan-Szczegielniak, D.; Bogucka, J. Growth Performance, Carcass Characteristics and Meat Quality of Organically Reared Broiler Chickens Depending on Sex. Animals 2021, 11, 3274. [Google Scholar] [CrossRef]
- Fiorilla, E.; Cartoni Mancinelli, A.; Birolo, M.; Castellini, C.; Soglia, D.; Macchi, E.; Mioletti, S.; Miniscalco, B.; Sartore, S.; Franco, R.; et al. Poultry biodiversity for alternative farming systems development. E3S Web Conf. 2022, 335, 00004. [Google Scholar] [CrossRef]
- Połtowicz, K.; Wężyk, S.; Calik, J.; Paściak, P. The use of native chicken breed in poultry meat production. Proc. Brit. Soc. Anim. Sci. 2004, 1, 30–32. [Google Scholar]
- Zdanowska-Sąsiadek, Ż.; Michalczuk, M.; Riedel, J.; Łukasiewicz, M.; Damaz, K. Genotype—Factor influencing performance of chicken production. Anim. Sci. 2013, 52, 237–242. [Google Scholar]
- Duy Hoan, N.; Anh Khoa, M. Meat quality comparison between fast growing broiler ross 308. J. Sci. Sustain. Dev. 2016, 14, 101–108. [Google Scholar]
- Isabel, B.; Santos, Y. Effects of dietary organic acids and essential oils on growth performance and carcass characteristics of broiler chickens. J. Appl. Poult. Res. 2009, 18, 472–476. [Google Scholar] [CrossRef]
- Połtowicz, K.; Doktor, J. Effect of free-range raising on performance, carcass attributes and meat quality of broiler chickens. Anim. Sci. Pap. Rep. 2011, 29, 139–149. [Google Scholar]
- Molee, W.; Puttaraksa, P.; Pitakwong, S.; Khempaka, S. Performance, carcass yield, hematological parameters, and feather pecking damage of that indigenous chickens raised indoors or with outdoor access. World Acad. Eng. Technol. 2011, 80, 646–649. [Google Scholar]
- Van Calker, K.J.; Berentsen, P.B.M.; Giesen, G.W.J.; Huirne, R.B.M. Identifying and ranking attributes that determine sus-tainability in Dutch dairy farming. Agric. Human Values 2005, 22, 53–63. [Google Scholar] [CrossRef]
- Lichovnikova, M.; Jandasek, J.; Jůzl, M.; Dračkova, E. The meat quality of layer males from free range in comparison with fast growing chickens. Czech J. Anim. Sci. 2009, 54, 490–497. [Google Scholar] [CrossRef]
- Baéza, E.; Arnould, C.; Jlali, M.; Chartrin, P.; Gigaud, V.; Mercerand, F.; Durand, C.; Meteau, K.; Le Bihan-Duval, E.; Berri, C. Influence of increasing slaughter age of chickens on meat quality, welfare, and technical and economic results. J. Anim. Sci. 2012, 90, 2003–2013. [Google Scholar] [CrossRef] [PubMed]
- Coban, O.; Lacin, E.; Aksu, M.I.; Kara, A.; Sabuncuoglu, N. The impact of slaughter age on performance, carcass traits, properties of cut-up pieces of carcasses, and muscle development in broiler chickens. Eur. Poult. Sci. 2014, 78, 1–10. [Google Scholar] [CrossRef]
- Cobanoglu, F.; Kucukyilmaz, K.; Cinar, M.; Bozkurt, M.; Catli, A.U.; Bintas, E. Comparing the Profitability of Organic and Conventional Broiler Production. Braz. J. Poult. Sci. 2014, 16, 403–409. [Google Scholar] [CrossRef]
- Castellini, C.; Mugnai, C.; Dal Bosco, A. Effect of organic production system on broiler carcass and meat quality. Meat Sci. 2002, 60, 219–225. [Google Scholar] [CrossRef]
- Gaudaré, U.; Pellerin, S.; Benoit, M.; Durand, G.; Dumont, B.; Barbieri, P.; Nesme, T. Comparing productivity and feed-use efficiency between organic and conventional livestock animals. Environ. Res. Lett. 2021, 16, 024012. [Google Scholar] [CrossRef]
- Berg, C. Health and Welfare in Organic Poultry Production. Acta Vet. Scand. 2001, 43 (Suppl. S95), 37–45. [Google Scholar] [CrossRef]
- Sarwar Gilani, G.; Xiao, C.W.; Cockell, K.A. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br. J. Nutr. 2012, 108 (Suppl. S2), S315–S332. [Google Scholar] [CrossRef]
Diet | |||
---|---|---|---|
Starter | Grower | Farm-Made Feed | |
Item | 1–28 d | 29–52 d | 53–81 d |
Ingredients (g/kg) | |||
Wheat | 540 | 585 | 550 |
Soybean cake, non-GMO | 300 | 220 | - |
Peas | 80 | 100 | 150 |
Narrow-leaved lupin | - | - | 100 |
Oats | - | 20 | 50 |
Triticale | - | - | 100 |
Soybeans, non-GMO | 40 | 40 | - |
Premix 2 | 40 | 35 | 50 |
Nutritional value | |||
Metabolizable energy (kcal/kg) | 2870 | 2930 | 2900 |
Total protein (%) | 22.0 | 20.0 | 15.7 |
Crude fat (%) | 3.5 | 3.5 | 2.0 |
Crude fiber (%) | 4.5 | 4.5 | 5.0 |
Month | Temperature (°C) | Humidity (%) |
---|---|---|
July | 17.8 | 70.4 |
August | 20.9 | 70.0 |
September | 11.2 | 77.1 |
Day | Temperature (°C) | Humidity (%) | Air Velocity (m/s) | NH3 (ppm) | H2S (ppm) | CO2 (ppm) |
---|---|---|---|---|---|---|
Organic poultry house | ||||||
1 | 32 | 55 | 0.1 | not detected | not detected | 380 |
7 | 31 | 56 | 0.2 | not detected | not detected | 420 |
14 | 28 | 52 | 0.2 | not detected | not detected | 390 |
28 | 23 | 48 | 0.1 | 1.2 | not detected | 460 |
42 | 21 | 45 | 0.2 | 1.5 | not detected | 450 |
56 | 22 | 47 | 0.2 | 1.4 | not detected | 535 |
70 | 20 | 45 | 0.2 | 1.6 | not detected | 550 |
81 | 19 | 48 | 0.2 | 1.7 | not detected | 596 |
161 | 20 | 44 | 0.2 | 1.9 | not detected | 640 |
Items | Rhode Island Red | Sussex | Hubbard JA 957 | Ross 308 |
---|---|---|---|---|
Bedding | 5 | 5 | 5 | 5 |
Microclimate | 5 | 5 | 5 | 5 |
Skin on the soles of the feet | 5 | 5 | 5 | 4 |
Overall health | 5 | 5 | 5 | 5 |
Age in Days | Live Body Weight (g), (Mean, SEM) | |||
---|---|---|---|---|
Rhode Island Red | Sussex | Hubbard JA 957 | Ross 308 | |
1 | 45.12 (0.67) | 40.10 (1.16) | 39.74 (0.83) | 47.72 (1.36) |
7 | 95.22 a,b,c (0.20) | 88.83 d,e (0.47) | 133.30 f (0.42) | 161.30 (0.67) |
14 | 175.60 a,b,c (0.33) | 168.70 d,e (0.84) | 310.00 f (0.59) | 352.60 (0.84) |
28 | 332.00 a,b,c (0.66) | 342.00 d,e (0.56) | 745.00 f (0.47) | 923.00 (1.65) |
42 | 605.00 a,b,c (1.30) | 587.00 d,e (2.03) | 1421.00 f (2.80) | 1810.00 (7.38) |
56 | 860.00 a,b,c (1.73) | 857.00 d,e (1.12) | 2191.00 f (5.12) | 2777.00 (2.84) |
70 | 1017.00 a,b (24.60) | 927.60 d,e (36.43) | 2683.00 f (74.83) | 3502.00 (125.80) |
81 | 1217.00 a,b (28.30) | 1,148.00 c,d (48.27) | 3220.00 e (96.41) | 4217.00 (149.50) |
Feed | Per Bird | Rhode Island Red | Sussex | Hubbard JA 957 | Ross 308 |
---|---|---|---|---|---|
Starter | kg | 0.74 | 0.82 | 1.19 | 1.24 |
EUR | 0.65 | 0.73 | 1.05 | 1.10 | |
Grower | kg | 1.93 | 1.95 | 2.90 | 3.79 |
EUR | 1.66 | 1.67 | 2.49 | 3.25 | |
Farm-made feed/finisher | kg | 2.43 | 2.40 | 4.92 | 5.83 |
EUR | 1.52 | 1.50 | 3.07 | 4.15 | |
Total kg per bird | 5.10 | 5.17 | 9.01 | 10.85 | |
Total EUR | 3.83 | 3.90 | 6.57 | 6.62 | |
Average body weight (kg) | 1.22 | 1.15 | 3.23 | 4.26 | |
FCR | 4.19 | 4.50 | 2.79 | 2.53 |
Specification | Rhode Island Red | Sussex | Hubbard JA 957 | Ross 308 |
---|---|---|---|---|
Feed costs | ||||
Costs per bird | 3.83 | 3.90 | 6.62 | 6.62 |
Costs per kg BW | 3.15 | 3.39 | 2.05 | 1.86 |
Non-feed costs per bird | ||||
Bedding | 0.07 | 0.07 | 0.07 | 0.07 |
Water | 0.01 | 0.01 | 0.01 | 0.01 |
Purchase of chicks | 0.84 | 0.84 | 0.84 | 0.84 |
Electricity | 0.17 | 0.17 | 0.17 | 0.17 |
Heating | 0.07 | 0.07 | 0.07 | 0.07 |
Labor | 1.31 | 1.31 | 1.31 | 1.31 |
Paddocks/disinfection | 0.16 | 0.16 | 0.16 | 0.16 |
Veterinary services | 0.22 | 0.22 | 0.22 | 0.22 |
Depreciation 2 | 0.44 | 0.44 | 0.44 | 0.44 |
Total non-food costs per bird | 3.29 | 3.29 | 3.29 | 3.29 |
Non-feed costs per kg BW | 2.70 | 2.86 | 1.02 | 0.77 |
Total feed and non-feed costs per kg BW | 5.85 | 6.25 | 3.07 | 2.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obremski, K.; Tyburski, J.; Wojtacha, P.; Sosnówka-Czajka, E.; Skomorucha, I.; Pomianowski, J.; Parowicz, P. Assessment of the Economic Profitability of Fattening Selected Chicken Genotypes in an Organic Farm. Agriculture 2024, 14, 10. https://doi.org/10.3390/agriculture14010010
Obremski K, Tyburski J, Wojtacha P, Sosnówka-Czajka E, Skomorucha I, Pomianowski J, Parowicz P. Assessment of the Economic Profitability of Fattening Selected Chicken Genotypes in an Organic Farm. Agriculture. 2024; 14(1):10. https://doi.org/10.3390/agriculture14010010
Chicago/Turabian StyleObremski, Kazimierz, Józef Tyburski, Paweł Wojtacha, Ewa Sosnówka-Czajka, Iwona Skomorucha, Janusz Pomianowski, and Paweł Parowicz. 2024. "Assessment of the Economic Profitability of Fattening Selected Chicken Genotypes in an Organic Farm" Agriculture 14, no. 1: 10. https://doi.org/10.3390/agriculture14010010
APA StyleObremski, K., Tyburski, J., Wojtacha, P., Sosnówka-Czajka, E., Skomorucha, I., Pomianowski, J., & Parowicz, P. (2024). Assessment of the Economic Profitability of Fattening Selected Chicken Genotypes in an Organic Farm. Agriculture, 14(1), 10. https://doi.org/10.3390/agriculture14010010