Development and Effects of Organic Farms in Poland, Taking into Account Their Location in Areas Facing Natural or Other Specific Constraints
Abstract
:1. Introduction
2. Materials and Methods
3. Theoretical Backgrounds
3.1. Yields Gaps between Organic and Conventional Farming: Literature Review
3.2. The Direction of Organic Farming Development in the EU, including Poland
3.3. Natural Farming Conditions in Poland and the Development of Organic Farming Supported by the EU CAP
4. Results
4.1. Production Potential and Effects of Organic Farms Based on Polish FADN Data
4.2. Factors Co-Determining the Entry of Farmers into Organic Farming in Poland in the Light of the Polish FADN Data
5. Discussion
6. Conclusions
- Taking into account the current development of the organic farming sector, including changes in the number of farms and the area of organic UAA in the EU in general and in the Member States, as well as the strategic goals for Europe by 2030, implementation of the “organic” target at the level of 25% of agricultural land in an organic system will be very difficult.
- Trends observed in individual countries in the development of organic agriculture indicate that this market segment has different economic importance, which may result from local and national conditions, including market, social and production. Austria, Sweden and Estonia are distinguished by a high share of organic area—over 20%. There are prospects for the development of the organic system in the Czech Republic, Latvia, Italy and Finland. France is the leader in terms of absolute area of organic UAA. However, in Poland, the market segment is still of little economic importance. However, it develops unevenly and to a large extent, this state of affairs depends on the natural management conditions.
- In Poland, agriculture often conducts agricultural activities in difficult or even particularly difficult conditions within the delimitation of ANCs. It turns out that the organic farming measure under the EU CAP provides an important opportunity to support agriculture in these areas. In Poland, this measure is implemented in the vast majority of communes with a high saturation of ANCs. It should be emphasized that in these communes, the share of organic area supported under the CAP in the total area of UAA was more than twice as high as in the remaining communes. Farms on ANCs therefore see a greater real chance for further durability and development through participation in the organic farming system supported by the CAP.
- Organic farms, as compared to conventional farms, are characterized by lower production potential, as well as different production technology expressed in less technical work equipment and greater use of human labor per unit area. Moreover, on organic farms, there is extensification of agricultural production, expressed in smaller production effects. However, worse natural conditions reinforce these disproportions.
- In the EU, including Poland, the current tendency of agriculture to participate in the organic farming system depends on many factors. There is no doubt, however, that the leading one among them is the possibility of obtaining satisfactory financial compensation for the extensification of agricultural production due to participation in this system, which is reflected in lower production effects. In agriculture in Poland, the possession of worse natural conditions established as part of the delimitation of ANCs is an important determinant that also determines the greater willingness to participate in this production system. The greater presence of HNVfs characterized by diverse landscapes, often belonging to the Natura 2000 network, which are subject to special care by society, is one of the strengths of the areas, which may naturally strengthen the importance of organic farming in these areas. Moreover, based on the Polish FADN data, it turns out that important factors co-determining participation in the organic farming system are also the fact that the farmer has a higher age and a higher level of education.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Emissions Due to Agriculture. Global, Regional and Country Trends 2000–2018. FAOSTAT Analytical Brief 18; FAO: Rome, Italy, 2020. [Google Scholar]
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Jayasinghe, N.; Kodikara, N.; Suraweera, P.; Merah, O. Role of organic farming for achieving sustainability in agriculture. Farming Syst. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Czyżewski, A.; Stępień, S.; Nowe Uwarunkowania Ekonomiczne Wspólnej Polityki Rolnej (WPR) Unii Europejskiej. Ekonomista, nr. 6. 2017. Available online: https://ekonomista.pte.pl/pdf-155585-82414?filename=Nowe%20uwarunkowania.pdf (accessed on 24 November 2023).
- Van der Zanden, E.; Verburg, P.H.; Schulp, C.J.E.; Verkerk, P.J. Trade-offs of European agricultural abandonment. Land Use Policy 2017, 62, 290–301. [Google Scholar] [CrossRef]
- IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar]
- CBD. Global Biodiversity Outlook 5. Montreal. 2019. Available online: http://41.89.141.8/kmfri/handle/123456789/1609 (accessed on 24 November 2023).
- Zgłobicki, W.; Karczmarczuk, K.; Baran-Zgłobicka, B. Intensity and Driving Forces of Land Abandonment in Eastern Poland. Appl. Sci. 2020, 10, 3500. [Google Scholar] [CrossRef]
- Pe’er, G.; Bonn, A.; Bruelheide, H.; Dieker, P.; Eisenhauer, N.; Feindt, P.; Hagedorn, G.; Hansurgens, B.; Herzon, I.; Lomba, A.; et al. Action needed for the EU Common Agricultural Policy to address sustainability challenges. People Nat. 2020, 2, 305–316. [Google Scholar] [CrossRef]
- Koninger, J.; Panagos, P.; Jones, A.; Briones, M.J.I.; Orgiazzi, A. In deference of soil biodiversity: Towards an inclusive protection in the European Union. Biol. Conserv. 2022, 268, 109475. [Google Scholar] [CrossRef]
- Lefebvre, M.; Espinosa, M.; Paloma Gomez, S.; Paracchini, M.L.; Piorr, A.; Zasada, I. Agricultural landscapes as multi-scale public good and the role of the Common Agricultural Policy. J. Environ. Plan. Manag. 2014, 58, 2088–2112. [Google Scholar] [CrossRef]
- Jespersen, L.M.; Baggesen, D.L.; Fog, E.; Halsnæs, K.; Hermansen, J.E.; Andreasen, L.; Strandberg, B.; Sørensen, J.T.; Halberg, N. Contribution of organic farming to public goods in Denmark. Org. Agric. 2017, 7, 243–266. [Google Scholar] [CrossRef]
- McGurk, E.; Hynes, S.; Thorne, F. Participation in agri-environmental schemes: A contingent valuation study of farmers in Ireland. J. Environ. Manag. 2020, 262, 110243. [Google Scholar] [CrossRef]
- Boschiero, M.; De Laurentiis, V.; Caldeira, C.; Sala, S. Comparison of organic and conventional cropping systems: Asystematic review of life cicle assessment studies. Environ. Impact Assess. Rev. 2023, 102, 107187. [Google Scholar] [CrossRef]
- Lee, S.K.; Choe, C.Y.; Park, H.S. Measuring the environmental effects of organic farming. A meta-analysis of structural variables in empirical research. J. Environ. Manag. 2015, 162, 263–274. [Google Scholar] [CrossRef]
- Jahantab, M.; Abbasi, B.; Bodic, L.P. Farmland allocation in the conversion from conventional to organic farming. Eur. J. Oper. Res. 2023, 311, 1103–1119. [Google Scholar] [CrossRef]
- Jarosch, K.; Oberson, A.; Frossard, E.; Lucie, G.; Dubois, D.; Mader, P.; Jochen, M. Phosphorus (P) balances and P availability in a field trial comparing organic and conventional farming systems since 35 years. In Proceedings of the 19th EGU General Assembly, EGU2017, Vienna, Austria, 23–28 April 2017. [Google Scholar]
- Schrama, M.; de Haan, J.J.; Kroonen, M.; Verstegen, H.; Van der Putten, W.H. Crop yield gap and stability in organic and conventional farming systems. Agric. Ecosyst. Environ. 2018, 256, 123–130. [Google Scholar] [CrossRef]
- Stubenrauch, J.; Ekardt, F.; Heyl, K.; Garske, B.; Schrott, L.V.; Ober, S. How to legally overcome the distinction between organic and conventional farming-Governance approaches for sustainable farming on 100% of the land. Sustain. Prod. Consum. 2021, 28, 716–725. [Google Scholar] [CrossRef]
- M’barek, R.; Barreiro_Hurle, J.; Boulanger, P.; Caivano, A.; Ciaian, P.; Dudu, H.; Espinosa, M.; Fellmann, T.; Ferrari, E.; Gomez y Paloma, S.; et al. Scenar 2030. Pathways for the European Union and Food Sector beyond 2020. Summary Report; European Comission: Luxembourg, 2017. [Google Scholar]
- Uthes, S.; Kelly, E.; Konig, H.J. Farm-level indicators for crop and landscape diversity derived from agricultural beneficiaries data. Ecol. Indic. 2020, 108, 105725. [Google Scholar] [CrossRef]
- Finger, F.; El Benni, N. Farm income in European agriculture: New perspectives on measurement and implications for policy evaluation. Eur. Rev. Agric. Econ. 2021, 48, 253–265. [Google Scholar] [CrossRef]
- Sidhoum, A.A.; Mennig, P.; Sauer, J. Do agri-environment measures help improve environmental and economic efficiency? Evidence from Bavarian dairy farmers. Eur. Rev. Agric. Econ. 2023, 50, 918–953. [Google Scholar] [CrossRef]
- Krasowicz, S. Regional aspects in the work of the Institute of Soil science and plant cultivation-State Research Institute in Pulawy. Econ. Reg. Stud. 2017, 10, 110–119. [Google Scholar] [CrossRef]
- Zieliński, M.; Józwiak, W.; Ziętara, W.; Wrzaszcz, W.; Mirkowska, Z.; Sobierajewska, J.; Adamski, M. Kierunki i Możliwości Rozwoju Rolnictwa Ekologicznego w Polsce w Ramach Europejskiego Zielonego Ładu; IERiGŻ-PIB: Warsaw, Poland, 2022. [Google Scholar]
- Hynes, S.; Garvey, E. Modelling Farmers Participation in an Agri-environmental Scheme using Panel Data: An application to the Rural Environment Protection Scheme in Ireland. J. Agric. Econ. 2009, 60, 546–562. [Google Scholar] [CrossRef]
- Gailhard, I.U.; Bojnec, S. Farm size and participation in agri-environmental measures: Farm-level evidence from Slovenia. Land Use Policy 2015, 46, 273–282. [Google Scholar] [CrossRef]
- Wąs, A.; Malak-Rawlikowska, A.; Zavalloni, M.; Viaggi, D.; Kobus, P. In search of factors determining the participation of farmers in agri-environmental schemes-Does only money matter in Poland? Land Use Policy 2021, 101, 105190. [Google Scholar] [CrossRef]
- Paulus, A.; Hagemann, N.; Baaken, C.M.; Roilo, S.; Alacron-Segura, V.; Cord, A.F.; Beckmann, M. Landscape context and farm characteristics are key to farmers adoption of agri-environmental schemes. Land Use Policy 2022, 121, 106320. [Google Scholar] [CrossRef]
- Łuczka, W.; Kalinowski, S.; Shmygol, N. Organic farming Support Policy in a Sustainable Development Context: A Polish Case Study. Energies 2021, 14, 4208. [Google Scholar] [CrossRef]
- Drygas, M.; Nurzyńska, I.; Bańkowska, K. Charakterystyka i Uwarunkowania Rozwoju Rolnictwa Ekologicznego w Polsce; IRWiR PAN: Warszawa, Poland, 2019. [Google Scholar]
- Runowski, H. Organic Farming-Progress or Regress. Rocz. Nauk Rol. Ser. G 2009, 96, 4. Available online: https://sj.wne.sggw.pl/pdf/RNR_2009_n4_s182.pdf (accessed on 7 December 2023).
- Berbeć, A.K.; Feledyn-Szewczyk, B.; Thalmann, C.; Wyss, R.; Grenz, J.; Kopiński, J.; Stalenga, J.; Radzikowski, P. Assessing the Sustainability Performance of Organic and Low-Input Conventional Farms from Eastern Poland with the RISE Indicator System. Sustainability 2018, 10, 1792. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Röös, E.; Mie, A.; Wivstad, M.; Salomon, E.; Johansson, B.; Gunnarsson, S.; Wallenbeck, A.; Hoffmann, R.; Nilsson, U.; Sundberg, C.; et al. Risks and opportunities of increasing yields in organic farming. A review. Agron. Sustain. Dev. 2018, 38, 14. [Google Scholar] [CrossRef]
- Holt-Gimenez, E.; Shattuck, A.; Altieri, M.; Herren, H.; Gliessman, S. We already grow enough food for 10 billion people…and still can’t end hunger. J. Sustain. Agric. 2012, 36, 595–598. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B.; Nakielska, M.; Jończyk, K.; Berbeć, A.K.; Kopiński, J. Assessment of the Suitability of 10 Winter Tricitale Cultivars (x Triticosecale Wittm. Ex A. Camus) for organic agriculture: Polish case study. Agronomy 2020, 10, 1144. [Google Scholar] [CrossRef]
- Alvarez, R. Comparing Productivity of Organic and Conventional Farming Systems: A Quantative Review. Arch. Agron. Soil Sci. 2021, 68, 1947–1958. [Google Scholar] [CrossRef]
- De Ponti, T.; Rijk, B.; van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N. Many shades of gray-The context-dependent performance of organic agriculture. Sci. Adv. 2017, 3, e1602638. [Google Scholar] [CrossRef]
- Kirchmann, H.; Ryan, M.H. Nutrients in organic farming—Are there advantages from the 721 exclusive use of organic manures and untreated minerals? In Proceedings of the 4th International Crop 722 Science Congress, Brisbane, Australia, 26 September–1 October 2004. [Google Scholar]
- Ziętara, W.; Mirkowska, Z. The green deal: Towards organic farming or greening of agriculture. Probl. Agric. Econ. 2021, 368, 29–54. [Google Scholar] [CrossRef]
- Hagner, M.; Pohjanletho, I.; Nuutinen, V.; Setälä, H.; Velmala, S.; Vesterinen, E.; Pennanen, T.; Lemola, R.; Peltonniemi, K. Impacts of long-term organic production on soil fauna in boreal dairy and cereal farming. Appl. Soil Ecol. 2023, 189, 104944. [Google Scholar] [CrossRef]
- Sacco, D.; Moretti, B.; Monaco, S.; Grignani, C. Six-year transition from conventional to organic farming: Effects on crop production and soil quality. Eur. J. Agron. 2015, 69, 10–20. [Google Scholar] [CrossRef]
- Mayer, J.; Gunst, L.; Mäder, P.; Samson, M.; Carcea, M.; Narducci, V.; Thomsen, I.; Dubois, D. Productivity, quality and sustainability of winter wheat under long-term conventional and organic management in Switzerland. Eur. J. Agron. 2015, 65, 27–39. [Google Scholar] [CrossRef]
- Niggli, U.; Schmidt, J.; Watson Ch Kriipsalu, M.; Shanskiy, M.; Barberi, P.; Kowalska, J.; Schmitt, A.; Daniel, C.; Wenthe, U.; Conder, M.; et al. Organic Knowledge Network Arable State-of-the-Art Research Results and Best Practices. 2016. Available online: https://orgprints.org/id/eprint/30506/ (accessed on 9 December 2023).
- Jończyk, K. Aktualny stan i bariery rozwoju ekologicznej hodowli i nasiennictwa oraz znaczenie doboru odmian. Ekologiczne doświadczalnictwo odmianowe. W opracowaniu pod redakcją K. Jończyka pt. Rolnictwo ekologiczne w Polsce. Stud. Rap. IUNG-PIB Nr 2023, 70, 89–98. [Google Scholar] [CrossRef]
- Radzikowski, P.; Jończyk, K.; Feledyn-Szewczyk, B.; Jóźwicki, T. Assessment of Resistance of Different Varieties of Winter Wheat to Leaf Fungal Diseases in Organic Farming. Agriculture 2023, 13, 875. [Google Scholar] [CrossRef]
- Ponisio, C.L.; M’Gonigle, K.L.; Mace, K.C.; Palomino, J.; de Valpine, P.; Kremen, C. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B Biol. Sci. 2015, 282, 20141396. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Communication from the Commmission to the European Parliament, the European Council, the Council, the European Economic and Social Commmittee and the Commmittee of the Regions, Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, EU Biodiversity Strategy for 2030; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Wrzaszcz, W. Tendencies and Perspectives of Organic Farming Development in the EU—The Significance of European Green Deal Strategy. Eur. J. Sustain. Dev. 2023, 12, 143. [Google Scholar] [CrossRef]
- Prandecki, K.; Wrzaszcz, W. Challenges for agriculture in Poland resulting from the implementation of the strategic objectives of the European Green Deal. Ekon. Śr.-Econ. Environ. 2022, XXIV, 109–122. [Google Scholar] [CrossRef]
- Chmieliński, P.; Wrzaszcz, W.; Zieliński, M.; Wigier, M. Intensity and Biodiversity: The ‘Green’ Potential of Agriculture and Rural Territories in Poland in the Context of Sustainable Development. Energies 2022, 15, 2388. [Google Scholar] [CrossRef]
- Zieliński, M.; Koza, P.; Łopatka, A. Agriculture from areas facing natural or other specific constraints (ANCs) in Poland, its characteristics, directions of changes and challenges in the context of the European Green Deal. Sustainability 2022, 14, 11828. [Google Scholar] [CrossRef]
- EC. CAP Context Indicators-2019 Update. 2019. Available online: https://agriculture.ec.europa.eu/cap-my-country/performance-agricultural-policy/cap-indicators/context-indicators_en (accessed on 30 October 2023).
- Jadczyszyn, J.; Zieliński, M. Assessment of farms from High Nature Value Farmland areas in Poland. Ann. Pol. Assoc. Agric. Agribus. Econ. 2020, 22, 108–118. [Google Scholar] [CrossRef]
- Zieliński, M.; Jadczyszyn, J. Importance and challenges for agriculture from High Nature Value farmlands (HNVf) in Poland in the context of the provision of public goods under the European Green Deal. Ekon. Śr. Econ. Environ. 2022, 3, 194–219. [Google Scholar] [CrossRef]
- Home, R.; Indermuchle, A.; Tschanz, A.; Ries, E.; Stolte, M. Factors in the Decision by Swiss Farmers to Convert to Organic Farming; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Fan, F.; Henriksen, C.B.; Porter, J.R. Long-term effects of conversion to organic farming on ecosystem services—A model simulation case study and on-farm case study in Denmark. Agroecol. Sustain. Food Syst. 2018, 42, 504–529. [Google Scholar] [CrossRef]
- Koloszko-Chomentowska, Z. The economic consequences of supporting organic farms by public funds: Case of Poland. Technol. Econ. Dev. Econ. 2015, 21, 332–350. [Google Scholar] [CrossRef]
- Jansky, J.; Zivelova, I.; Novak, P. Economic efficiency of agricultural enterprises in the system of organic farming. Agric. Econ. 2003, 49, 242–246. [Google Scholar]
- Haring, A.M.; Offermann, F. Impact of the EU Common Agricultural Policy on organic in comparison to conventional farms. In Proceedings of the XIth International Congress of the EAAE (European Association of Agricultural Economists), The Future of Rural Europe in the Global Agri-Food System, Copenhagen, Denmark, 24–27 August 2005. [Google Scholar]
- Kallas, Z.; Serra, T.; Gil, J.M. Farmers’ objectives as determinants of organic farming adoption: The case of Catalonian vineyard production. Agric. Econ. 2010, 41, 409–423. [Google Scholar] [CrossRef]
- Perpar, A.; Udovc, A. Organic Farming: A Good Production Decision for Slovenian Small Size Farms and Farms in the Areas with Restrictions/Limitations or Natural Obstacles for Agriculture? In Multifunctionality and Impacts of Organic and Conventional Agriculture; Moudrý, J., Mendes, K.F., Bernas, J., da Silva Teixeira, R., de Sousa, R.N., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Redlicova, R.; Chmelikova, G.; Blazkova, I.; Svobodova, E.; Vanderpuje, I.N. Organic Food Needs More Land and Direct Energy to Be Produced Compared to Food from Conventional Farming: Empirical Evidence from the Czech Republic. Agriculture 2021, 11, 813. [Google Scholar] [CrossRef]
- Siegrist, S.; Schaub, D.; Pfiffner, L.; Mäder, P. Does Organic Agriculture Reduce Soil Erodibility? The Results of a Long-Term Field Study on Loess in Switzerland. Agric. Ecosyst. Environ. 1998, 69, 253–264. [Google Scholar] [CrossRef]
Variable | Communes | |
---|---|---|
With a High Share of ANCs | Remaining | |
Number of farms (thousands) | 620.6 | 631.4 |
UAA (thousand ha), including: | 6705.4 | 7459.0 |
arable lands (thousand ha) | 4807.8 | 6440.2 |
permanent grasslands (thousand ha) | 1790.3 | 737.6 |
Variable | Organic Farms | Conventional Farms | ||
---|---|---|---|---|
With a High Share of ANCs | Remaining | With a High Share of ANCs | Remaining | |
Number of farms | 207 | 65 | 641 | 264 |
Economic size (thousand euros of standard output) | 29.3 | 40.6 | 49.3 | 54.0 |
UAA (ha), including rented area (%) | 29.7 25.9 | 28.1 32.0 | 35.4 30.5 | 39.0 30.0 |
Total labor input (AWU) including own labor input (%) | 1.63 88.3 | 1.91 77.0 | 1.68 94.0 | 1.74 91.4 |
Total value of assets (thousand euros) | 204.8 | 241.9 | 280.6 | 321.3 |
Variable | Organic Farms | Conventional Farms | ||
---|---|---|---|---|
With a High Share of ANCs | Remaining | With a High Share of ANCs | Remaining | |
Capital to labor ratio (euro ‘000/AWU) | 125.7 | 125.7 | 167.0 | 184.6 |
Relation of labor inputs to UAA (AWU/100 ha) | 5.5 | 6.8 | 4.7 | 4.5 |
Description | Organic Farms from Communes | Conventional Farms from Communes | ||
---|---|---|---|---|
With a High Share of ANCs | Remaining | With a High Share of ANCs | Remaining | |
Wheat | 3.7 | 3.8 | 5.0 | 6.2 |
Rye | 2.0 | 2.9 | 3.8 | 4.2 |
Barley | 2.6 | 4.4 | 4.2 | 5.1 |
Oat | 2.3 | 3.5 | 3.4 | 3.9 |
Triticale | 3.0 | 4.8 | 4.4 | 5.0 |
Edible legumes | 0.7 | 1.2 | 2.2 | 2.2 |
Rapeseed and turnip rape | 1.1 | 2.6 | 2.9 | 3.1 |
Onion | 13.6 | 12.2 | 16.0 | 25.8 |
Strawberries | 4.0 | 5.0 | 5.8 | 7.2 |
Apples | 5.1 | 17.7 | 16.4 | 33.9 |
Milk yield | 3617 | 4164 | 5094 | 5167 |
Description | β | Standard Error (SE) | Wald | Confidence Intervals (95%) | ρ | exp(β) | Confidence Intervals (95%) | ρ | Likelihood Ratio Test (LR Test) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Upper | Lower | Upper | Lower | Logarithm of Maximum Likelihood (lnL) | Chi-Square | ρ | |||||||
Free expression | −0.87882 | 0.713329 | 1.51780 | −2.27691 | 0.519284 | 0.217952 | - | - | - | - | −636.020 | - | - |
Possession of rented land | −1.21345 | 0.317027 | 14.65039 | −1.83481 | −0.592086 | 0.000129 | 0.297171 | 0.159644 | 0.553172 | 0.000129 | −627.021 | 17.99831 | 0.000022 |
Farmer’s age | 0.02873 | 0.011231 | 6.54372 | 0.00672 | 0.050740 | 0.010526 | 1.029145 | 1.006740 | 1.052050 | 0.010526 | −624.271 | 5.50022 | 0.019014 |
The fact that the farmer has higher education | 0.60148 | 0.196457 | 9.37345 | 0.21643 | 0.986525 | 0.002202 | 1.824810 | 1.241632 | 2.681899 | 0.002202 | −620.657 | 7.22794 | 0.007178 |
The fact of managing a farm by a young farmer | 0.38299 | 0.267268 | 2.05347 | −0.14084 | 0.906828 | 0.151860 | 1.466668 | 0.868626 | 2.476456 | 0.151860 | −619.508 | 2.29753 | 0.129580 |
Value of assets per 1 ha of UAA | −0.00001 | 0.000004 | 10.85141 | −0.00002 | −0.000005 | 0.000987 | 0.999988 | 0.999981 | 0.999995 | 0.000987 | −616.596 | 5.82378 | 0.015811 |
Shannon-Wiener index | −0.80335 | 0.142361 | 31.84416 | −1.08237 | −0.524329 | 0.000000 | 0.447826 | 0.338791 | 0.591953 | 0.000000 | −598.838 | 35.51664 | 0.000000 |
Agricultural income per 1 ha of UAA | 0.00003 | 0.000024 | 1.85906 | −0.00001 | 0.000079 | 0.172734 | 1.000032 | 0.999986 | 1.000079 | 0.172734 | −597.920 | 1.83623 | 0.175394 |
UAA on a farm | −0.00587 | 0.002552 | 5.29913 | −0.01088 | −0.000873 | 0.021336 | 0.994143 | 0.989183 | 0.999128 | 0.021336 | −594.860 | 6.11888 | 0.013375 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zieliński, M.; Wrzaszcz, W.; Sobierajewska, J.; Adamski, M. Development and Effects of Organic Farms in Poland, Taking into Account Their Location in Areas Facing Natural or Other Specific Constraints. Agriculture 2024, 14, 297. https://doi.org/10.3390/agriculture14020297
Zieliński M, Wrzaszcz W, Sobierajewska J, Adamski M. Development and Effects of Organic Farms in Poland, Taking into Account Their Location in Areas Facing Natural or Other Specific Constraints. Agriculture. 2024; 14(2):297. https://doi.org/10.3390/agriculture14020297
Chicago/Turabian StyleZieliński, Marek, Wioletta Wrzaszcz, Jolanta Sobierajewska, and Marcin Adamski. 2024. "Development and Effects of Organic Farms in Poland, Taking into Account Their Location in Areas Facing Natural or Other Specific Constraints" Agriculture 14, no. 2: 297. https://doi.org/10.3390/agriculture14020297
APA StyleZieliński, M., Wrzaszcz, W., Sobierajewska, J., & Adamski, M. (2024). Development and Effects of Organic Farms in Poland, Taking into Account Their Location in Areas Facing Natural or Other Specific Constraints. Agriculture, 14(2), 297. https://doi.org/10.3390/agriculture14020297