Determinants of Financial Security of European Union Farms—A Factor Analysis Model Approach
Abstract
:1. Introduction
- FS—financial security ratio;
- GB—golden balance sheet rule (equity/fixed assets);
- QR—quick ratio (current assets − inventory − non-breeding livestock)/current liabilities);
- DR—total liabilities to total assets (total liabilities/total assets);
- NWCTA—coverage of assets by net working capital ((current assets − current liabilities)/total assets));
- PEC—profitability of equity capital (farm net income/equity).
2. Materials and Methods
- k < p; Xi for i = 1, 2, …, p—real variables subject to observation;
- Fj for j = 1, 2, …, k—searched unobservable variables called common factors;
- aij for i = 1, 2, …., p and j = 1, 2, …, k—linear combination coefficients (factor loadings) of the j-th factor; Fj in the i-th observed variable Fj in the i-th observed variable Xi;
- Ui for i = 1, 2, …, p the i-th random factor, characteristic of the i-th variable.
- X—vector of variables;
- A = (aij)—matrix of coefficients of linear combinations called factor loadings;
- F—vector of common factors;
- U—vector of specific factors;
- B—diagonal matrix of factor loadings of specific components.
3. Empirical Results
3.1. Assessment of the Financial Security of Farms in the European Union
3.2. Identifying Links between Factors That Determine the Financial Security of Farms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Delas, V.; Nosova, E.; Yafinovych, O. Financial Security of Enterprises. Procedia Econ. Financ. 2015, 27, 248–266. [Google Scholar] [CrossRef]
- Ryś-Jurek, R. Bezpieczeństwo Finansowe i Stabilność Finansowa Gospodarstw Rolnych w Polsce po Akcesji do Unii Europejskiej; Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu: Poznań, Poland, 2023. [Google Scholar] [CrossRef]
- Franc-Dąbrowska, J. The financial security versus effectiveness of equity involved (Bezpieczeństwo finansowe a efektywność zaangażowania kapitałów własnych). Rocz. Nauk Rol. SERIA G 2006, 93, 121–128. [Google Scholar] [CrossRef]
- Zimon, G.; Tarighi, H.; Salehi, M.; Sadowski, A. Assessment of Financial Security of SMEs Operating in the Renewable Energy Industry during COVID-19 Pandemic. Energies 2022, 15, 9627. [Google Scholar] [CrossRef]
- Bereżnicka, J. Financial Security of Farms in Selected European Union Countries in The Context of Environmental Protection Requirements. Ann. Pol. Assoc. Agric. Econ. Agribus. 2020, 2, 11–20. [Google Scholar] [CrossRef]
- Kurdyś-Kujawska, A. Significance of production diversification in ensuring financial security of farms in Poland. J. Agribus. Rural Dev. 2016, 2, 355–366. [Google Scholar] [CrossRef]
- Kurdyś-Kujawska, A.; Strzelecka, A.; Zawadzka, D. The Impact of Crop Diversification on the Economic Efficiency of Small Farms in Poland. Agriculture 2021, 11, 250. [Google Scholar] [CrossRef]
- Zawadzka, D.; Strzelecka, A.; Szafraniec-Siluta, E. Debt as a Source of Financial Energy of the Farm—What Causes the Use of External Capital in Financing Agricultural Activity? A Model Approach. Energies 2021, 14, 4124. [Google Scholar] [CrossRef]
- Altman, E.I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. J. Financ. 1968, 23, 589–609. [Google Scholar] [CrossRef]
- Altman, E.I.; Hotchkiss, E.; Wang, W. Corporate Financial Distress, Restructuring, and Bankruptcy: Analyze Leveraged Finance, Distressed Debt, and Bankruptcy; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Kiaupaite-Grushniene, V. Altman Z-score model for bankruptcy forecasting of the listed Lithuanian agricultural companies. In Proceedings of the 5th International Conference on Accounting, Auditing, and Taxation (ICAAT 2016), Tallinn, Estonia, 8–9 December 2016; pp. 222–234. [Google Scholar]
- Iwanowicz, T. Empiryczna weryfikacja hipotezy o przenośności modelu Altmana na warunki polskiej gospodarki oraz uniwersalności sektorowej modeli. Zesz. Teoretyczne Rachun. 2018, 96, 63–80. [Google Scholar]
- European Commission, Agriculture and Rural Development. Available online: https://agriculture.ec.europa.eu/data-and-analysis/farm-structures-and-economics/fadn_en (accessed on 1 November 2023).
- Vučković, B.; Veselinović, B.; Drobnjaković, M. Financing of permanent working capital in agriculture. Econ. Agric. 2017, 64, 1065–1080. [Google Scholar] [CrossRef]
- Prokop, M.; Vrabelova, T.; Novakowa, M.; Simova, T. Evaluation of Managerial and Decision-Making Skills of Small-Scale Farmers. In Proceedings of the 28th International Scientific Conference Agrarian Perspectives XXVIII, Business Scale in Relation to Economics, Prague, Czech Republic, 18–19 September 2019; pp. 218–225. [Google Scholar]
- Strzelecka, A. Determinanty Oszczędności Rolniczych Gospodarstw Domowych (Determinants of Farm Households Savings); Wydawnictwo Uczelniane Politechniki Koszalińskiej: Koszalin, Poland, 2019. [Google Scholar]
- Szafraniec-Siluta, E.; Zawadzka, D.; Strzelecka, A. Application of the logistic regression model to assess the likelihood of making tangible investments by agricultural enterprises. Procedia Comput. Sci. 2022, 207, 3894–3903. [Google Scholar] [CrossRef]
- Petrick, M. Farm Investment, Credit Rationing, and Governmentally Promoted Credit Access in Poland: A Cross-Sectional Analysis. Food Policy 2004, 29, 275–294. [Google Scholar] [CrossRef]
- Echevarria, C. A Three-Factor Agricultural Production Function: The Case of Canada. Int. Econ. J. 1998, 12, 63–75. [Google Scholar] [CrossRef]
- Zimon, G.; Sobolewski, M.; Lew, G. An Influence of Group Purchasing Organizations on Financial Security of SMEs Operating in the Renewable Energy Sector—Case for Poland. Energies 2020, 13, 2926. [Google Scholar] [CrossRef]
- Zawadzka, D.; Strzelecka, A. Efektywność finansowa ekologicznych gospodarstw rolnych—ujęcie porównawcze z uwzględnieniem kierunku produkcji. In Finansowanie i Standing Finansowy—Wybrane Zagadnienia; Bereżnicka., J., Wasilewski, M., Eds.; Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie: Warszawa, Poland, 2020; pp. 159–172. [Google Scholar]
- Carls, E.; Ibendahl, G.; Griffin, T.; Yeager, E. Factors Affecting Net Farm Income for Row Crop Production in Kansas. Am. Soc. Farm Manag. Rural Apprais. 2019, 47–53. [Google Scholar] [CrossRef]
- Gummi, U.M.; Mu’azu, A. Effect of Monetary and Non-monetary Factors on Rural Farmers’ Income in Wamakko Lga, Sokoto-Nigeria. Asian J. Rural Dev. 2019, 9, 1–5. [Google Scholar] [CrossRef]
- Kocsis, J.; Major, K.A. General Overview of Agriculture and Profitability in Agricultural Enterprises in Central Europe. In Managing Agricultural Enterprises; Bryła, P., Ed.; Palgrave Macmillan: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Średzińska, J. Determinants of the income of farms in EU countries. Stud. Oeconomica Posnaniensia 2018, 6, 54–65. [Google Scholar] [CrossRef]
- Beckman, J.; Schimmelpfennig, D. Determinants of farm income. Agric. Financ. Rev. 2015, 75, 385–402. [Google Scholar] [CrossRef]
- Strzelecka, A.; Zawadzka, D.; Kurdyś-Kujawska, A. Factors Affecting Incomes of Small Agricultural Holdings in Poland. In Proceedings of the 28th International Scientific Conference Agrarian Perspectives XXVIII, Business Scale in Relation to Economics, Prague, Czech Republic, 18–19 September 2019; pp. 289–295. [Google Scholar]
- Strzelecka, A.; Zawadzka, D. Does Production Specialization Have an Impact on the Financial Efficiency of Very Small Farms? In Proceedings of the 36th International Business Information Management Association (IBIMA), Granada, Spain, 4–5 November 2020; pp. 573–584, ISBN 978-0-9998551-5-7. [Google Scholar]
- Yang, D.; Liu, Z. Does farmer economic organization and agricultural specialization improve rural income? Evidence from China. Econ. Model. 2012, 29, 990–993. [Google Scholar] [CrossRef]
- Stępień, S.; Guth, M.; Smędzik-Ambroży, K. Rola wspólnej polityki rolnej w kreowaniu dochodów gospodarstw rolnych w Unii Europejskiej w kontekście zrównoważenia ekonomiczno-społecznego (The Role of the Common Agricultural Policy in Creating Agricultural Incomes in the European Union in the Context of Socio-Economic Sustainability). Zesz. Nauk. Szkoły Głównej Gospod. Wiej. W Warszawie. Probl. Rol. Swiat. (Probl. World Agric.) 2018, 18, 295–305. [Google Scholar] [CrossRef]
- Ściubeł, A. Produktywność czynników produkcji w rolnictwie Polski i w wybranych krajach Unii Europejskiej z uwzględnieniem płatności Wspólnej Polityki Rolnej (Productivity of production factors in Polish agriculture and in the selected European Union countries with regard to the Common Agricultural Policy payments). Zagadnienia Ekon. Rolnej (Probl. Agric. Econ.) 2021, 1, 46–58. [Google Scholar] [CrossRef]
- Szafraniec-Siluta, E.; Strzelecka, A.; Ardan, R.; Zawadzka, D. Application of factor analysis to reduce the dimensionality of the determinants of equity capital return on European Union farms. Procedia Comput. Sci. 2023, 225C, 4432–4441. [Google Scholar] [CrossRef]
- Rikkonen, P.; Makijarvi, E.; Ylatalo, M. Defining foresight activities and future strategies in farm management: Empirical results from Finnish FADN farms. Int. J. Agric. Manag. 2013, 3, 3–11. [Google Scholar]
- Stanisz, A. Przystępny kurs Statystyki z Zastosowaniem STATISTICA PL na Przykładach z Medycyny. Tom 3. Analizy Wielowymiarowe; Statsoft: Kraków, Poland, 2007; pp. 213–268. [Google Scholar]
- Ryś-Jurek, R. Family farm income and their production and economic determinants according to the economic size in the EU countries in 2004–2015. In Proceedings of the International Scientific Conference Economic Sciences for Agribusiness and Rural Economy, Warsaw, Poland, 7–8 June 2018. [Google Scholar]
- Kusz, B.; Kusz, D.; Bąk, I.; Oesterreich, M.; Wicki, L.; Zimon, G. Selected Economic Determinants of Labor Profitability in Family Farms in Poland in Relation to Economic Size. Sustainability 2022, 14, 13819. [Google Scholar] [CrossRef]
- Średzińska, J.; Standar, A. Wykorzystanie analizy czynnikowej do badania determinant dochodów gospodarstw rolnych (na przykładzie krajów Europy Środkowo-Wschodniej) (The use of factor analysis to study the determinants of farms’ income (on the example of Central and Eastern Europe countries)). Zesz. Nauk. Szkoły Głównej Gospod. Wiej. W Warszawie Ekon. Organ. Gospod. Żywnościowej 2017, 118, 5–17. [Google Scholar]
- Jiawei, H.; Kamber, M.; Pei, J. Data Mining. Concepts and Techniques, 3rd ed.; Morgan Kaufmann: Hawthorne, CA, USA, 2016. [Google Scholar] [CrossRef]
- Chen, S.; Desiderio, S. Factor analysis with a single common factor. MPRA Pap. 2018, 90426. Available online: https://mpra.ub.uni-muenchen.de/90426/ (accessed on 10 April 2023).
- Czopek, A. Analiza porównawcza efektywności metod redukcji zmiennych—Analiza składowych głównych i analiza czynnikowa (Comparative Analysis of Effectiveness of The Methods for Reduction of Variables—Principal Component Analysis and Factor Analysis). Stud. Ekon. 2013, 132, 7–23. [Google Scholar]
- Shrestha, N. Factor Analysis as a Tool for Survey Analysis. Am. J. Appl. Math. Stat. 2021, 9, 4–11. [Google Scholar] [CrossRef]
- Curran, P.J.; West, S.G.; Finch, J.F. The robustness of test statistics to nonnormality and specification error in con-firmatory factor analysis. Psychol. Methods 1996, 1, 16–29. [Google Scholar] [CrossRef]
- Costello, A.B.; Osborne, J.W. Best Practices in Exploratory Factor Analysis: Four Recommendations for Getting the Most From Your Analysis. Pract. Assess. Res. Eval. 2005, 10, 1–9. [Google Scholar]
- Bereżnicka, J.; Franc-Dąbrowska, J. Sources and Determinants of Cash Holdings in The Agriculture of Central and Eastern Europe Countries and The Perspective of The Financial Security of Polish Farms. Zesz. Nauk. SGGW Polityki Eur. Finans. Mark. 2022, 28, 7–21. [Google Scholar] [CrossRef]
- Soliwoda, M. Bezpieczeństwo finansowe gospodarstw rolniczych w Polsce z perspektywy Wspólnej Polityki Rolnej (The Financial Security of Farms in Poland From a Perspective of the Common Agricultural Policy). Wieś I Rol. 2014, 3, 45–55. [Google Scholar]
- Szafraniec-Siluta, E. Bezpieczeństwo finansowe przedsiębiorstw rolniczych w Polsce—Ujęcie porównawcze (Financial Safety of Agricultural Companies in Poland—Comparable presentation). Zarz. Finans. 2013, 11, 405–416. [Google Scholar]
- Bierlen, R.; Barry, P.J.; Dixon, B.L.; Ahrendsen, B.L. Credit Constraints, Farm Characteristics and the Arm Economy: Differential Impacts on Feeder Cattle and Beef Cow Inventories. Am. J. Agric. Econ. 1998, 80, 708–723. [Google Scholar] [CrossRef]
- Jackson, J.E. Oblimin Rotation; Wiley online Library: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Hair, J.S.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 2006. [Google Scholar]
- Franc-Dąbrowska, J.; Mądra-Sawicka, M.; Bereżnicka, J. Cost of Agricultural Business Equity Capital—A Theoretical and Empirical Study for Poland. Economies 2018, 6, 37. [Google Scholar] [CrossRef]
- Strzelecka, A.; Zawadzka, D. Savings as a Source of Financial Energy on the Farm—What Determines the Accumulation of Savings by Agricultural Households? Model Approach. Energies 2023, 16, 696. [Google Scholar] [CrossRef]
- Zinych, N.; Odening, M. Capital Market Imperfections in Economic Transition: Empirical Evidence From Ukrainian Agriculture. Agric. Econ. 2009, 40, 677–689. [Google Scholar] [CrossRef]
Variable Name | Description According to the FADN System | Explanation of Variables |
---|---|---|
Area | (SE025) Total utilized agricultural area (ha) | Total utilized agricultural area of holding. |
Inputs | (SE270) Total inputs (€) | Specific costs + overheads + depreciation + external factors. |
Taxes | (SE390) Taxes (€) | Farm taxes and other dues (not including VAT and the personal taxes of the holder) and taxes and other charges on land and buildings. |
NetIncome | (SE420) Farm net income (€) | Remuneration to fixed factors of production of the family (work, land, and capital) and remuneration to the entrepreneur’s risks (loss/profit) in the accounting year. |
FixedAssets | (SE441) Total fixed assets (€) | Agricultural land and farm buildings and forest capital + buildings + machinery and equipment + breeding livestock, intangible assets, and other non-current assets. Closing valuation. |
Livestock | (SE470) Non-breeding livestock (€) | Value at closing valuation of all livestock except breeding livestock (SE460). Closing valuation. |
Stock | (SE475) Stock of agricultural products (€) | Value at closing valuation of all crop and livestock products (except young plantations). |
CircCapital | (SE480) Other circulating capital (€) | Cash and other assets that can be easily converted to cash, short-term assets, amounts owed to the holding, normally arising from business activities, any other assets that are easily sold or expected to be paid within a year. Closing valuation. |
LoMeLoans | (SE490) Long- and medium-term loans (€) | Loans contracted for a period of more than one year. |
ShLoans | (SE495) Short-term loans (€) | Loans contracted for less than one year and outstanding cash payments. |
GrossInv | (SE516) Gross investment on fixed assets (€) | Purchases—sales of fixed assets + breeding livestock change in valuation. |
NetInv | (SE521) Net investment on fixed assets (€) | Gross investment on fixed assets—depreciation. |
CashFlow1 | (SE526) Cash flow 1 (€) | The holding’s capacity for saving and self-financing. |
CashFlow2 | (SE530) Cash flow 2 (€) | The holding’s capacity for saving and self-financing. |
Subsidies | (SE605) Total subsidies—excluding on investments (€) | Subsidies on current operations linked to production (not investments). Payments for cessation of farming activities are therefore not included. Entry in the accounts is generally on the basis of entitlement and not receipt of payment, with a view to obtaining coherent results (production/costs/subsidies) for a given accounting year. |
Size | (SE005) Economic size (€’000) | Economic size of holding expressed in 1000 euro of standard output (on the basis of the community typology). |
Labor | (SE010) Total labor input (AWU) | Total labor input of holding expressed in annual work units = full-time person equivalents. |
Year | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|---|---|
Data required to calculate the financial security ratio | ||||||||
(SE441) Total fixed assets (€) | 229,569 | 236,976 | 239,632 | 244,487 | 305,411 | 308,117 | 310,349 | 315,166 |
(SE465) Total current assets (€) | 52,362 | 55,851 | 57,583 | 59,725 | 79,273 | 85,781 | 93,180 | 105,258 |
(SE470) Non-breeding livestock (€) | 7281 | 7543 | 7 812 | 7797 | 9360 | 9859 | 9673 | 9787 |
(SE475) Stock of agricultural products (€) | 8184 | 8538 | 8125 | 8374 | 11,144 | 11,161 | 11,218 | 12,255 |
(SE485) Total liabilities (€) | 48,132 | 51,462 | 51,892 | 52,395 | 67,519 | 68,188 | 68,950 | 70,549 |
(SE495) Short-term loans (€) | 10,611 | 11,330 | 11,828 | 11,979 | 16,168 | 15,857 | 16,133 | 16,839 |
(SE501) Net worth (€) | 233,799 | 241,365 | 245,323 | 251,817 | 317,165 | 325,710 | 334,579 | 349,875 |
(SE420) Farm net income (€) | 17,053 | 17,427 | 18,006 | 21,026 | 25,063 | 27,365 | 27,000 | 32,685 |
(SE436) Total assets (€) | 281,931 | 292,827 | 297,215 | 304,212 | 384,685 | 393,898 | 403,529 | 420,424 |
Components of financial security ratio | ||||||||
Golden balance sheet rule | 1.02 | 1.02 | 1.02 | 1.03 | 1.04 | 1.06 | 1.08 | 1.11 |
Quick ratio | 3.48 | 3.51 | 3.52 | 3.64 | 3.63 | 4.08 | 4.48 | 4.94 |
Total liabilities to total assets | 0.17 | 0.18 | 0.17 | 0.17 | 0.18 | 0.17 | 0.17 | 0.17 |
Coverage of assets by net working capital | 0.15 | 0.15 | 0.15 | 0.16 | 0.16 | 0.18 | 0.19 | 0.21 |
Profitability of equity capital | 0.07 | 0.07 | 0.07 | 0.08 | 0.08 | 0.08 | 0.08 | 0.09 |
Financial security ratio | ||||||||
Financial security ratio | 4.55 | 4.58 | 4.60 | 4.73 | 4.74 | 5.23 | 5.66 | 6.19 |
Variable | All Types of Farms (All) | Crop Production (Crops) | Animal Production (Livestock) | ||||||
---|---|---|---|---|---|---|---|---|---|
Median | Mean | SD | Median | Mean | SD | Median | Mean | SD | |
Area | 28.17 | 61.11 | 106.4 | 14.22 | 38.28 | 64.34 | 46.52 | 71.08 | 101.6 |
Inputs | 74,571.0 | 167,813.4 | 287,241.4 | 45,494.5 | 107,927.6 | 153,254.4 | 128,599.0 | 218,837.9 | 322,144.1 |
Taxes | 886.0 | 1970.0 | 4700.5 | 793.0 | 1474.4 | 2337.5 | 1044.0 | 2253.1 | 5705.6 |
NetIncome | 25,511.0 | 36,360.9 | 44,922.3 | 22,232.0 | 30,402.9 | 32,566.8 | 30,975.0 | 46,625.8 | 59,319.5 |
FixedAssets | 222,845.0 | 395,021.0 | 562,297.5 | 174,097.0 | 282,500.8 | 351,866.0 | 302,491.0 | 480,929.7 | 650,514.7 |
Livestock | 3881.0 | 19,620.9 | 38,649.6 | 70.0 | 957.7 | 2761.0 | 24,578.0 | 38,318.6 | 51,267.1 |
Stock | 3668.0 | 16,583.4 | 44,778.5 | 2849.0 | 20,889.5 | 58,873.3 | 4050.0 | 10,889.3 | 22,082.4 |
CircCapital | 59,817.0 | 93,526.9 | 126,789.6 | 51,361.5 | 76,475.9 | 91,717.7 | 71,336.0 | 111,070.0 | 148,765.4 |
LoMeLoans | 14,856.0 | 98,324.2 | 257,034.7 | 8527.0 | 55,425.5 | 126,629.4 | 35,176.0 | 137,596.9 | 348,068.5 |
ShLoans | 4282.0 | 35,411.3 | 74,614.3 | 2614.5 | 25,311.7 | 46,166.3 | 7337.0 | 41,315.0 | 84,254.1 |
GrossInv | 8433.0 | 24,070.8 | 43,293.0 | 5624.5 | 16,633.4 | 26,155.6 | 14,078.0 | 29,105.5 | 47,656.9 |
NetInv | −632.0 | 3685.4 | 20,225.8 | −883.0 | 2105.8 | 14,618.1 | −284.0 | 4750.5 | 23,671.7 |
CashFlow1 | 38,455.0 | 53,958.9 | 54,992.0 | 30,634.5 | 43,277.4 | 41,234.9 | 49,305.0 | 67,418.3 | 65,892.0 |
CashFlow2 | 23,541.0 | 32,630.8 | 48,939.2 | 21,534.0 | 28,640.7 | 33,206.5 | 27,506.0 | 40,133.2 | 63,134.8 |
Subsidies | 12,186.0 | 24,818.9 | 43,093.4 | 6762.0 | 13,780.4 | 20,771.3 | 19,960.0 | 32,612.5 | 45,913.1 |
Size | 83.8 | 179.1 | 277.3 | 55.25 | 112.0 | 145.4 | 129.8 | 253.6 | 352.4 |
Labor | 1.69 | 2.321 | 2.394 | 1.63 | 2.208 | 1.657 | 1.8 | 2.408 | 2.675 |
Variable | All Types of Farms | Crops | Livestock |
---|---|---|---|
Area | 0.89 | 0.84 | 0.90 |
Inputs | 0.91 | 0.88 | 0.90 |
Taxes | 0.95 | 0.96 | 0.93 |
NetIncome | 0.73 | 0.73 | 0.76 |
FixedAssets | 0.92 | 0.86 | 0.92 |
Livestock | 0.86 | 0.93 | 0.88 |
Stock | 0.86 | 0.57 | 0.91 |
CircCapital | 0.96 | 0.91 | 0.95 |
LoMeLoans | 0.90 | 0.89 | 0.84 |
ShLoans | 0.94 | 0.90 | 0.93 |
GrossInv | 0.81 | 0.73 | 0.82 |
NetInv | 0.64 | 0.51 | 0.65 |
CashFlow1 | 0.82 | 0.76 | 0.85 |
CashFlow2 | 0.88 | 0.91 | 0.90 |
Subsidies | 0.89 | 0.85 | 0.88 |
Size | 0.93 | 0.90 | 0.94 |
Labor | 0.88 | 0.92 | 0.89 |
Variable | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 |
---|---|---|---|---|---|---|
Area | 0.883 | |||||
Inputs | 0.115 | 0.242 | 0.325 | 0.446 | ||
Taxes | 0.375 | 0.528 | 0.139 | |||
NetIncome | 0.927 | |||||
FixedAssets | 0.204 | 0.656 | 0.114 | |||
Livestock | 0.148 | 0.611 | ||||
Stock | 0.127 | 0.217 | −0.179 | 0.139 | 0.355 | |
CircCapital | 0.422 | 0.149 | 0.234 | 0.268 | ||
LoMeLoans | 0.942 | |||||
ShLoans | 0.158 | 0.29 | 0.112 | 0.526 | ||
GrossInv | 0.237 | 0.176 | 0.568 | 0.184 | ||
NetInv | 0.976 | |||||
CashFlow1 | 0.691 | 0.176 | 0.13 | 0.137 | ||
CashFlow2 | 0.828 | −0.151 | ||||
Subsidies | 0.933 | |||||
Size | 0.804 | 0.126 | ||||
Labor | 0.128 | −0.103 | 0.781 |
Variable | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 |
---|---|---|---|---|---|---|
Area | 0.979 | |||||
Inputs | 0.128 | 0.767 | 0.16 | |||
Taxes | 0.511 | 0.208 | 0.139 | 0.107 | 0.11 | |
NetIncome | 0.91 | 0.158 | ||||
FixedAssets | 0.891 | −0.122 | ||||
Livestock | 0.733 | |||||
Stock | 0.189 | −0.131 | 0.114 | 0.68 | ||
CircCapital | 0.114 | 0.569 | 0.149 | 0.233 | ||
LoMeLoans | 0.135 | 0.854 | 0.155 | |||
ShLoans | 0.237 | 0,.469 | 0.498 | |||
GrossInv | 0.193 | 0.234 | 0.155 | 0.644 | ||
NetInv | 0.926 | |||||
CashFlow1 | 0.715 | 0.201 | 0.114 | 0.167 | ||
CashFlow2 | 0.888 | −0.229 | ||||
Subsidies | 0.885 | |||||
Size | 0.113 | 0.708 | 0.157 | |||
Labor | −0.1 | 0.166 | 0.803 | −0.118 |
Variable | Factor 1 | Factor 2 | Factor 3 | Factor 4 |
---|---|---|---|---|
Area | −0.139 | 0.91 | ||
Inputs | 0.341 | 0.521 | 0.275 | 0.11 |
Taxes | 0.36 | 0.414 | ||
NetIncome | 0.949 | −0.146 | ||
FixedAssets | 0.175 | 0.109 | 0.677 | 0.104 |
Livestock | 0.679 | 0.125 | ||
Stock | 0.513 | 0.448 | ||
CircCapital | 0.709 | 0.344 | ||
LoMeLoans | 1.003 | |||
ShLoans | 0.615 | 0.272 | 0.119 | |
GrossInv | 0.382 | 0.151 | 0.632 | |
NetInv | 0.993 | |||
CashFlow1 | 0.826 | 0.145 | 0.124 | |
CashFlow2 | 0.844 | −0.136 | ||
Subsidies | 0.92 | |||
Size | 0.694 | 0.15 | 0.209 | |
Labor | 0.22 | 0.846 | −0.153 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szafraniec-Siluta, E.; Strzelecka, A.; Ardan, R.; Zawadzka, D. Determinants of Financial Security of European Union Farms—A Factor Analysis Model Approach. Agriculture 2024, 14, 119. https://doi.org/10.3390/agriculture14010119
Szafraniec-Siluta E, Strzelecka A, Ardan R, Zawadzka D. Determinants of Financial Security of European Union Farms—A Factor Analysis Model Approach. Agriculture. 2024; 14(1):119. https://doi.org/10.3390/agriculture14010119
Chicago/Turabian StyleSzafraniec-Siluta, Ewa, Agnieszka Strzelecka, Roman Ardan, and Danuta Zawadzka. 2024. "Determinants of Financial Security of European Union Farms—A Factor Analysis Model Approach" Agriculture 14, no. 1: 119. https://doi.org/10.3390/agriculture14010119
APA StyleSzafraniec-Siluta, E., Strzelecka, A., Ardan, R., & Zawadzka, D. (2024). Determinants of Financial Security of European Union Farms—A Factor Analysis Model Approach. Agriculture, 14(1), 119. https://doi.org/10.3390/agriculture14010119