Influence of Genotype on Meat Quality in Laying Hens after the Egg Production Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Animals
2.2. Carcass Analysis
2.3. Physicochemical Analysis
2.4. Sensory Evaluation
2.5. Meat Texture
2.6. Statistical Analysis
3. Results
3.1. Physicochemical Properties
3.2. Chemical Composition
3.3. Sensory Evaluation
3.4. Meat Texture
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shahbandeh, M. Egg Production Worldwide 1990–2021. 2023. Available online: https://www.statista.com/statistics/237632/production-of-meat-worldwide-since-1990/#statisticContainer (accessed on 1 January 2020).
- Agriculture. 2023. Available online: https://agriculture.ec.europa.eu/farming/animal-products/eggs_en#committees (accessed on 31 August 2023).
- KOWR. Krajowy Rynek Jaj Konsumpcyjnych. 2022. Available online: https://www.gov.pl/web/kowr (accessed on 31 August 2023).
- KRD. 2023. Available online: https://krd-ig.com.pl/dzial-hodowli-i-oceny-drobiu/wstawienia/ (accessed on 31 August 2023).
- Habig, C.; Geffers, R.; Distl, O. Differential Gene Expression from Genome-Wide Microarray Analyses Distinguishes Lohmann Selected Leghorn and Lohmann Brown Layers. PLoS ONE 2012, 7, e46787. [Google Scholar] [CrossRef] [PubMed]
- Lohmann Breeders, Zasady Prowadzenia Stada Zalecenia Chowu w Systemach Ściółkowych, Wolierowych Oraz z Wolnym Wybiegiem. 2020. Available online: https://lohmann-breeders.com/media/2020/08/LOHMANN_MG-AlternHaltung.pdf (accessed on 31 August 2023).
- Yu, W.; Field, C.J.; Wu, J. Purification and identification of anti-inflammatory peptides from spent hen muscle proteins hydrolysate. Food Chem. 2018, 253, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Shahbandeh, M. Global Production of Meat 2016–2023, by Type. 2023. Available online: https://www.statista.com/aboutus/our-research-commitment/1239/m-shahbandeh (accessed on 31 August 2023).
- Semwogerere, F.; Neethling, J.; Muchenje, V.; Hoffman, L.C. Meat quality, fatty acid profile, and sensory attributes of spent laying hens fed expeller press canola meal or a conventional diet. Poult. Sci. 2019, 98, 3557–3570. [Google Scholar] [CrossRef] [PubMed]
- Kokoszyński, D.; Bernacki, Z.; Stęczny, K.; Saleh, M.; Wasilewski, P.D.; Kotowicz, M.; Wasilewski, R.; Biegniewska, M.; Grzonkowska, K. Comparison of carcass composition, physicochemical and sensory traits of meat from spent broiler breeders with broilers. Europ. Poult. Sci. 2016, 80, 1–11. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Pateiro, M.; Rois, D.; Arias, A.; Justo, R.J.; López-Pedrouso, M.; Lorenzo, J.M.; Franco, D. Effect of breed and diet on carcass parameters and meat quality of spent hens. Ann. Anim. Sci. 2022, 22, 477–500. [Google Scholar] [CrossRef]
- Choe, J.; Kim, H.Y. Physicochemical characteristics of breast and thigh meats from old broiler breeder hen and old laying hen and their effects on quality properties of pressed ham. Poult. Sci. 2020, 99, 2230–2235. [Google Scholar] [CrossRef]
- Safder, M.; Temelli, F.; Ullah, A. Extraction, optimization, and characterization of lipids from spent hens: An unexploited sustainable bioresource. J. Clean. Prod. 2019, 206, 622–630. [Google Scholar] [CrossRef]
- Puchała, M.; Krawczyk, J.; Calik, J. Influence of origin of laying hens on the quality of their carcasses and meat after the first laying period. Ann. Anim. Sci. 2014, 14, 685–696. [Google Scholar] [CrossRef]
- Bhaskar Reddy, G.V.; Naga Mallika, E.; Obula Reddy, B.; Azad, S.; Maheswara Reddy, D. Comparison on meat quality characteristics of spent breeder, layer and broiler birds. Int. J. Sci. Environ. Technol. 2016, 5, 2590–2595. [Google Scholar]
- Ziołecki, J.; Doruchowski, W. Evaluation Methods of Poultry Slaughter Values, 1st ed.; Poultry Research Center: Poznan, Poland, 1989; pp. 1–23. [Google Scholar]
- Baryłko-Piekielna, N.; Matuszewska, I. Outline of Food Analysis; PTTZ: Warszawa, Poland, 2009; p. 367. [Google Scholar]
- Bourne, M.C. Food Texture and Viscosity Concept and Measurement; Academic Press: Cambridge, MA, USA, 1982. [Google Scholar] [CrossRef]
- Lachowicz, K. Maxwell’s Equations. Fish (Food)—Quality, Mathematical Models. Habilitation Thesis, University of Agriculture in Szczecin, Szczecin, Poland, 1992. [Google Scholar]
- Michalczuk, M.; Siennicka, A. Dietary properties of meat from various species of poultry kept in alternative breeding systems. Prze. Hod. 2010, 11, 26–30. [Google Scholar]
- Zdanowska-Sąsiadek, Ż.; Michalczuk, M.; Marcinkowska-Lesiak, M.; Damaziak, K. Factors shaping the sensory characteristics of poultry meat. Bromat. Chem. Toksykol. 2013, 3, 344–353. [Google Scholar]
- Chen, Y.; Qiao, Y.; Xiao, Y.; Chen, H.; Zhao, L.; Huang, M.; Zhou, G. Differences in physicochemical and nutritional properties of breast and thigh meat from crossbred chickens, commercial broilers, and spent hens. Asian-Australas. J. Anim. Sci. 2016, 29, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Sales, J. Effects of access to pasture on performance, carcass composition, and meat quality in broilers: A meta-analysis. Poult. Sci. 2014, 93, 1523–1533. [Google Scholar] [CrossRef] [PubMed]
- Sosnówka-Czajka, W.; Skomorucha, I.; Muchacka, R. Effect of organic production system on the performance and meat quality of two purebred slow-growing chicken breeds. Ann. Anim. Sci. 2017, 17, 1197–1213. [Google Scholar] [CrossRef]
- Castellini, C.; Dal Bosco, A.; Mugnai, C.; Bernardini, M. Performance and behavior of chickens with different growing rate reared according to the organic system. Ital. J. Anim. Sci. 2002, 1, 291–300. [Google Scholar] [CrossRef]
- Wegner, M.; Kokoszyński, D.; Zochowska-Kujawska, J.; Kotowicz, M. Effect of Genotype and Sex on chemical composition, physicochemical properties, texture and microstructure of spent broiler breeder meat. Agriculture 2023, 13, 1848. [Google Scholar] [CrossRef]
- Lambertz, C.; Wuthijaree, K.; Gauly, M. Performance, behavior, and health of male broilers and laying hens of 2 dual-purpose chicken genotypes. Poult. Sci. 2018, 97, 3564–3576. [Google Scholar] [CrossRef]
- Turgay-İzzetoğlu, G.; Cokgezme, O.F.; Döner, D.; Ersoy, C.; Çabas, B.M.; İçie, F. Cooking the chicken meat with moderate electric field: Rheological properties and image processing of microstructure. Food Bioproc. Technol. 2022, 15, 1082–1100. [Google Scholar] [CrossRef]
- Czyżak-Runowska, G.; Łyczyński, A.; Pospiech, E.; Koćwin-Podsiadła, M.; Wojtczak, J.; Rzosińska, E.; Mikołajczak, B.; Grześ, B.; Iwańska, E.; Krzęcio, E.; et al. Electrical conductivity as an indicator of pork meat quality. J. Cent. Eur. Agric. 2010, 11, 105–112. [Google Scholar] [CrossRef]
- Biegniewska, M.; Kokoszynski, D.; Bernacki, Z.; Saleh, M. Carcass composition, physico-chemical and sensory proper-ties of meat of cockerels and broiler breeder hens after reproductive cycle. Acta Sci. Pol. Zootech. 2017, 16, 31–38. [Google Scholar] [CrossRef]
- Nowak, M.; Trziszka, T. Consumer behaviour on the poultry meat market. Zywn. Nauk. Technol. Jakość. 2010, 1, 114–120. [Google Scholar] [CrossRef]
- Majewska, D.; Jakubowska, M.; Ligocki, M.; Tarasewicz, Z.; Szczerbińska, D.; Karamucki, T.; Sales, J. Physicochemical characteristics, proximate analysis and mineral composition of ostrich meat as influenced by muscle. Food Chem. 2009, 117, 207–211. [Google Scholar] [CrossRef]
- Pieterse, E.; Erasmus, S.W.; Uushona, T.; Hoffman, L.C. Black soldier fly (Hermetia illucens) pre-pupae meal as a dietary protein source for broiler production ensures a tasty chicken with standard meat quality for every pot. J. Sci. Food Agric. 2019, 99, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Makokha, M.P.; Muliro, P.S.; Ngoda, P.N.; Ghemoh, C.J.; Xavier, C.; Tanga, C.M. Nutritional quality of meat from hen fed diet with full-fat black soldier fly (Hermetia illucens) larvae meal as a substitute to fish meal. J. Funct. Foods 2023, 101, 105430. [Google Scholar] [CrossRef]
- Kokoszyński, D.; Zochowska-Kujawska, J.; Kotowicz, M.; Sobczak, M.; Piwczyński, D.; Stęczny, K.; Majrowska, M.; Saleh, M. Carcass characteristics and selected meat quality traits from commercial broiler chickens of different origin. J. Anim. Sci. 2022, 93, 13709. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Kuo, H.Y.; Wan, T.C. Effect of free-Range rearing on meat composition, physical properties and sensory evaluation in Taiwan game hens. Asian-Australas. J. Anim. Sci. 2014, 27, 880–885. [Google Scholar] [CrossRef] [PubMed]
- Komiyama, C.M.; Mendes, A.A.; Sanfelice, C.; Canizares, M.C.; Roca, R.O.; Takahashi, S.E.; Rodriguez, L.; Canizares, G.I.L.; Paz, I.C.L.A.; Cordoso, K.F.G. Physical, chemical and sensorial breast meat quality of spent hens. Cien. Rural. Santa Maria. 2010, 40, 1623–1629. [Google Scholar] [CrossRef]
- Lyon, C.E.; Lyon, B.G.; Savage, E.M. Effect of postchill deboning time on the texture profile of broiler breeder hen breast meat. J. Appl. Poult. Res. 2003, 12, 348–355. [Google Scholar] [CrossRef]
- Popova, T.; Petkov, E.; Ignatova, M.; Vlahova-Vangelova, D.; Balev, D.; Dragoev, S.; Kolev, N. Male layer-type chickens -an alternative source for high quality poultry meat: A review on the carcass composition, sensory characteristics and nutritional profile. Braz. J. Poult. Sci. 2022, 24, eRBCA-2021-1615. [Google Scholar] [CrossRef]
- Abdullah, Y.A.; Al-Beitawi, N.A.; Rjoup, M.M.S.; Qudsieh, R.I.; Ishmais, M.A.A. Growth performance, carcass and meat quality characteristics of different commercial crosses of broiler strains of chicken. J. Poult. Sci. 2010, 47, 13–21. [Google Scholar] [CrossRef]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef] [PubMed]
- Semwogerere, F.; Neethling, J.; Muchenje, V.; Hoffman, L.C. Effects of production systems on the carcass and meat quality characteristics of spent laying hens. Poult. Sci. 2018, 97, 1990–1997. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Jung, S.; Kim, H.J.; Bae, Y.S.; Yong, H.I.; Lee, J.H.; Kim, J.G.; Jo, C. Comparison of quality traits of meat from Korean native chickens and broilers used in two different traditional Korean cuisines. Asian-Australas. J. Anim. Sci. 2013, 26, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Hafid, K.; Gagaoua, M.; Boudechicha, H.R.; Rabah, S.N.; Ziane, F.; Sellama, M.; Becila, S.; Boudjella, A. A Comparison of the Carcass and Meat Quality of ISA (F15) Spent Hens Slaughtered at Two Different Ages. S. Am. J. Food Technol. 2016, 11, 134–142. [Google Scholar] [CrossRef]
Item | Lohmann Brown | Lohmann White | SEM | p Value | ||
---|---|---|---|---|---|---|
Genotype | Muscle | |||||
Acidity—pH24 | PM | 5.99 ± 0.2 | 6.03 ± 0.1 y | 0.1 | 0.643 | 0.001 |
LM | 6.13 ± 0.1 | 6.20 ± 0.2 | 0.1 | 0.168 | ||
Conductivity—EC24 (mS/cm) | PM | 11.8 ± 1.0 | 11.3 ± 1.0 y | 0.2 | 0.261 | <0.001 |
LM | 10.8 a ± 0.8 | 9.7 b ± 1.6 | 0.2 | 0.032 | ||
Lightness—L* | PM | 45.2 ± 2.5 | 45.0 ± 2.6 y | 0.5 | 0.877 | 0.018 |
LM | 42.4 ± 4.1 | 43.6 ± 3.0 | 0.7 | 0.381 | ||
Redness—a* | PM | 3.9 ± 1.5 | 4.6 ± 1.9 y | 0.3 | 0.324 | <0.001 |
LM | 11.8 ± 3.3 | 9.8 ± 4.6 | 0.9 | 0.204 | ||
Yellowness—b* | PM | 3.4 ± 1.7 | 3.7 ± 1.5 y | 0.3 | 0.660 | 0.009 |
LM | 5.6 ± 3.3 | 4.5 ± 4.6 | 0.5 | 0.244 |
Item | Lohmann Brown | Lohmann White | SEM | p Value | ||
---|---|---|---|---|---|---|
Genotype | Muscle | |||||
Protein, % | PM | 25.2 ± 0.4 | 25.1 ± 0.3 y | 0.1 | 0.410 | <0.001 |
LM | 19.6 a ± 0.3 | 19.0 b ± 0.8 | 0.1 | 0.049 | ||
Intramuscular fat, % | PM | 0.9 a ± 0.1 | 0.8 b ± 0.1 y | 0.1 | 0.005 | <0.001 |
LM | 8.6 b ± 1.4 | 9.9 a ± 1.3 | 0.3 | 0.028 | ||
Water, % | PM | 72.1 ± 0.3 | 71.9 ± 0.3 y | 0.1 | 0.097 | <0.001 |
LM | 68.7 a ± 1.2 | 67.5 b ± 1.3 | 0.3 | 0.020 | ||
Collagen, % | PM | 1.5 ± 0.2 | 1.4 ± 0.1 y | 0.1 | 0.190 | <0.001 |
LM | 2.0 ± 0.2 | 2.0 ± 0.2 | 0.1 | 0.394 |
Item | Lohmann Brown | Lohmann White | SEM | p Value | ||
---|---|---|---|---|---|---|
Genotype | Muscle | |||||
Macroelements (mg/100 g of meat) | ||||||
K—potasium | PM | 288.4 ± 29.3 | 276.3 ± 13.5 | 4.5 | 0.309 | 0.434 |
LM | 287.1 ± 28.1 | 295.1 ± 47.1 | 7.4 | 0.685 | ||
P—phosphorus | PM | 250.0 ± 14.9 | 238.6 ± 12.1 | 3.6 | 0.112 | 0.302 |
LM | 257.5 a ± 27.4 | 213.4 b ± 11.9 | 7.6 | 0.001 | ||
Na—sodium | PM | 54.2 ± 6.8 | 54.8 ± 7.6 y | 1.8 | 0.876 | <0.001 |
LM | 81.3 ± 12.2 | 80.1 ± 11.4 | 2.2 | 0.830 | ||
Mg—magnesium | PM | 26.8 ± 1.7 | 26.9 ± 1.1 y | 0.4 | 0.828 | <0.001 |
LM | 23.7 ± 2.1 | 23.3 ± 2.5 | 0.6 | 0.735 | ||
Ca—calcium | PM | 3.5 ± 1.0 | 3.3 ± 0.3 y | 0.2 | 0.446 | <0.001 |
LM | 5.0 ± 1.5 | 4.9 ± 0.7 | 0.3 | 0.823 | ||
Microelements (mg/100 g of meat) | ||||||
Fe—iron | PM | 0.428 b ± 0.09 | 0.532 a ± 0.13 y | 0.1 | 0.049 | <0.001 |
LM | 1.248 ± 0.30 | 1.370 ± 0.18 | 0.1 | 0.346 | ||
Zn—zinc | PM | 0.230 b ± 0.03 | 0.388 a ± 0.18 y | 0.1 | 0.035 | <0.001 |
LM | 1.541 ± 0.33 | 1.775 ± 0.33 | 0.1 | 0.181 | ||
Cu—copper | PM | 0.032 ± 0.01 | 0.033 ± 0.01 y | 0.1 | 0.757 | <0.001 |
LM | 0.071 ± 0.01 | 0.073 ± 0.01 | 0.1 | 0.753 | ||
Mn—manganese | PM | 0.010 ± 0.01 | 0.009 ± 0.01 y | 0.1 | 0.262 | <0.001 |
LM | 0.019 ± 0.01 | 0.022 ± 0.01 | 0.1 | 0.274 | ||
Cr—chrome | PM | 0.002 ± 0.01 | 0.002 ± 0.01 | 0.1 | 0.990 | 0.033 |
LM | 0.002 ± 0.01 | 0.003 ± 0.01 | 0.1 | 0.114 |
Item | Lohmann Brown | Lohmann White | SEM | p-Value | ||
---|---|---|---|---|---|---|
Genotype | Muscle | |||||
Tenderness, pts. | PM | 2.9 ± 0.2 | 2.8 ± 0.2 | 0.1 | 0.671 | 0.065 |
LM | 3.2 a ± 0.3 | 2.9 b ± 0.4 | 0.1 | 0.018 | ||
Juiciness, pts. | PM | 3.1 a ± 0.2 | 2.8 b ± 0.2 | 0.1 | 0.006 | 0.124 |
LM | 3.3 a ± 0.3 | 2.9 b ± 0.3 | 0.1 | 0.011 | ||
Aroma intensity, pts. | PM | 3.7 ± 0.3 | 3.8 ± 0.3 y | 0.1 | 0.568 | <0.001 |
LM | 3.3 ± 0.4 | 3.3 ± 0.2 | 0.1 | 0.905 | ||
Aroma desirability, pts. | PM | 3.0 b ± 0.2 | 3.2 a ± 0.2 | 0.1 | 0.018 | 0.199 |
LM | 3.1 ± 0.4 | 3.2 ± 0.4 | 0.1 | 0.591 | ||
Tastiness intensity, pts. | PM | 3.2 ± 0.3 | 3.1 ± 0.3 | 0.1 | 0.639 | 0.944 |
LM | 3.2 ± 0.4 | 3.1 ± 0.2 | 0.1 | 0.479 | ||
Tastiness desirability, pts. | PM | 2.8 ± 0.2 | 2.8 ± 0.2 y | 0.1 | 0.701 | <0.001 |
LM | 3.2 ± 0.2 | 3.1 ± 0.3 | 0.1 | 0.678 |
Item | Lohmann Brown | Lohmann White | SEM | p-Value |
---|---|---|---|---|
WB shear force (N) | 70.0 ± 16.2 | 71.4 ± 16.8 | 3.2 | 0.831 |
Hardness (N) | 32.9 ± 5.4 | 35.4 ± 5.9 | 1.1 | 0.277 |
Cohesiveness | 0.4 ± 0.1 | 0.4 ± 0.1 | 0.1 | 0.211 |
Springiness (cm) | 1.5 ± 0.1 | 1.4± 0.1 | 0.1 | 0.602 |
Chewiness (N × cm) | 18.6 ± 4.5 | 20.9 ± 5.1 | 0.9 | 0.229 |
Gumminess (N) | 12.8 ± 2.9 | 14.4 ± 3.7 | 0.7 | 0.236 |
Sum of elastic moduli (kPa) | 375.4 ± 63.3 | 351.7 ± 52.1 | 963.0 | 0.308 |
Sum of viscous moduli (kPa × s) | 17,795 ± 5439 | 15,906 ± 4329 | 11.4 | 0.308 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wegner, M.; Kokoszyński, D.; Kotowicz, M.; Żochowska-Kujawska, J.; Nędzarek, A.; Włodarczyk, K. Influence of Genotype on Meat Quality in Laying Hens after the Egg Production Season. Agriculture 2024, 14, 19. https://doi.org/10.3390/agriculture14010019
Wegner M, Kokoszyński D, Kotowicz M, Żochowska-Kujawska J, Nędzarek A, Włodarczyk K. Influence of Genotype on Meat Quality in Laying Hens after the Egg Production Season. Agriculture. 2024; 14(1):19. https://doi.org/10.3390/agriculture14010019
Chicago/Turabian StyleWegner, Marcin, Dariusz Kokoszyński, Marek Kotowicz, Joanna Żochowska-Kujawska, Arkadiusz Nędzarek, and Karol Włodarczyk. 2024. "Influence of Genotype on Meat Quality in Laying Hens after the Egg Production Season" Agriculture 14, no. 1: 19. https://doi.org/10.3390/agriculture14010019
APA StyleWegner, M., Kokoszyński, D., Kotowicz, M., Żochowska-Kujawska, J., Nędzarek, A., & Włodarczyk, K. (2024). Influence of Genotype on Meat Quality in Laying Hens after the Egg Production Season. Agriculture, 14(1), 19. https://doi.org/10.3390/agriculture14010019