Research and Experiment on Miss-Seeding Detection of Potato Planter Based on Improved YOLOv5s
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Dataset Construction and Division
2.3. Comparison of Attention Mechanisms
2.3.1. Principle of SENet Module
2.3.2. Principle of ECANet Module
2.3.3. Principle of CBAM Module
3. Algorithm Improvement
3.1. Overview of YOLOv5s Network
3.2. YOLOv5s Network Improvement
3.2.1. Introduction of Attention Mechanism
- YOLOv5s-SENet Network Design
- YOLOv5s-ECANet Network Design
- YOLOv5s-CBAM Network Design
3.2.2. Improved Non-Maximum Suppression
4. Experimental Results and Analysis
4.1. Experimental Platform
4.2. Model Training Parameters
4.3. Evaluation Metrics
4.4. Experimental Results and Analysis of Different Attention Mechanisms
4.5. Ablation Experiments
4.6. Comparison Experiments of Different Models
4.7. Experiment Result Presentation
4.8. Confidence Comparison Experiment
4.9. Discussion of Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, N.; Reidsma, P.; Pronk, A.A.; de Wit, A.; van Ittersum, M. Can potato add to China’s food self-sufficiency? The scope for increasing potato production in China. Eur. J. Agron. 2018, 101, 20–29. [Google Scholar] [CrossRef]
- Li, Y.; Tang, J.Z.; Wang, J.; Zhao, G.; Yu, Q.; Wang, Y.; Hu, Q.; Zhang, J.; Pan, Z.; Pan, X.; et al. Diverging water-saving potential across China’s potato planting regions. Eur. J. Agron. 2022, 134, 126450. [Google Scholar] [CrossRef]
- Li, Z.; Wen, X.; Lv, J.; Li, J.; Yi, S.; Qiao, D. Analysis and Prospect of Key Technologies and Equipment in Potato Planting Mechanization Research Progress. Trans. Chin. Soc. Agric. Mach. 2019, 50, 1–16. [Google Scholar]
- Zheng, Z.; Zhao, H.; Liu, Z.; He, J.; Liu, W. Research progress and development of mechanized potato planters: A review. Agriculture 2021, 11, 521. [Google Scholar] [CrossRef]
- Lei, X.; Zou, H.; Yang, Z.; Li, Y.; Gong, J.; Zheng, M.; Lei, Y.; Zhang, L.; Lv, X. Design and Experiment of Missed Seed Detection and Replanting System for Potato Planter. J. China Agric. Univ. 2022, 27, 234–244. [Google Scholar]
- Zhou, B.; Li, Y.; Zhang, C.; Cao, L.; Li, C.; Xie, S.; Niu, Q. Potato planter and planting technology: A review of recent developments. Agriculture 2022, 12, 1600. [Google Scholar] [CrossRef]
- Sun, W.; Wang, G.; Wu, J. Design and Experiment of Missed Seed Detection and Replanting System for Spoon-Chain Potato Seed Metering Device. Trans. Chin. Soc. Agric. Eng. 2016, 32, 8–15. [Google Scholar]
- Li, P.; Feng, W.; Zhang, X.; Zhong, W.; Wang, P.; Cui, J. Design and Research of Intelligent Potato Planter Based on Electric Drive. Agric. Mech. Res. 2024, 46, 101–106. [Google Scholar]
- Guan, H.; Li, J.; Wang, T. Research and Development of a Potato Planter Control System for Accelerated Replanting. Agric. Eng. 2021, 11, 44–49. [Google Scholar]
- Wang, G.; Yang, X.; Sun, W.; Liu, Y.; Wang, C.; Zhang, H.; Liu, X.; Feng, B.; Li, H. Potato seed-metering monitoring and improved miss-seeding catching-up compensation control system using spatial capacitance sensor. Int. J. Agric. Biol. Eng. 2024, 17, 255–264. [Google Scholar]
- Zhu, L.; Wang, G.; Sun, W.; Zhang, H.; Liu, X.; Feng, B.; Wang, C.; Sun, L. Development of a Potato Seed Metering Status Monitoring System Based on Spatial Capacitance Sensor. Trans. Chin. Soc. Agric. Eng. 2021, 37, 34–43. [Google Scholar]
- Liu, S.; Zhang, G.; Li, G.; Lv, Z. Design and Experiment of Automatic Replanting Device for Missed Potato Seed Detection. Agric. Equip. Veh. Eng. 2022, 44, 78–83. [Google Scholar]
- Qiu, Z.; Ma, T.; Jin, X.; Xing, F.; Ji, J.; Shi, G. Design and experiment of a situ compensation system for miss-seeding of spoon-chain potato seeders. Appl. Eng. Agric. 2023, 39, 69–79. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Ding, X.; Li, Q.; Cheng, Y.; Wang, J.; Bian, W.; Jie, B. Local keypoint-based Faster R-CNN. Appl. Intell. 2020, 50, 3007–3022. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Wang, G. Intelligent welding defect detection model on improved r-cnn. IETE J. Res. 2023, 69, 9235–9244. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, J.; Liu, H.; Han, Y.; Ai, H.; Dong, C.; Zhang, J.; Chu, Y. Weed identification in soybean seedling stage based on optimized Faster R-CNN algorithm. Agriculture 2023, 13, 175. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Z.; Liu, H.; Su, Y.; Deng, L. Strawberry R-CNN: Recognition and counting model of strawberry based on improved faster R-CNN. Ecol. Inform. 2023, 77, 102210. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, K.; Li, Y.; Wang, M.; Li, W. SSD-MSN: An improved multi-scale object detection network based on SSD. IEEE Access 2019, 7, 80622–80632. [Google Scholar] [CrossRef]
- Chen, C.; Zheng, Z.; Xu, T.; Guo, S.; Feng, S.; Yao, W.; Lan, Y. Yolo-based uav technology: A review of the research and its applications. Drones 2023, 7, 190. [Google Scholar] [CrossRef]
- Dai, G.; Hu, L.; Fan, J.; Yan, S.; Li, R. A deep learning-based object detection scheme by improving YOLOv5 for sprouted potatoes datasets. IEEE Access 2022, 10, 85416–85428. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, G.; Wang, Z.; Wang, H.; Li, E.; Liang, Z. Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Comput. Electron. Agric. 2019, 157, 417–426. [Google Scholar] [CrossRef]
- Swathi, Y.; Challa, M. YOLOv8: Advancements and Innovations in Object Detection. In International Conference on Smart Computing and Communication; Springer Nature: Singapore, 2024; pp. 1–13. [Google Scholar]
- Liu, Z.; Ning, J.; Cao, Y.; Wei, Y.; Zhang, Z.; Lin, S.; Hu, H. Video swin transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 3202–3211. [Google Scholar]
- Farman, H.; Ahmad, J.; Jan, B.; Shahzad, Y.; Abdullah, M.; Ullah, A. Efficientnet-based robust recognition of peach plant diseases in field images. Comput. Mater. Contin. 2022, 71, 2073–2089. [Google Scholar]
- Wang, W.; Wu, X.; Yuan, X.; Gao, Z. An experiment-based review of low-light image enhancement methods. IEEE Access 2020, 8, 87884–87917. [Google Scholar] [CrossRef]
- Li, R. Research on Dual Missed Seed Detection and Replanting Device Based on Fiber Optic Sensor and Machine Vision. Master’s Thesis, Shandong University of Technology, Zibo, China, 2022. [Google Scholar] [CrossRef]
- Niu, Z.; Zhong, G.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 2021, 452, 48–62. [Google Scholar] [CrossRef]
- Huang, Y.; Shi, P.; He, H.; He, H.; Zhao, B. Senet: Spatial information enhancement for semantic segmentation neural networks. Vis. Comput. 2024, 40, 3427–3440. [Google Scholar] [CrossRef]
- Xue, H.; Sun, M.; Liang, Y. ECANet: Explicit cyclic attention-based network for video saliency prediction. Neurocomputing 2022, 468, 233–244. [Google Scholar] [CrossRef]
- Liu, W.; Li, Z.; Zhang, S.; Qin, T.; Zhao, J. Bud-YOLOv8s: A Potato Bud-Eye-Detection Algorithm Based on Improved YOLOv8s. Electronics 2024, 13, 2541. [Google Scholar] [CrossRef]
- Ma, R.; Wang, J.; Zhao, W.; Guo, H.; Dai, D.; Yun, Y.; Li, L.; Hao, F.; Bai, J.; Ma, D. Identification of maize seed varieties using MobileNetV2 with improved attention mechanism CBAM. Agriculture 2022, 13, 11. [Google Scholar] [CrossRef]
- Jiang, T.; Li, C.; Yang, M.; Wang, Z. An improved YOLOv5s algorithm for object detection with an attention mechanism. Electronics 2022, 11, 2494. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, W.; Zhu, Q.; Shi, P. Face mask-wearing detection model based on loss function and attention mechanism. Comput. Intell. Neurosci. 2022, 2022, 2452291. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zeng, X.; Liu, S.; Mu, G.; Zhang, H.; Guo, Z. Detection Method of Potato Seed Bud Eye Based on Improved YOLO v5s. Trans. Chin. Soc. Agric. Mach. 2023, 54, 260–269. [Google Scholar]
- Feng, J.; Yu, C.; Shi, X.; Zheng, Z.; Yang, L.; Hu, Y. Research on winter jujube object detection based on optimized yolov5s. Agronomy 2023, 13, 810. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Luo, H.S.; Wang, D.Y.; Zhou, X.-G.; Li, W.-F.; Gu, C.-Y.; Zhang, G.; He, F.-M. Assessment of the levels of damage caused by Fusarium head blight in wheat using an improved YOLOV5 method. Comput. Electron. Agric. 2022, 198, 107086. [Google Scholar] [CrossRef]
Model | P/% | R/% | mAP/% |
---|---|---|---|
YOLOv5s | 96.02 | 96.31 | 99.12 |
YOLOv5s-SENet | 96.12 | 96.37 | 99.14 * |
YOLOv5s-ECANe | 96.51 | 96.42 | 99.17 * |
YOLOv5s-CBAM | 96.90 | 96.50 | 99.20 ** |
Test No. | Module Setting | P/% | R/% | mAP/% | |
---|---|---|---|---|---|
CBAM | Soft_NMS | ||||
I | - | - | 96.02 | 96.31 | 99.12 |
II | √ | - | 96.90 | 96.50 | 99.20 |
III | - | √ | 98.30 | 96.10 | 99.20 |
IV | √ | √ | 98.30 | 99.40 | 99.40 |
Parameters /×106 | Computation/GFLOPs | Model Size /M | mAP/% | |
---|---|---|---|---|
YOLOv3 | 61.53 | 193.89 | 120.5 | 97.35 |
YOLOv4 | 52.5 | 119.83 | 100.64 | 96.12 |
YOLOv5 | 20.9 | 48.0 | 42.2 | 98.24 |
YOLOv6s | 17.19 | 44.12 | 36.3 | 98.25 |
YOLOv7 | 36.49 | 103.5 | 74.8 | 99.43 |
YOLOv7-tiny | 6.01 | 13.1 | 12.3 | 99.35 |
Improved YOLOv5s | 7.02 | 10.8 | 13.4 | 99.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Liu, X.; Zhang, H.; Li, H.; Jia, S.; Sun, W.; Wang, G.; Feng, Q.; Yang, S.; Xing, W. Research and Experiment on Miss-Seeding Detection of Potato Planter Based on Improved YOLOv5s. Agriculture 2024, 14, 1905. https://doi.org/10.3390/agriculture14111905
Li H, Liu X, Zhang H, Li H, Jia S, Sun W, Wang G, Feng Q, Yang S, Xing W. Research and Experiment on Miss-Seeding Detection of Potato Planter Based on Improved YOLOv5s. Agriculture. 2024; 14(11):1905. https://doi.org/10.3390/agriculture14111905
Chicago/Turabian StyleLi, Hongling, Xiaolong Liu, Hua Zhang, Hui Li, Shangyun Jia, Wei Sun, Guanping Wang, Quan Feng, Sen Yang, and Wei Xing. 2024. "Research and Experiment on Miss-Seeding Detection of Potato Planter Based on Improved YOLOv5s" Agriculture 14, no. 11: 1905. https://doi.org/10.3390/agriculture14111905
APA StyleLi, H., Liu, X., Zhang, H., Li, H., Jia, S., Sun, W., Wang, G., Feng, Q., Yang, S., & Xing, W. (2024). Research and Experiment on Miss-Seeding Detection of Potato Planter Based on Improved YOLOv5s. Agriculture, 14(11), 1905. https://doi.org/10.3390/agriculture14111905