Identifying Changes and Their Drivers in Paddy Fields of Northeast China: Past and Future
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. MODIS Data
2.2.2. Meteorological Data
2.2.3. CMIP6 Data
2.3. Methods
2.3.1. MODIS Data Preprocessing
2.3.2. Land Use Classification Method
- (1)
- Water. The reflectance of the water land type in band 6 on 2 June and 8 October was significantly different than the reflectance of the other land types in band 6. The water body on 8 October was not yet frozen, the surface was not covered by aquatic vegetation, and the water body was clearly visible. Water bodies were extracted using band 6 > 1000 on 2 June and band 6 > 1000 on 8 October.
- (2)
- Woodland. The EVI for woodland differed significantly from that of the other land types on 25 May and 2 June. Woodland was extracted based on EVI > 0.44 on 25 May or EVI > 0.48 on 2 June.
- (3)
- Unused land. Unused land has no surface cover, high surface albedo year-round, and low vegetation and moisture indices. It was extracted using a band 6 > 4000 on 7 April, EVI < 0.379 on 12 July, EVI < 0.3488 on 28 July and LSWI < −0.03.
- (4)
- Paddy field. Referring to Google Maps images from 2000 to 2010, paddy fields were jointly discriminated using band 6 on 2 June and LSWI on 28 July with threshold conditions of <1600 and >0.3, respectively.
- (5)
- Construction land. The LSWI on 7 April, NDVI on 28 July, LSWI on 8 October, and band 6 on 24 October were used to identify construction land, with values ranging from −0.15 to −0.02, 0.1 to 0.5, −0.1 to 0.1, and 1000 to 2600, respectively.
- (6)
- Dry field. The LSWI and EVI time series curves of the dry fields were significantly different from those of the grasslands, which were extracted according to the maximum likelihood method.
- (7)
- Grassland. The remaining pixels were classified as grassland.
2.3.3. Classification Accuracy Verification
2.3.4. Paddy Field Centroid
2.3.5. Quantifying the Impact of Drivers of Paddy Field Area Change
2.3.6. Climate Change Analysis
3. Results and Discussion
3.1. Land Use Classification and Accuracy Verification
3.2. Spatiotemporal Changes in Paddy Fields
3.3. Drivers of Paddy Field Change
3.4. Prediction of Future Paddy Fields Under Future Climate Scenarios
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valbuena, D.; Verburg, P.H.; Bregt, A.K. A method to define a typology for agent-based analysis in regional land-use research. Agric. Ecosyst. Environ. 2008, 128, 27–36. [Google Scholar] [CrossRef]
- Yan, D.; Schneider, U.A.; Schmid, E.; Huang, H.Q.; Pan, L.; Dilly, O. Interactions between land use change, regional development, and climate change in the Poyang Lake district from 1985 to 2035. Agric. Syst. 2013, 119, 10–21. [Google Scholar] [CrossRef]
- Deng, G.; Jiang, H.; Zhu, S.; Wen, Y.; He, C.; Wang, X.; Sheng, L.; Guo, Y.; Cao, Y. Projecting the response of ecological risk to land use/land cover change in ecologically fragile regions. Sci. Total Environ. 2024, 914, 169908. [Google Scholar] [CrossRef] [PubMed]
- Lang, Y.; Song, W. Quantifying and mapping the responses of selected ecosystem services to projected land use changes-ScienceDirect. Ecol. Indic. 2019, 102, 186–198. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Lambin, E.F.; Erb, K. Globalization of land use: Distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 2013, 5, 438–444. [Google Scholar] [CrossRef]
- Deng, L.; Liu, G.; Shangguan, Z. Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: A synthesis. Glob. Change Biol. 2014, 20, 3544–3556. [Google Scholar] [CrossRef]
- Xiang, X.; Zhai, Z.; Fan, C.; Ding, Y.; Ye, L.; Li, J. Modelling future land use land cover changes and their impacts on urban heat island intensity in Guangzhou China. J. Environ. Manag. 2024, 366, 121787. [Google Scholar] [CrossRef]
- Hu, X.; Chen, M.; Liu, D.; Li, D.; Jin, L.; Liu, S.; Cui, Y.; Dong, B.; Khan, S.; Luo, Y. Reference evapotranspiration change in Heilongjiang Province, China from 1951 to 2018: The role of climate change and rice area expansion. Agric. Water Manag. 2021, 253, 106912. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Y.; Lu, X. Spatio-temporal evolution and optimization regionalization of trade-off and synergy of land use functions in ecologically fragile and poverty areas: A case study of Zhangjiakou City. Econ. Geography 2021, 41, 181–190, (In Chinese with English Abstract). [Google Scholar]
- Xiao, X.; Boles, S.; Frolking, S. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Liu, Y. Spatial shifts in grain production increases in China and implications for food security. Land Use Policy 2018, 74, 204–213. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, X.; Wei, B.; Luo, Z.; Wang, Z.; Chen, C. Assessing landscape ecological risk in the Southern Hill and Mountain Belt of China: A 30-year analysis and future projection. Ecol. Indic. 2024, 166, 112283. [Google Scholar] [CrossRef]
- Wang, B.; Oguchi, T.; Liang, X. Evaluating future habitat quality responding to land use change under different city compaction scenarios in Southern China. Cities 2023, 140, 104410. [Google Scholar] [CrossRef]
- Hu, J.; Wu, Y.; Wang, L.; Sun, P.; Zhao, F.; Jin, Z.; Wang, Y.; Lian, Y. Impacts of land-use conversions on the water cycle in a typical watershed in the southern Chinese Loess Plateau. J. Hydrol. 2021, 593, 125741. [Google Scholar] [CrossRef]
- Xia, T.; Wu, W.; Zhou, Q. Spatio-temporal changes in the rice planting area and their relationship to climate change in Northeast China: A model-based analysis. J. Integr. Agric. 2014, 13, 1575–1585. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Liu, Z. Effects of climate change on paddy expansion and potential adaption strategies for sustainable agriculture development across Northeast China. Appl. Geogr. 2022, 141, 102667. [Google Scholar] [CrossRef]
- Cao, D.; Feng, J.; Bai, L.; Xun, L.; Jing, H.; Sun, J.; Zhang, J. Delineating the rice crop activities in Northeast China through regional parametric synthesis using satellite remote sensing time-series data from 2000 to 2015. J. Integr. Agric. 2021, 20, 424–437. [Google Scholar] [CrossRef]
- Xin, F.; Xiao, X.; Dong, J.; Zhang, G.; Zhang, Y.; Wu, X.; Li, X.; Zou, Z.; Ma, J.; Du, G.; et al. Large increases of paddy rice area, gross primary production, and grain production in Northeast China during 2000–2017. Sci. Total Environ. 2020, 711, 135183. [Google Scholar] [CrossRef]
- Tong, C.; Hall, C.A.; Wang, H. Land use change in rice, wheat and maize production in China (1961–1998). Agric. Ecosyst. Environ. 2003, 95, 523–536. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Y.; Chen, Y. Land cover changes during agrarian restructuring in Northeast China. Appl. Geogr. 2006, 26, 312–322. [Google Scholar] [CrossRef]
- Tian, J.; Wang, B.; Zhang, C.; Li, W.; Wang, S. Mechanism of regional land use transition in underdeveloped areas of China: A case study of Northeast China. Land Use Policy 2020, 94, 104538. [Google Scholar] [CrossRef]
- Yang, F.Y.; Zheng, Q.H.; Luo, J.M. Practical Agrometeorological Indicators; China Meteorological Press: Beijing, China, 2015; (In Chinese with English Abstract). [Google Scholar]
- García-Álvarez, D.; Olmedo, M.T.C.; Delden, H.V.; Mas, J.F.; Paegelow, M. Comparing the structural uncertainty and uncertainty management in four common Land Use Cover Change (LUCC) model software packages. Environ. Modell. Softw. 2022, 153, 105411. [Google Scholar] [CrossRef]
- Wang, H.; Stephenson, S.R.; Qu, S. Modeling spatially non-stationary land use/ cover change in the lower Connecticut River Basin by combining geographically weighted logistic regression and the CA-Markov model. Int. J. Geogr. Inf. Sci. 2019, 33, 1313–1334. [Google Scholar] [CrossRef]
- Mahiny, A.S.; Clarke, K.C. Simulating hydrologic impacts of urban growth using SLEUTH, multi criteria evaluation and runoff modeling. J. Environ. Inf. 2013, 22, 27–38. [Google Scholar] [CrossRef]
- Saxena, A.; Jat, M.K. Land suitability and urban growth modeling: Development of SLEUTH-Suitability. Comput. Environ. Urban Syst. 2020, 81, 101475. [Google Scholar] [CrossRef]
- Li, X.; Lin, J.; Chen, Y.; Liu, X.; Ai, B. Calibrating cellular automata based on landscape metrics by using genetic algorithms. Int. J. Geogr. Inf. Sci. 2013, 27, 594–613. [Google Scholar] [CrossRef]
- Aburas, M.M.; Ho, Y.M.; Ramli, M.F.; Ashaari, Z.H. Improving the capability of an integrated CA-Markov model to simulate spatio-temporal urban growth trends using an Analytical Hierarchy Process and Frequency Ratio. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 65–78. [Google Scholar] [CrossRef]
- Yue, W.; Qin, C.; Su, M.; Teng, Y.; Xu, C. Simulation and prediction of land use change in Dongguan of China based on ANN cellular automata-Markov chain model. Environ. Sustain. Indic. 2024, 22, 100355. [Google Scholar] [CrossRef]
- Liu, X.P.; Liang, X.; Li, X.; Xu, X.C.; Ou, J.P.; Chen, Y.M.; Li, S.Y.; Wang, S.J.; Pei, F.S. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Saeedi, S. Integrating macro and micro scale approaches in the agent-based modeling of residential dynamics. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 214–229. [Google Scholar] [CrossRef]
- Basse, R.M.; Omrani, H.; Charif, O.; Gerber, P.; Bódis, K. Land use changes modelling using advanced methods: Cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale. Appl. Geogr. 2014, 53, 160–171. [Google Scholar] [CrossRef]
- Tong, X.; Feng, Y. A review of assessment methods for cellular automata models of land-use change and urban growth. Int. J. Geogr. Inf. Sci. 2020, 34, 866–898. [Google Scholar] [CrossRef]
- Hu, Y.; Fan, L.; Liu, Z.; Yu, Q.; Liang, S.; Chen, S.; You, L.; Wu, W.; Yang, P. Rice production and climate change in Northeast China: Evidence of adaptation through land use shifts. Environ. Res. Lett. 2019, 14, 024014. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook; Statistics Press: Beijing, China, 2023. (In Chinese) [Google Scholar]
- Salma, S.; Keerthana, N.; Dodamani, B.M. An optimum datasets analysis for monitoring crops using remotely sensed Sentinel-1A SAR data. Int. J. Remote Sens. 2023, 44, 4372–4391. [Google Scholar] [CrossRef]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R.; et al. Greenness in semi-arid areas across the globe 1981–2007:an Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Gimenez, R.; Laloue, A.; Fabre, S. Rejection methods for vegetation mapping using hyperspectral airborne data. Int. J. Remote Sens. 2023, 44, 4937–4962. [Google Scholar] [CrossRef]
- Simonneaux, V.; Duchemin, B.I.T.; Helson, D. The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco. Int. J. Remote Sens. 2008, 29, 95–116. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Cao, X.; Wang, Y.; Zhang, W.; Cheng, X. A review of regional and Global scale Land Use/Land Cover (LULC) mapping products generated from satellite remote sensing. Isprs. J. Photogramm. 2023, 206, 311–334. [Google Scholar] [CrossRef]
- Tucker, C.J.; Townshend, J.R.G. African land cover classification using satellite data. Science 1985, 227, 369–375. [Google Scholar] [CrossRef]
- Lu, M.; Chen, J.; Tang, H.; Rao, Y.; Yang, P.; Wu, W. Land cover change detection by integrating object-based data blending model of Landsat and MODIS. Remote Sens. Environ. 2016, 184, 374–386. [Google Scholar] [CrossRef]
- Buchner, J.; Yin, H.; Frantz, D.; Kuemmerle, T.; Askerov, E.; Bakuradze, T.; Bleyhl, B.; Elizbarashvili, N.; Komarova, A.; Lewińska, K.E.; et al. Land-cover change in the Caucasus Mountains since 1987 based on the topographic correction of multi-temporal Landsat composites. Remote Sens. Environ. 2020, 248, 111967. [Google Scholar] [CrossRef]
- Piedelobo, L.; Hernández-López, D.; Ballesteros, R.; Chakhar, A.; Pozo, S.D.; González-Aguilera, D.; Moreno, M.A. Scalable pixel-based crop classification combining Sentinel-2 and Landsat-8 data time series: Case study of the Duero river basin. Agric. Syst. 2019, 171, 36–50. [Google Scholar] [CrossRef]
- Zeng, T.; Zhang, Z.; Zhao, X.; Wang, X.; Zuo, L. Evaluation of the 2010 MODIS collection 5.1 land cover type product over China. Remote Sens. 2015, 7, 1981–2006. [Google Scholar] [CrossRef]
- Ba, S.; Wang, W.J.; Sun, H.; Bao, S.G.; Zhang, H.; He, H.S. The cooling and warming effects of potential forest transition on local land surface temperature in Northeast China. Ecol. Indic. 2024, 159, 111645. [Google Scholar] [CrossRef]
- Luo, C.; Zhang, W.; Meng, X.; Yu, Y.; Zhang, X.; Liu, H. Mapping the soil organic matter content in Northeast China considering the difference between dry lands and paddy fields. Soil Tillage Res. 2024, 244, 106270. [Google Scholar] [CrossRef]
- Zhao, W.; Hu, W.; Zhang, F.; Shi, Y.; Wang, Y.; Zhang, X.; Feng, T.; Hong, Z.; Jiang, J.; Xu, R. Exchangeable acidity characteristics of farmland black soil in northeast China. Geoderma Reg. 2024, 38, e00852. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, H.; Wang, C.; Li, W.; Chen, H.; Deng, C. Changes in reference evapotranspiration over Northwest China from 1957 to 2018: Variation characteristics, cause analysis and relationships with atmospheric circulation. Agric. Water Manag. 2020, 231, 105958. [Google Scholar] [CrossRef]
- Lin, P.F.; He, Z.B.; Du, J.; Chen, L.F.; Zhu, X.; Li, J. Impacts of climate change on reference evapotranspiration in the Qilian Mountains of China: Historical trends and projected changes. Int. J. Climatol. 2018, 38, 2980–2993. [Google Scholar] [CrossRef]
- Meehl, G.A.; Boer, G.J. Intercomparison makes for a better climate model. Eos. Trans.Am. Geophys. Union 1997, 78, 445–451. [Google Scholar] [CrossRef]
- He, X.; Jiang, C.; Wang, J.; Wang, X. Comparison of CMIP6 and CMIP5 models performance in simulating temperature in Northeast China. Chinese. J. Geophys.-Chin. 2022, 202, 4194–4207, (In Chinese with English Abstract). [Google Scholar]
- He, C.; Luo, C.; Chen, F.; Long, A.; Tang, H. Prediction of future climate change in Hotan River Basin Basedon CMIP6 multi model. Earth Sci. Front. 2023, 30, 1–14, (In Chinese with English Abstract). [Google Scholar]
- Li, H.; Sheffield, J.; Wood, E.F. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res. Atmos. 2010, 2010, 115. [Google Scholar] [CrossRef]
- Gong, P. Vegetation Classification Based on Phenology Indices Derived from MODIS Data in Northeastern China. Resour. Sci. 2010, 2010, 1154–1160. [Google Scholar]
- Chen, Y.; Li, D.; Li, Z.; Chen, M.; Cui, Y.; Luo, Y. Rice planting area extraction based on multi-temporal MODIS images in Heilongjiang Province of China. Trans. Chin. Soc. Agric. Eng. 2020, 36, 201–208, (In Chinese with English Abstract). [Google Scholar]
- Sun, Y.; Yang, X.; Wang, X. Land use classification based on decision tree using MODIS data. Resour. Sci. 2007, 29, 169–174, (In Chinese with English Abstract). [Google Scholar]
- Liu, J.; Li, L.; Huang, X. Mapping paddy rice in Jiangsu province, China, based on phenological parameters and a decision tree model. Front. Earth Sci. 2019, 13, 111–123. [Google Scholar] [CrossRef]
- Otukei, J.R.; Blaschke, T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int. J. Appl. Earth Obs. 2010, 12, S27–S31. [Google Scholar] [CrossRef]
- Shivakumar, B.R.; Rajashekararadhya, S.V. Investigation on Land Cover Mapping Capability of Maximum Likelihood Classifier: A Case Study on North Canara, India. Procedia Comput. Sci. 2018, 143, 579–586. [Google Scholar] [CrossRef]
- Neinavaz, E.; Andrew, K.; Skidmore, A.; Roshanak, D. Effects of prediction accuracy of the proportion of vegetation cover on land surface emissivity and temperature using the NDVI threshold method. Int. J. Appl. Earth Obs. 2020, 85, 101984. [Google Scholar] [CrossRef]
- Shao, Q.; Zhang, W.; Cao, X.; Yang, J.; Yin, J. Threshold and moderating effects of land use on metro ridership in Shenzhen: Implications for TOD planning. J. Transp. Geogr. 2020, 89, 102878. [Google Scholar] [CrossRef]
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Li, W. Applied Linear Statistical Models, 5th ed.; McGraw-Hill Irwin: New York, NY, USA, 2005. [Google Scholar]
- Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers, 7th ed.; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- Peng, D.; Huete, A.R.; Huang, J. Detection and estimation of mixed paddy rice cropping patterns with MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 13–23. [Google Scholar] [CrossRef]
- Fathololoumi, S.; Firozjaei, M.K.; Li, H.; Biswas, A. Surface biophysical features fusion in remote sensing for improving land crop/cover classification accuracy. Sci. Total Environ. 2022, 838, 156520. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Lu, Z.; Li, S.; Lei, Y.; Chu, Q.; Yin, X.; Chen, F. Large-scale and high-resolution crop mapping in China using Sentinel-2 satellite imagery. Agriculture 2020, 10, 433. [Google Scholar] [CrossRef]
- Liu, W.; Dong, J.; Du, G.; Zhang, G.; Hao, Z.; You, N.; Zhao, G.; Flynn, K.; Yang, T.; Zhou, Y. Biophysical effects of paddy rice expansion on land surface temperature in Northeastern Asia. Agric. For. Meteorol. 2022, 315, 108820. [Google Scholar] [CrossRef]
- Wang, X.; Li, T.; Yang, X.; Zhang, T.; Liu, Z.; Guo, E.; Lai, Y. Rice yield potential, gaps and constraints during the past three decades in a climate-changing Northeast China. Agric. For. Meteorol. 2018, 259, 173–183. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Y. Climate warming and land use change in Heilongjiang Province, Northeast China. Appl. Geogr. 2011, 31, 476–482. [Google Scholar] [CrossRef]
- Yun, Y.R.; Fang, X.Q.; Qiao, D.F.; Wang, Y. Main grain crops structure change in Heilongjiang Province of China in the past 20 years. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS’05, Seoul, Republic of Korea, 29 July 2005; Volume 4, pp. 2858–2861. [Google Scholar]
- Wang, B.; Zhang, M.; Wei, J.; Wang, S.; Li, X.; Li, S.; Zhao, A.; Li, X.; Fan, J. Changes in extreme precipitation over Northeast China, 1960–2011. Quatern. Int. 2013, 298, 177–186. [Google Scholar] [CrossRef]
- Wang, W.; Yin, S.; Yu, J.; He, Z.; Xie, Y. Long-term trends of precipitation and erosivity over Northeast China during 1961–2020. Int. Soil Water Conserv. Res. 2023, 11, 743–754. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, J.; Dai, C.; Zhang, G.; Wu, Y. Sustainable development of groundwater resources under the large-scale conversion of dry land into rice fields. Agric. Water Manag. 2024, 298, 108851. [Google Scholar] [CrossRef]
- Lu, Z.; Song, Q.; Liu, K.; Wu, W.; Liu, Y.; Xin, R.; Zhang, D. Rice cultivation changes and its relationships with geographical factors in Heilongjiang Province, China. J. Integr. Agric. 2017, 16, 2274–2282. [Google Scholar] [CrossRef]
- Yan, F.; Yu, L.; Yang, C.; Zhang, S. Paddy field expansion and aggregation since the mid-1950s in a cold region and its possible causes. Remote Sens. 2018, 10, 384. [Google Scholar] [CrossRef]
- Huang, P.; Xie, H.; Yang, Y.; Hu, X.; Liu, C.; Xu, Y.; Song, C.; Dai, C.; Khan, S.; Cui, Y.; et al. Spatiotemporal variation in rice water requirements and area in the cold rice cultivation region of China: Past and Future. Agric. Water Manag. 2024, 298, 108858. [Google Scholar] [CrossRef]
- Sudu, B.; Li, K.; Guga, S.; Gele, T.; Zhi, F.; Guo, Y.; Wei, S.; Rong, G.; Bao, Y.; Liu, X.; et al. Index construction and real-time hazard assessment of rice sterile-type chilling injury process in Northeast China. Agric. For. Meteorol. 2024, 353, 110070. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Song, G. Spatial-temporal variations and driving factor analysis of paddy fields in typical regions of Sanjiang Plain. Trans. Chin. Soc. Agric. Eng. 2019, 35, 244–252, (In Chinese with English Abstract). [Google Scholar]
- Chen, H.; Meng, F.; Yu, Z.; Tan, Y. Spatial–temporal characteristics and influencing factors of farmland expansion in different agricultural regions of Heilongjiang Province, China. Land Use Policy 2022, 115, 106007. [Google Scholar] [CrossRef]
- Pan, T.; Du, G.; Dong, J.; Kuang, W.; De Maeyer, P.; Kurban, A. Divergent changes in cropping patterns and their effects on grain production under different agro-ecosystems over high latitudes in China. Sci. Total Environ. 2019, 659, 314–325. [Google Scholar] [CrossRef]
- Hansen, J.; Fuller, F.; Gale, F.; Crook, F.; Wailes, E.; Moore, M. China’s Japonica Rice Market: Growth and Competitiveness. In Rice Situation and Outlook Yearbook; Economic Research Service: Washington, DC, USA, 2001. [Google Scholar]
- Li, Z.; Liu, Z.; Anderson, W.; Yang, P.; Wu, W.; Tang, H.; You, L. Chinese rice production area adaptations to climate changes, 1949–2010. Environ. Sci. Technol. 2015, 49, 2032–2037. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Yang, P.; Chen, Z.; Liu, Z. The impact of climate change on rice spatial distribution in the Northeast China Plain. In Proceedings of the 2012 IEEE First International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shanghai, China, 2–4 August 2012; pp. 1–4. [Google Scholar]
- Song, Y.; Wang, C.; Linderholm, H.W.; Fu, Y.; Cai, W.; Xu, J.; Zhuang, L.; Wu, M.; Shi, Y.; Wang, G.; et al. The negative impact of increasing temperatures on rice yields in southern China. Sci. Total Environ. 2022, 820, 153262. [Google Scholar] [CrossRef]
- Li, W.; Chen, S.; Yang, H. Temperature conditions and rice planting in the Hongxinglong area of Heilongjiang reclamation area. Mod. Agric. 2004, 2004, 1–3. (In Chinese) [Google Scholar]
Year | Producer Accuracy | Overall Accuracy/% | Kappa Coefficient | ||||||
---|---|---|---|---|---|---|---|---|---|
Paddy Field | Dry Field | Grassland | Unused Land | Water | Woodland | Construction Land | |||
2000 | 0.907 | 0.881 | 0.841 | 0.786 | 0.865 | 0.923 | 0.863 | 86.0 | 0.813 |
2001 | 0.915 | 0.873 | 0.822 | 0.741 | 0.906 | 0.913 | 0.827 | 85.6 | 0.809 |
2002 | 0.885 | 0.885 | 0.785 | 0.784 | 0.875 | 0.909 | 0.841 | 84.3 | 0.797 |
2003 | 0.917 | 0.884 | 0.849 | 0.835 | 0.827 | 0.916 | 0.822 | 84.9 | 0.802 |
2004 | 0.874 | 0.831 | 0.745 | 0.721 | 0.844 | 0.898 | 0.833 | 83,9 | 0.788 |
2005 | 0.931 | 0.897 | 0.863 | 0.771 | 0.891 | 0.934 | 0.785 | 86.4 | 0.816 |
2006 | 0.884 | 0.906 | 0.873 | 0.766 | 0.894 | 0.913 | 0.849 | 86.7 | 0.819 |
2007 | 0.897 | 0.911 | 0.842 | 0.803 | 0.891 | 0.896 | 0.863 | 86.5 | 0.817 |
2008 | 0.906 | 0.905 | 0.894 | 0.846 | 0.862 | 0.916 | 0.873 | 87.3 | 0.825 |
2009 | 0.884 | 0.886 | 0.773 | 0.766 | 0.894 | 0.893 | 0.849 | 86.7 | 0.819 |
2010 | 0.897 | 0.891 | 0.842 | 0.803 | 0.801 | 0.896 | 0.863 | 86.5 | 0.817 |
Year | Producer Accuracy | Overall Accuracy/% | Kappa Coefficient | ||||||
---|---|---|---|---|---|---|---|---|---|
Paddy Field | Dry Field | Grassland | Unused Land | Water | Woodland | Construction Land | |||
2011 | 0.867 | 0.875 | 0.805 | 0.735 | 0.871 | 0.861 | 0.825 | 83.9 | 0.793 |
2012 | 0.887 | 0.853 | 0.721 | 0.743 | 0.833 | 0.855 | 0.833 | 81.4 | 0.769 |
2013 | 0.863 | 0.865 | 0.821 | 0.781 | 0.832 | 0.825 | 0.815 | 80.5 | 0.761 |
2014 | 0.861 | 0.835 | 0.766 | 0.716 | 0.799 | 0.777 | 0.835 | 80.8 | 0.764 |
2015 | 0.854 | 0.867 | 0.821 | 0.762 | 0.767 | 0.841 | 0.807 | 80.8 | 0.764 |
2016 | 0.889 | 0.881 | 0.823 | 0.753 | 0.815 | 0.844 | 0.743 | 81.6 | 0.771 |
2017 | 0.849 | 0.834 | 0.731 | 0.729 | 0.844 | 0.851 | 0.799 | 81.7 | 0.772 |
2018 | 0.909 | 0.871 | 0.826 | 0.768 | 0.846 | 0.833 | 0.831 | 82.3 | 0.778 |
2019 | 0.882 | 0.858 | 0.803 | 0.755 | 0.815 | 0.831 | 0.791 | 81.3 | 0.768 |
2020 | 0.899 | 0.854 | 0.791 | 0.754 | 0.856 | 0.831 | 0.811 | 82.0 | 0.775 |
Explanatory Variables | Estimated Coefficients | t-Values |
---|---|---|
Total power of agricultural machinery | 0.618 | 2.202 |
Effective irrigated area | 0.582 | 1.872 |
Policy support | 0.254 | 2.770 |
Average air temperature | 0.021 | 2.298 |
Annual precipitation | −0.028 | −0.465 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Xu, Y.; Huang, P.; Yuan, D.; Song, C.; Wang, Y.; Cui, Y.; Luo, Y. Identifying Changes and Their Drivers in Paddy Fields of Northeast China: Past and Future. Agriculture 2024, 14, 1956. https://doi.org/10.3390/agriculture14111956
Hu X, Xu Y, Huang P, Yuan D, Song C, Wang Y, Cui Y, Luo Y. Identifying Changes and Their Drivers in Paddy Fields of Northeast China: Past and Future. Agriculture. 2024; 14(11):1956. https://doi.org/10.3390/agriculture14111956
Chicago/Turabian StyleHu, Xuhua, Yang Xu, Peng Huang, Dan Yuan, Changhong Song, Yingtao Wang, Yuanlai Cui, and Yufeng Luo. 2024. "Identifying Changes and Their Drivers in Paddy Fields of Northeast China: Past and Future" Agriculture 14, no. 11: 1956. https://doi.org/10.3390/agriculture14111956
APA StyleHu, X., Xu, Y., Huang, P., Yuan, D., Song, C., Wang, Y., Cui, Y., & Luo, Y. (2024). Identifying Changes and Their Drivers in Paddy Fields of Northeast China: Past and Future. Agriculture, 14(11), 1956. https://doi.org/10.3390/agriculture14111956