Genome-Wide Association Studies for Wheat Height Under Different Nitrogen Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Field Trials
2.2. DNA Extraction, Genotyping, and Data Processing
2.3. Genotyping of Rht1, Rht2, Rht8, and Rht24 by Functional Markers
2.4. Linkage Disequilibrium and Population Structure Analysis
2.5. Genome-Wide Association Study (GWAS)
3. Results and Analysis
3.1. Phenotypic Assessment
3.2. Analysis of NEI
3.3. Sensitivity Evaluation of Varieties to Nitrogen Fertilizer
3.4. Population Structure, Kinship, and LD Decay
3.5. GWAS Analysis of PH and NEI
4. Discussion
4.1. Tall and Dwarf Alleles of Rht2 and Rht24 Showed Distinct Effects on PH and NEI Under Varying Nitrogen Levels
4.2. GWAS Analysis for PH and NEI
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaveri, E.; Lobell, D.B. The role of irrigation in changing wheat yields and heat sensitivity in India. Nat. Commun 2019, 10, 4144. [Google Scholar] [CrossRef] [PubMed]
- Wurschum, T.; Langer, S.M.; Longin, C.F. Genetic control of plant height in European winter wheat cultivars. Theor. Appl. Genet 2015, 128, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Addisu, M.; Snape, J.; Simmonds, J.; Gooding, M. Reduced height (Rht) and photoperiod insensitivity (Ppd) allele associations with establishment and early growth of wheat in contrasting production systems. Euphytica 2008, 166, 249–267. [Google Scholar] [CrossRef]
- Hedden, P. The genes of the Green Revolution. Trends Genet. 2003, 19, 5–9. [Google Scholar] [CrossRef]
- Gaffney, J.; Bing, J.; Byrne, P.F.; Cassman, K.G.; Ciampitti, I.; Delmer, D.; Habben, J.; Lafitte, H.R.; Lidstrom, U.E.; Porter, D.O.; et al. Science-based intensive agriculture: Sustainability, food security, and the role of technology. Glob. Food Secur. 2019, 23, 236–244. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Ladha, J.; Pathak, D.S.; Krupnik, T.; Six, J.; Kessel, C. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.N.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Gooding, M.; Addisu, M.; Uppal, R. Effect of wheat dwarfing genes on nitrogen-use efficiency. J. Agric. Sci 2012, 150, 3–22. [Google Scholar] [CrossRef]
- Xu, D.; Jia, C.; Lyu, X.; Yang, T.; Qin, H.; Wang, Y.; Hao, Q.; Liu, W.; Dai, X.; Zeng, J.; et al. In silico curation of QTL-rich clusters and candidate gene identification for plant height of bread wheat. Crop J. 2023, 11, 1480–1490. [Google Scholar] [CrossRef]
- Simmonds, J.; Scott, P.; Brinton, J.; Mestre, T.; Bush, M.; Blanco, A.; Dubcovsky, J.; Uauy, C. A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theor. Appl. Genet 2016, 129, 1099–1112. [Google Scholar] [CrossRef] [PubMed]
- Gurung, S.; Mamidi, S.; Bonman, J.M.; Xiong, M.; Brown-Guedira, G.L.; Adhikari, T.B.; Xu, M. Genome-wide association study reveals novel quantitative trait loci associated with resistance to multiple leaf spot diseases of spring wheat. PLoS ONE 2014, 9, e108179. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran, S.; Dreisigacker, S.; Lopes, M.; Chavez, P.; Reynolds, M.P. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor. Appl. Genet 2015, 128, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Mengistu, D.K.; Kidane, Y.G.; Catellani, M.; Frascaroli, E.; Fadda, C.; Pè, M.E.; Dell Acqua, M. High-density molecular characterization and association mapping in Ethiopian durum wheat landraces reveals high diversity and potential for wheat breeding. Plant Biotechnol. J. 2016, 14, 1800–1812. [Google Scholar] [CrossRef]
- Jighly, A.; Alagu, M.; Makdis, F.; Singh, M.; Singh, S.; Emebiri, L.C.; Ogbonnaya, F.C. Genomic regions conferring resistance to multiple fungal pathogens in synthetic hexaploid wheat. Mol. Breed 2016, 36, 127. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, D.; Alqudah, A.M.; Roder, M.S.; Ganal, M.W.; Schnurbusch, T. Genome-wide association analyses of 54 traits identified multiple loci for the determination of floret fertility in wheat. New Phytol. 2017, 214, 257–270. [Google Scholar] [CrossRef]
- Gawel, N.J.; Jarret, R.L. A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Mol. Biol. Rep 1991, 9, 262–266. [Google Scholar] [CrossRef]
- Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.; Cattivelli, L.; et al. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 2014, 12, 787–796. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Rasheed, A.; Wen, W.; Gao, F.; Zhai, S.; Jin, H.; Liu, J.; Guo, Q.; Zhang, Y.; Dreisigacker, S.; Xia, X.; et al. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor. Appl. Genet 2016, 129, 1843–1860. [Google Scholar] [CrossRef]
- Chai, L.; Xin, M.; Dong, C.; Chen, Z.; Zhai, H.; Zhuang, J.; Cheng, X.; Wang, N.; Geng, J.; Wang, X.; et al. A natural variation in Ribonuclease H-like gene underlies Rht8 to confer “Green Revolution” trait in wheat. Mol. Plant 2022, 15, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Xia, X.; Xu, D.; Yongqiang, L.; Xie, L.; Hassan, M.; Song, J.; Li, F.; Wang, D.; Zhang, Y.; et al. Rht24b, an ancient variation of TaGA2ox-a9, reduces plant height without yield penalty in wheat. New Phytol. 2021, 233, 738–750. [Google Scholar] [CrossRef] [PubMed]
- Hill, W.G.; Robertson, A. Linkage disequilibrium in finite populations. Theor. Appl. Genet 1968, 38, 226–231. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Rosenberg, N.A.; Donnelly, P. Association mapping in structured populations. Am. J. Hum. Genet 2000, 67, 170–181. [Google Scholar] [CrossRef]
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat 1979, 6, 65–70. [Google Scholar]
- Liu, J.; He, Z.; Rasheed, A.; Wen, W.; Yan, J.; Zhang, P.; Wan, Y.; Zhang, Y.; Xie, C.; Xia, X. Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.). BMC Plant Biol. 2017, 17, 220. [Google Scholar] [CrossRef]
- Jamil, M.; Ali, A.; Gul, A.; Ghafoor, A.; Napar, A.A.; Ibrahim, A.M.H.; Naveed, N.H.; Yasin, N.A.; Mujeeb-Kazi, A. Genome-wide association studies of seven agronomic traits under two sowing conditions in bread wheat. BMC Plant Biol. 2019, 19, 149. [Google Scholar] [CrossRef]
- Lang, D.; Appels, R.; Rigault, P.; Kanyuka, K.; Twardziok, S.; Melonek, J.; Gutierrez-Gonzalez, J.; Lux, T.; Hernandez, P.; Fischer, I.; et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018, 361, eaar7191. [Google Scholar]
- Evanno, G.S.; Regnaut, S.J.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Yang, J.; Wang, M.; Li, W.; He, X.; Teng, W.; Ma, W.; Zhao, X.; Hu, M.; Li, H.; Zhang, Y.; et al. Reducing expression of a nitrate-responsive bZIP transcription factor increases grain yield and N use in wheat. Plant Biotechnol. J. 2019, 17, 1823–1833. [Google Scholar] [CrossRef]
- Law, C.N.; Snape, J.W.; Worland, A.J. The genetical relationship between height and yield in wheat. Heredity 1978, 40, 133–151. [Google Scholar] [CrossRef]
- Hussain, I.; Khan, M.A.; Khan, E.A. Bread wheat varieties as influenced by different nitrogen levels. J. Zhejiang Univ. Sci. B 2006, 7, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Hawkesford, M.J. Reducing the reliance on nitrogen fertilizer for wheat production. J. Cereal Sci 2014, 59, 276–283. [Google Scholar] [CrossRef]
- Würschum, T.; Liu, G.; Boeven, P.H.G.; Longin, C.F.H.; Mirdita, V.; Kazman, E.; Zhao, Y.; Reif, J.C. Exploiting the Rht portfolio for hybrid wheat breeding. Theor. Appl. Genet 2018, 131, 1433–1442. [Google Scholar] [CrossRef]
- Tian, X.; Wen, W.; Xie, L.; Fu, L.; Xu, D.; Fu, C.; Wang, D.; Chen, X.; Xia, X.; Chen, Q.; et al. Molecular mapping of reduced plant height gene Rht24 in bread wheat. Front. Plant Sci. 2017, 8, 1379. [Google Scholar] [CrossRef]
- Pearce, S.; Saville, R.; Vaughan, S.P.; Chandler, P.M.; Wilhelm, E.P.; Sparks, C.A.; Al-Kaff, N.; Korolev, A.; Boulton, M.I.; Phillips, A.L.; et al. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol. 2011, 157, 1820–1831. [Google Scholar] [CrossRef]
- Wu, J.; Kong, X.; Wan, J.; Liu, X.; Zhang, X.; Guo, X.; Zhou, R.; Zhao, G.; Jing, R.; Fu, X.; et al. Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1. Plant Physiol. 2011, 157, 2120–2130. [Google Scholar] [CrossRef]
- Wei, X.; Han, L.; Xu, N.; Sun, M.; Yang, X. Nitrate nitrogen enhances the efficiency of photoprotection in Leymus chinensis under drought stress. Front. Plant Sci. 2024, 15, 1348925. [Google Scholar] [CrossRef]
- Li, A.; Hao, C.; Wang, Z.; Geng, S.; Jia, M.; Wang, F.; Han, X.; Kong, X.; Yin, L.; Tao, S.; et al. Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. Mol. Plant 2022, 15, 504–519. [Google Scholar] [CrossRef]
- Luján Basile, S.M.; Ramírez, I.A.; Crescente, J.M.; Conde, M.B.; Demichelis, M.; Abbate, P.; Rogers, W.J.; Pontaroli, A.C.; Helguera, M.; Vanzetti, L.S. Haplotype block analysis of an Argentinean hexaploid wheat collection and GWAS for yield components and adaptation. BMC Plant Biol. 2019, 19, 553. [Google Scholar] [CrossRef]
- Semagn, K.; Iqbal, M.; N’Diaye, A.; Pozniak, C.; Ciechanowska, I.; Barbu, S.; Spaner, D. Genome-wide association mapping of agronomic traits and grain characteristics in spring wheat under conventional and organic management systems. Crop Sci. 2022, 62, 1069–1087. [Google Scholar] [CrossRef]
- Abou-Elwafa, S.; Shehzad, T. Genetic diversity, GWAS and prediction for drought and terminal heat stress tolerance in bread wheat (Triticum aestivum L.). Genet. Resour. Crop Evol. 2021, 67, 711–728. [Google Scholar] [CrossRef]
Traits | Treatments a | Mean (cm) | SD b | CV (%) | Min (cm) | Max (cm) |
---|---|---|---|---|---|---|
PH | E1N0 | 73.38 | 11.53 | 15.72 | 55.22 | 126.98 |
E1N150 | 80.66 | 13.45 | 16.67 | 57.36 | 135.02 | |
E1N210 | 81.65 | 12.55 | 15.37 | 56.83 | 130.70 | |
E1N270 | 77.79 | 13.32 | 17.12 | 52.53 | 127.28 | |
E2N0 | 74.43 | 13.08 | 17.56 | 55.97 | 136.92 | |
E2N150 | 84.18 | 14.48 | 17.19 | 60.58 | 136.75 | |
E2N210 | 85.38 | 14.81 | 17.34 | 56.50 | 132.17 | |
E2N270 | 81.66 | 12.82 | 15.69 | 57.25 | 125.50 |
Traits a | Frequency | |||
---|---|---|---|---|
NEI ≤ 0.95 | 0.95 < NEI ≤ 1.05 | 1.05 < NEI ≤ 1.15 | NEI < 1.15 | |
N150NEI | 0.52% | 9.95% | 61.26% | 28.27% |
N210NEI | 1.57% | 24.08% | 63.35% | 10.99% |
N270NEI | 8.38% | 60.73% | 29.32% | 1.57% |
Groups | Varieties | NEI a | N0PH b (cm) | N150PH b (cm) | N210PH b (cm) | N270PH b (cm) |
---|---|---|---|---|---|---|
High NEI | Linmai4 | 1.20 | 62.02 | 73.63 | 78.17 | 74.69 |
Linmai2 | 1.21 | 68.98 | 82.37 | 88.67 | 83.13 | |
Shan512 | 1.22 | 66.82 | 76.93 | 81.56 | 81.23 | |
Fengkang2 | 1.22 | 81.30 | 100.38 | 100.07 | 99.44 | |
Lankao24 | 1.24 | 56.82 | 70.31 | 71.70 | 70.32 | |
Lumai23 | 1.25 | 66.25 | 76.22 | 84.54 | 82.74 | |
Darius | 1.26 | 78.00 | 92.83 | 98.57 | 98.01 | |
Low NEI | Zhoumai16 | 0.95 | 70.71 | 70.15 | 67.07 | 69.51 |
Zhoumai13 | 0.95 | 59.53 | 61.89 | 56.67 | 56.89 | |
Bima1 | 0.97 | 131.95 | 135.89 | 128.64 | 126.35 |
Traits a | Environments b | Markers | Position (Mb) | R2% | Pmax | Pmin | Candidate Genes c |
---|---|---|---|---|---|---|---|
PH | E2N270, E2N0, E1N150, E2N150, E2N270 | IWB54893 | 1A:1.48 | 6.24–7.67 | 2.50 × 10−4 | 9.07 × 10−4 | 1A03G0004200 |
E1N0, E2N0 | IWA4164 | 1A:26.96 | 6.24–8.68 | 1.24 × 10−4 | 7.70 × 10−4 | 1A03G0105800 | |
E1N0, E1N150, E1N210, E1N270, E2N210, E2N270 | IWB38267 | 1A:45.79 | 6.27–10.76 | 1.11 × 10−5 | 9.76 × 10−4 | 1A03G0152900 | |
E1N0, E1N150, E1N210, E1N270, E2N0, E2N150, E2N210, E2N270 | IWB35039 | 1A:496.31–497.52 | 6.63–12.54 | 2.62 × 10−6 | 4.94 × 10−4 | 1A03G0749100 | |
E1N0, E1N210, E1N270, E2N150, E2N210, E2N270 | IWB6974 | 1A:505.52–511.10 | 5.95–9.40 | 4.60 × 10−5 | 9.31 × 10−4 | 1A03G0787900 | |
E1N0, E1N150, E1N210, E1N270, E2N0, E2N150 | IWB51584 | 1A:517.40–517.48 | 5.97–10.28 | 1.80 × 10−5 | 9.65 × 10−4 | 1A03G0805700 | |
E1N0, E1N150, E1N210, E1N270, E2N0, E2N150, E2N210, E2N270 | IWB50788 | 1A:539.56 | 7.47–13.69 | 8.41 × 10−7 | 2.24 × 10−4 | 1A03G0869100 | |
E1N150, E1N270, E2N210 | IWB8040 | 1A:545.89–547.31 | 5.90–9.05 | 9.60 × 10−5 | 1.00 ×10 −3 | 1A03G0891600 | |
E1N0, E1N150, E1N270, E2N0, E2N150, E2N270 | IWB61310 | 1A:564.30–571.78 | 5.92–7.92 | 1.47 × 10−4 | 9.63 × 10−4 | 1A03G0986800 | |
E1N150, E1N210, E2N0, E2N150, E2N210, E2N270 | IWB15041 | 1B:116.58 | 7.23–13.49 | 1.14 × 10−6 | 3.53 × 10−4 | 1B03G0270900 | |
E2N210 | IWB6406 | 1D:38.78–40.57 | 6.02–7.81 | 2.54 × 10−4 | 8.69 × 10−4 | 1D03G0123400 | |
E1N270, E2N210 | IWB40766 | 1D:420.53–420.65 | 6.97–8.07 | 1.27 × 10−4 | 3.52 × 10−4 | 1D03G0772900 | |
E1N0, E1N270 | IWB10193 | 2B:65.1 | 5.96–7.65 | 2.05 × 10−4 | 9.51 × 10−4 | 2B03G0226200 | |
E1N0, E1N210 | IWB20703 | 2B:214.59–216.46 | 6.03–8.91 | 8.95 × 10−5 | 9.58 × 10−4 | 2B03G0528100 | |
E1N0, E2N0, E2N210 | IWB4287 | 3A:645.09–650.42 | 6.32–7.94 | 1.42 × 10−4 | 9.49 × 10−4 | 3A03G0945100 | |
E1N0, E1N210, E2N0, E2N150, E2N210 | IWB24136 | 3A:705.3 | 5.95–14.71 | 3.68 × 10−7 | 9.78 × 10−4 | 3A03G1105400 | |
E1N0, E1N150, E1N210, E1N270, E2N0, E2N150, E2N210, E2N270 | IWB17930 | 3D:571.55 | 6.10–13.06 | 1.48 × 10−6 | 8.41 × 10−4 | 3D03G1029700 | |
E1N0, E1N150, E1N210, E1N270, E2N0, E2N150, E2N210, E2N270 | IWB32654 | 3D:760.13 | 6.14–12.30 | 5.19 × 10−6 | 7.81 × 10−4 | 3D03G0533500 | |
E1N0, E1N150, E1N210, E1N270, E2N0 | IWB60583 | 4A:48.62 | 6.33–7.48 | 3.70 × 10−4 | 9.09 × 10−4 | 4A03G0112900 | |
E1N0, E1N150, E1N210, E1N270, E2N0, E2N150, E2N210, E2N270 | IWB59450 | 4A:681.66 | 6.64–13.12 | 1.59 × 10−6 | 4.93 × 10−4 | 4A03G1009500 | |
E1N150 | Rht2 | 4D:18.78 | 5.89 | 9.84 × 10−4 | 4D03G0067100 | ||
E1N210, E1N270 | IWB61487 | 4D:38.28 | 6.01–6.59 | 5.07 × 10−4 | 9.42 × 10−4 | 4D03G0115900 | |
E1N0, E1N210 | IWB6762 | 5A:535.13–540.28 | 6.00–8.78 | 6.96 × 10−5 | 9.70 × 10−4 | 5A03G0795600 | |
E1N0, E2N0 | IWB5301 | 5B:531.15–534.05 | 6.17–7.10 | 3.22 × 10−4 | 7.60 × 10−4 | 5B03G0873000 | |
E2N0 | IWB54819 | 6A:400.98 | 5.99 | 9.30 × 10−4 | 6A03G0594800 | ||
E2N270 | Rht24 | 6A:413.73 | 6.12 | 9.07 × 10−4 | 6A03G0611100 | ||
E1N270, E2N0 | IWA5747 | 6A:611.32–611.85 | 5.96–6.39 | 6.62 × 10−4 | 1.00 × 10−3 | 6A03G0604400 | |
E1N270, E2N210, E2N270 | IWB10041 | 6B:696.46 | 6.08–8.13 | 1.48 × 10−4 | 9.43 × 10−4 | 6B03G1166500 | |
E1N150, E1N270, E2N0, E2N150 | IWB55843 | 6D:455.25–455.89 | 6.08–7.88 | 2.01 × 10−4 | 9.89 × 10−4 | 6D03G0770600 | |
E1N150, E1N270 | IWB8445 | 7A:87.30–88.98 | 6.25–10.12 | 2.33 × 10−5 | 7.10 × 10−4 | 7A03G0308700 | |
NEI | N210 | IWB71397 | 1A:432.63 | 6.83 | 4.32 × 10−4 | 1A03G0628100 | |
N270 | IWB60140 | 1A:536.43 | 6.02–6.04 | 8.71 × 10−4 | 8.52 × 10−4 | 1A03G0857400 | |
N210 | IWB43273 | 2B:56.78 | 6.16 | 9.65 × 10−4 | 2B03G0199300 | ||
N150 | IWB7420 | 6A:270.61–276.29 | 5.93–6.57 | 6.87 × 10−4 | 9.68 × 10−4 | 6A03G0500700 | |
N150 | IWB59349 | 6A:399.83 | 6.21 | 7.55 × 10−4 | 6A03G0593300 | ||
N210, N270 | IWB51603 | 6B:696.15–696.46 | 5.97–7.18 | 3.66 × 10−4 | 9.34 × 10−4 | 6B03G1164300 | |
N270 | IWB6263 | 6D:4.49 | 6.44 | 5.90 × 10−4 | 6D03G0023600 | ||
N210 | IWB9080 | 7A:73.74 | 7.26 | 2.72 × 10−4 | 7A03G0270000 | ||
N210 | IWB12096 | 7A:89.83 | 5.92 | 9.90 × 10−4 | 7A03G0316500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Zhang, W.; Cui, Y.; Wang, Y.; Qin, H.; Lv, X.; Xie, X.; Yang, F.; Ren, K.; Ni, J.; et al. Genome-Wide Association Studies for Wheat Height Under Different Nitrogen Conditions. Agriculture 2024, 14, 1998. https://doi.org/10.3390/agriculture14111998
Yang T, Zhang W, Cui Y, Wang Y, Qin H, Lv X, Xie X, Yang F, Ren K, Ni J, et al. Genome-Wide Association Studies for Wheat Height Under Different Nitrogen Conditions. Agriculture. 2024; 14(11):1998. https://doi.org/10.3390/agriculture14111998
Chicago/Turabian StyleYang, Tingzhi, Wenjiao Zhang, Yutao Cui, Yalin Wang, Huimin Qin, Xinru Lv, Xiaohan Xie, Fulin Yang, Kangzhen Ren, Jinlan Ni, and et al. 2024. "Genome-Wide Association Studies for Wheat Height Under Different Nitrogen Conditions" Agriculture 14, no. 11: 1998. https://doi.org/10.3390/agriculture14111998
APA StyleYang, T., Zhang, W., Cui, Y., Wang, Y., Qin, H., Lv, X., Xie, X., Yang, F., Ren, K., Ni, J., Dai, X., Zeng, J., Liu, W., Ma, W., Zhang, H., & Xu, D. (2024). Genome-Wide Association Studies for Wheat Height Under Different Nitrogen Conditions. Agriculture, 14(11), 1998. https://doi.org/10.3390/agriculture14111998