Impact of Paddy Field Expansion on Ecosystem Services and Associated Trade-Offs and Synergies in Sanjiang Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.3. Research Methods
2.3.1. ESs Quantification
2.3.2. OPGD (Optimal Parameter GeoDetector)
2.3.3. ESs TOS Assessment Methods
2.3.4. PLS-SEM (Partial Least Squares-Structural Equation Model)
3. Results
3.1. Expansion of Paddy Fields and Land Use Change in the SJP
3.2. The Spatiotemporal Changes in ESs
3.3. Changes in ESs Across Land Use Types
3.4. Impact of Drivers on ESs
3.5. Spatial and Temporal Characteristics of Ecosystem Services Trade-Offs and Synergies in the Sanjiang Plain
3.6. Impacts of Paddy Field Expansion on ESs
4. Discussion
4.1. Dynamics and Drivers of ESs in the SJP
4.2. TOS Relationships Between ESs in the SJP
4.3. Causes of Paddy Field Expansion and Impacts on ESs
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Westman, W.E. How Much Are Nature’s Services Worth? Measuring the Social Benefits of Ecosystem Functioning Is Both Controversial and Illuminating. Science 1977, 197, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Geng, W.; Li, Y.; Zhang, P.; Yang, D.; Jing, W.; Rong, T. Analyzing Spatio-Temporal Changes and Trade-Offs/Synergies among Ecosystem Services in the Yellow River Basin, China. Ecol. Indic. 2022, 138, 108825. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the Global Value of Ecosystem Services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Carlsen, L.; Bruggemann, R. The 17 United Nations’ Sustainable Development Goals: A Status by 2020. Int. J. Sustain. Dev. World Ecol. 2022, 29, 219–229. [Google Scholar] [CrossRef]
- Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015.
- Martínez, M.L.; Pérez-Maqueo, O.; Vázquez, G.; Castillo-Campos, G.; García-Franco, J.; Mehltreter, K.; Equihua, M.; Landgrave, R. Effects of Land Use Change on Biodiversity and Ecosystem Services in Tropical Montane Cloud Forests of Mexico. For. Ecol. Manag. 2009, 258, 1856–1863. [Google Scholar] [CrossRef]
- Rodríguez-Echeverry, J.; Echeverría, C.; Oyarzún, C.; Morales, L. Impact of Land-Use Change on Biodiversity and Ecosystem Services in the Chilean Temperate Forests. Landsc. Ecol. 2018, 33, 439–453. [Google Scholar] [CrossRef]
- Yin, D.; Yu, H.; Shi, Y.; Zhao, M.; Zhang, J.; Li, X. Matching Supply and Demand for Ecosystem Services in the Yellow River Basin, China: A Perspective of the Water-Energy-Food Nexus. J. Clean. Prod. 2023, 384, 135469. [Google Scholar] [CrossRef]
- Li, Y.; Liu, W.; Feng, Q.; Zhu, M.; Yang, L.; Zhang, J.; Yin, X. The Role of Land Use Change in Affecting Ecosystem Services and the Ecological Security Pattern of the Hexi Regions, Northwest China. Sci. Total Environ. 2023, 855, 158940. [Google Scholar] [CrossRef]
- Sun, L.; Yu, H.; Sun, M.; Wang, Y. Coupled Impacts of Climate and Land Use Changes on Regional Ecosystem Services. J. Environ. Manag. 2023, 326, 116753. [Google Scholar] [CrossRef]
- Yushanjiang, A.; Zhou, W.; Wang, J.; Wang, J. Impact of Urbanization on Regional Ecosystem Services—A Case Study in Guangdong-Hong Kong-Macao Greater Bay Area. Ecol. Indic. 2024, 159, 111633. [Google Scholar] [CrossRef]
- Nesbitt, L.; Hotte, N.; Barron, S.; Cowan, J.; Sheppard, S.R. The Social and Economic Value of Cultural Ecosystem Services Provided by Urban Forests in North America: A Review and Suggestions for Future Research. Urban For. Urban Green. 2017, 25, 103–111. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Tudor, M.; Doroftei, M.; Covaliov, S.; Năstase, A.; Onără, D.-F.; Mierlă, M.; Marinov, M.; Doroșencu, A.-C.; Lupu, G.; et al. Changes in Ecosystem Services from Wetland Loss and Restoration: An Ecosystem Assessment of the Danube Delta (1960–2010). Ecosyst. Serv. 2019, 39, 100965. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, X.; Song, W.; Li, Z.; Chen, J. What Is the Main Cause of Grassland Degradation? A Case Study of Grassland Ecosystem Service in the Middle-South Inner Mongolia. Catena 2017, 150, 100–107. [Google Scholar] [CrossRef]
- Barral, M.P.; Villarino, S.; Levers, C.; Baumann, M.; Kuemmerle, T.; Mastrangelo, M. Widespread and Major Losses in Multiple Ecosystem Services as a Result of Agricultural Expansion in the Argentine Chaco. J. Appl. Ecol. 2020, 57, 2485–2498. [Google Scholar] [CrossRef]
- Yan, F.; Yu, L.; Yang, C.; Zhang, S. Paddy Field Expansion and Aggregation since the Mid-1950s in a Cold Region and Its Possible Causes. Remote Sens. 2018, 10, 384. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, S.; Su, F. Variations in Ecosystem Services in Response to Paddy Expansion in the Sanjiang Plain, Northeast China. Int. J. Agric. Sustain. 2019, 17, 158–171. [Google Scholar] [CrossRef]
- Zhang, B.; Tian, H.; Ren, W.; Tao, B.; Lu, C.; Yang, J.; Banger, K.; Pan, S. Methane Emissions from Global Rice Fields: Magnitude, Spatiotemporal Patterns, and Environmental Controls. Glob. Biogeochem. Cycles 2016, 30, 1246–1263. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore III, B. Mapping Paddy Rice Planting Area in Northeastern Asia with Landsat 8 Images, Phenology-Based Algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef]
- Cord, A.F.; Bartkowski, B.; Beckmann, M.; Dittrich, A.; Hermans-Neumann, K.; Kaim, A.; Lienhoop, N.; Locher-Krause, K.; Priess, J.; Schröter-Schlaack, C.; et al. Towards Systematic Analyses of Ecosystem Service Trade-Offs and Synergies: Main Concepts, Methods and the Road Ahead. Ecosyst. Serv. 2017, 28, 264–272. [Google Scholar] [CrossRef]
- Longato, D.; Gaglio, M.; Boschetti, M.; Gissi, E. Bioenergy and Ecosystem Services Trade-Offs and Synergies in Marginal Agricultural Lands: A Remote-Sensing-Based Assessment Method. J. Clean. Prod. 2019, 237, 117672. [Google Scholar] [CrossRef]
- Huang, J.; Zheng, F.; Dong, X.; Wang, X.-C. Exploring the Complex Trade-Offs and Synergies among Ecosystem Services in the Tibet Autonomous Region. J. Clean. Prod. 2023, 384, 135483. [Google Scholar] [CrossRef]
- Yu, R.; Deng, X.; Yan, Z.; Shi, C. Dynamic Evaluation of Land Productivity in China. Chin. J. Popul. Resour. Environ. 2013, 11, 253–260. [Google Scholar] [CrossRef]
- Li, S.; Zhang, C.; Liu, J.; Zhu, W.; Ma, C.; Wang, J. The Tradeoffs and Synergies of Ecosystem Services: Research Progress, Development Trend, and Themes of Geography. Geogr. Res. 2013, 32, 1379–1390. [Google Scholar]
- Turkelboom, F.; Thoonen, M.; Jacobs, S.; Berry, P. Ecosystem Service Trade-Offs and Synergies. Ecol. Soc. 2015, 21, 43. [Google Scholar]
- Dai, E.; Wang, X.; Zhu, J.; Zhao, D. Methods, Tools and Research Framework of Ecosystem Service Trade-Offs. Geogr. Res. 2016, 35, 1005–1016. [Google Scholar]
- Liu, J.; Pei, X.; Zhu, W.; Jiao, J. Scenario Modeling of Ecosystem Service Trade-Offs and Bundles in a Semi-Arid Valley Basin. Sci. Total Environ. 2023, 896, 166413. [Google Scholar] [CrossRef]
- Wu, L.; Sun, C.; Fan, F. Multi-Criteria Framework for Identifying the Trade-Offs and Synergies Relationship of Ecosystem Services Based on Ecosystem Services Bundles. Ecol. Indic. 2022, 144, 109453. [Google Scholar] [CrossRef]
- Huang, F.; Zuo, L.; Gao, J.; Jiang, Y.; Du, F.; Zhang, Y. Exploring the Driving Factors of Trade-Offs and Synergies among Ecological Functional Zones Based on Ecosystem Service Bundles. Ecol. Indic. 2023, 146, 109827. [Google Scholar] [CrossRef]
- Pan, M.; Hu, T.; Zhan, J.; Hao, Y.; Li, X.; Zhang, L. Unveiling Spatiotemporal Dynamics and Factors Influencing the Provision of Urban Wetland Ecosystem Services Using High-Resolution Images. Ecol. Indic. 2023, 151, 110305. [Google Scholar] [CrossRef]
- Romero, F.; Hilfiker, S.; Edlinger, A.; Held, A.; Hartman, K.; Labouyrie, M.; van der Heijden, M.G. Soil Microbial Biodiversity Promotes Crop Productivity and Agro-Ecosystem Functioning in Experimental Microcosms. Sci. Total Environ. 2023, 885, 163683. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, L.; Wang, Y.; Li, N.; Li, J.; Yang, H.; Bi, Y. Multiscale Ecosystem Service Synergies/Trade-Offs and Their Driving Mechanisms in the Han River Basin, China: Implications for Watershed Management. Environ. Sci. Pollut. Res. 2023, 30, 43440–43454. [Google Scholar] [CrossRef]
- Liu, Q.; Qiao, J.; Li, M.; Huang, M. Spatiotemporal Heterogeneity of Ecosystem Service Interactions and Their Drivers at Different Spatial Scales in the Yellow River Basin. Sci. Total Environ. 2024, 908, 168486. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Liu, D.; Liu, Y.; Liu, Y. Spatio-Temporal Dynamics and Socio-Ecological Determinants of Ecosystem Service Interplays in Shandong Province’s Coastal Region (2000–2020): Implications for Environmental Protection and Sustainable Ecosystem Management. Environ. Res. 2024, 243, 117824. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yuan, X.; An, J.; Su, Q.; Chen, B. Drivers of Ecosystem Services and Their Trade-Offs and Synergies in Different Land Use Policy Zones of Shaanxi Province, China. J. Clean. Prod. 2024, 452, 142077. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, L.; Zhu, G. Effects of Transport Infrastructures and Climate Change on Ecosystem Services in the Integrated Transport Corridor Region of the Qinghai-Tibet Plateau. Sci. Total Environ. 2023, 885, 163961. [Google Scholar] [CrossRef]
- Li, Y.; Luo, H. Trade-off/Synergistic Changes in Ecosystem Services and Geographical Detection of Its Driving Factors in Typical Karst Areas in Southern China. Ecol. Indic. 2023, 154, 110811. [Google Scholar] [CrossRef]
- Xiang, H.; Wang, Z.; Mao, D.; Zhang, J.; Xi, Y.; Du, B.; Zhang, B. What Did China’s National Wetland Conservation Program Achieve? Observations of Changes in Land Cover and Ecosystem Services in the Sanjiang Plain. J. Environ. Manag. 2020, 267, 110623. [Google Scholar] [CrossRef]
- Ning, L.; Pan, T.; Zhang, Q.; Zhang, M.; Li, Z.; Hou, Y. Differentiated Impacts of Land-Use Changes on Landscape and Ecosystem Services under Different Land Management System Regions in Sanjiang Plain of China from 1990 to 2020. Land 2024, 13, 437. [Google Scholar] [CrossRef]
- Chen, J.; Sun, B.-M.; Chen, D.; Wu, X.; Guo, L.-Z.; Wang, G. Land Use Changes and Their Effects on the Value of Ecosystem Services in the Small Sanjiang Plain in China. Sci. World J. 2014, 2014, 752846. [Google Scholar] [CrossRef]
- Khan, N.; Fahad, S.; Naushad, M.; Faisal, S. Analysis of Livelihood in the World and Its Impact on World Economy. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Johnson, J.A.; Jones, S.K.; Wood, S.L.; Chaplin-Kramer, R.; Hawthorne, P.L.; Mulligan, M.; Pennington, D.; DeClerck, F.A. Mapping Ecosystem Services to Human Well-Being: A Toolkit to Support Integrated Landscape Management for the SDGs. Ecol. Appl. 2019, 29, e01985. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, C.D. Geodetector: Principle and Prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Zhu, W.; Zhang, J.; Cui, Y.; Zhu, L. Ecosystem Carbon Storage under Different Scenarios of Land Use Change in Qihe Catchment, China. J. Geogr. Sci. 2020, 30, 1507–1522. [Google Scholar] [CrossRef]
- Xia, H.; Yuan, S.; Prishchepov, A.V. Spatial-Temporal Heterogeneity of Ecosystem Service Interactions and Their Social-Ecological Drivers: Implications for Spatial Planning and Management. Resour. Conserv. Recycl. 2023, 189, 106767. [Google Scholar] [CrossRef]
- Hair Jr, J.F.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial Least Squares Structural Equation Modeling (PLS-SEM): An Emerging Tool in Business Research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of Land Use Change on Ecosystem Services: A Review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Yin, R.; Yin, G. China’s Primary Programs of Terrestrial Ecosystem Restoration: Initiation, Implementation, and Challenges. Environ. Manag. 2010, 45, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, W.; Pickett, S.T.; Yu, W.; Li, W. A Multiscale Analysis of Urbanization Effects on Ecosystem Services Supply in an Urban Megaregion. Sci. Total Environ. 2019, 662, 824–833. [Google Scholar] [CrossRef]
- Qiu, Z.; Feng, Z.; Song, Y.; Li, M.; Zhang, P. Carbon Sequestration Potential of Forest Vegetation in China from 2003 to 2050: Predicting Forest Vegetation Growth Based on Climate and the Environment. J. Clean. Prod. 2020, 252, 119715. [Google Scholar] [CrossRef]
- Gyssels, G.; Poesen, J.; Bochet, E.; Li, Y. Impact of Plant Roots on the Resistance of Soils to Erosion by Water: A Review. Prog. Phys. Geogr. 2005, 29, 189–217. [Google Scholar] [CrossRef]
- Hauck, J.; Winkler, K.J.; Priess, J.A. Reviewing Drivers of Ecosystem Change as Input for Environmental and Ecosystem Services Modelling. Sustain. Water Qual. Ecol. 2015, 5, 9–30. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, F.; Zhang, H.; Dong, X. Quantifying Changes in Multiple Ecosystem Services during 2000–2012 on the Loess Plateau, China, as a Result of Climate Variability and Ecological Restoration. Ecol. Eng. 2016, 97, 258–271. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, D.; Tang, L.; Qiao, Z.; Ma, L.; Chen, M. Exploring the Impact of Grain-for-Green Program on Trade-Offs and Synergies among Ecosystem Services in West Liao River Basin, China. Remote Sens. 2023, 15, 2490. [Google Scholar] [CrossRef]
- Jia, X.; Shao, M.; Yu, D.; Zhang, Y.; Binley, A. Spatial Variations in Soil-Water Carrying Capacity of Three Typical Revegetation Species on the Loess Plateau, China. Agric. Ecosyst. Environ. 2019, 273, 25–35. [Google Scholar] [CrossRef]
- Hu, B.; Wu, H.; Han, H.; Cheng, X.; Kang, F. Dramatic Shift in the Drivers of Ecosystem Service Trade-Offs across an Aridity Gradient: Evidence from China’s Loess Plateau. Sci. Total Environ. 2023, 858, 159836. [Google Scholar] [CrossRef]
- Eekhout, J.P.; de Vente, J. Global Impact of Climate Change on Soil Erosion and Potential for Adaptation through Soil Conservation. Earth-Sci. Rev. 2022, 226, 103921. [Google Scholar] [CrossRef]
- Jopke, C.; Kreyling, J.; Maes, J.; Koellner, T. Interactions among Ecosystem Services across Europe: Bagplots and Cumulative Correlation Coefficients Reveal Synergies, Trade-Offs, and Regional Patterns. Ecol. Indic. 2015, 49, 46–52. [Google Scholar] [CrossRef]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding Relationships among Multiple Ecosystem Services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef]
- Jiang, S.; Cheng, X.; Yu, S.; Zhang, H.; Xu, Z.; Peng, J. Elevation Dependency of Ecosystem Services Supply Efficiency in Great Lake Watershed. J. Environ. Manag. 2022, 318, 115476. [Google Scholar] [CrossRef]
- Liu, J.; Du, J.; Zhang, C.; Zhang, J.; Yang, H.; Donald, M.L.; Wu, Y.; Dong, T. Ecosystem Service Assessment under Ecological Restoration Programs: A Systematic Review of Studies from China. Front. Ecol. Evol. 2023, 11, 1152907. [Google Scholar] [CrossRef]
- Mao, D.; He, X.; Wang, Z.; Tian, Y.; Xiang, H.; Yu, H.; Man, W.; Jia, M.; Ren, C.; Zheng, H. Diverse Policies Leading to Contrasting Impacts on Land Cover and Ecosystem Services in Northeast China. J. Clean. Prod. 2019, 240, 117961. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, J.; Dai, C.; Zhang, G.; Wu, Y. Sustainable Development of Groundwater Resources under the Large-Scale Conversion of Dry Land into Rice Fields. Agric. Water Manag. 2024, 298, 108851. [Google Scholar] [CrossRef]
- Kroeger, T.; Casey, F. An Assessment of Market-Based Approaches to Providing Ecosystem Services on Agricultural Lands. Ecol. Econ. 2007, 64, 321–332. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Lai, L.; Wang, W.; Peng, J.; Zhao, R. Land Use Structure Optimization Based on Carbon Storage in Several Regional Terrestrial Ecosystems across China. Environ. Sci. Policy 2013, 25, 50–61. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Liang, X.; Shi, H.; Ou, J. Simulating the Change of Terrestrial Carbon Storage in China Based on the FLUS-InVEST Model. Trop. Geogr. 2019, 39, 397–409. [Google Scholar]
- Zhang, C.; Wang, L.; Song, Q.; Chen, X.; Gao, H.; Wang, X. Biomass Carbon Stocks and Dynamics of Forests in Heilongjiang Province from 1973 to 2013. China Environ. Sci. 2018, 38, 4678–4686. [Google Scholar]
- Qu, C.; Li, W.; Xu, J.; Shi, S. Blackland Conservation and Utilization, Carbon Storage and Ecological Risk in Green Space: A Case Study from Heilongjiang Province in China. Int. J. Environ. Res. Public Health 2023, 20, 3154. [Google Scholar] [CrossRef]
- Piao, S.-L.; Fang, J.-Y.; He, J.-S.; Xiao, Y. Spatial Distribution of Grassland Biomass in China. Chin. J. Plant Ecol. 2004, 28, 491. [Google Scholar]
- Guo, S. Analysis on Carbon Stock and Potential Carbon Sequestration in Heilongjiang Province. For. Eng. 2011, 27, 9–16. [Google Scholar]
- Yang, A.; Miao, Z.; Qiu, F.; Yang, Q.; Wang, Z.; Ma, D. A Study on Storage and Distribution of Soil Organic Carbon in Sanjiang Plain Based on GIS. Bull. Soil Water Conserv. 2015, 35, 155–158. [Google Scholar]
- Yu, R.; Zhao, G.; Chang, C.; Yuan, X.; Wang, Z. Random Forest Classifier in Remote Sensing Information Extraction: A Review of Applications and Future Development. Remote Sens. Inf. 2019, 34, 8–14. [Google Scholar]
Input Data | Resolution | Data Source and Processing |
---|---|---|
Digital elevation model (dem) | Raster, 30 m | https://srtm.csi.cgiar.org/srtmdata/ accessed on 20 May 2024. |
Land use/land cover (LULC) | Raster, 30 m | Resource and Environment Science and Data Center (www.resdc.cn) accessed on 12 May 2024. |
Carbon pools | Table | Supplementary S2 |
Threats table | Table | Supplementary S2 |
Sensitivity table | Table | Supplementary S2 |
Digital elevation model (DEM) | Raster, 30 m | https://srtm.csi.cgiar.org/srtmdata/ accessed on 20 May 2024. |
Precipitation | Raster, 1 km | National Tibetan Plateau Science Data Center (https://data.tpdc.ac.cn) accessed on 17 May 2024. |
Watershed | Shapefile | Resource and Environment Science and Data Center (www.resdc.cn) |
Biophysical table | Table | Supplementary S2 |
Potential evapotranspiration | Raster, 1 km | National Tibetan Plateau Science Data Center (https://data.tpdc.ac.cn) accessed on 17 May 2024. |
Root restricting layer depth | Raster, 1 km | National Tibetan Plateau Science Data Center (https://data.tpdc.ac.cn) accessed on 17 May 2024. |
Plant available water content | Raster, 1 km | National Tibetan Plateau Science Data Center (https://data.tpdc.ac.cn) accessed on 17 May 2024. |
NDVI | Raster, 30 m | Resource and Environment Science and Data Center (www.resdc.cn) accessed on 12 May 2024. |
Statistical data on grains | Table | China Agricultural Statistics Yearbook |
Slope | Raster, 30 m | Obtained based on ArcGIS slope analysis tool |
Potential evapotranspiration | Raster, 1 km | National Tibetan Plateau Science Data Center (https://data.tpdc.ac.cn) accessed on 20 May 2024. |
Annual average temperature | Raster, 1 km | National Earth System Science Data Center (www.geodata.cn) accessed on 18 May 2024. |
Soil type | Raster, 1 km | Resource and Environment Science and Data Center (www.resdc.cn) accessed on 20 May 2024. |
Distance from the river | Raster, 1 km | Obtained through the buffer analysis tool in ArcGIS |
The extent of farms and localities | Raster, 1 km | Obtained through the analysis tools in ArcGIS |
Ecosystem Service | Methods | Formulas |
---|---|---|
Carbon storage (CS) | InVEST, Carbon module | |
Soil conservation (SC) | InVEST, SDR: Sediment Delivery Ratio module | |
Water yield (WY) | InVEST, Annual water yield module | |
Habitat quality (HQ) | InVEST, Habitat quality module | |
Food production (FP) | NDVI |
Impact Factor | Indicator |
---|---|
X1 | Elevation |
X2 | Slope |
X3 | Annual precipitation |
X4 | Annual mean temperature |
X5 | Annual evapotranspiration |
X6 | NDVI |
X7 | Soil type |
X8 | Distance to river |
X9 | Policy factors |
Land Use Type | 1990 | 2000 | 2010 | 2020 | ||||
---|---|---|---|---|---|---|---|---|
Area (km2) | Proportion | Area (km2) | Proportion | Area (km2) | Proportion | Area (km2) | Proportion | |
Paddy | 5775.00 | 5.32% | 10,660.70 | 9.81% | 15,792.80 | 14.54% | 18,773.41 | 17.28% |
Dry farmland | 39,377.07 | 36.24% | 41,769.75 | 38.45% | 38,069.67 | 35.04% | 35,970.49 | 33.11% |
Forest | 37,405.84 | 34.43% | 36,176.32 | 33.30% | 33,398.17 | 30.74% | 34,626.71 | 31.87% |
Grassland | 7502.25 | 6.91% | 4219.46 | 3.88% | 4233.14 | 3.90% | 4033.78 | 3.71% |
Water | 5297.68 | 4.88% | 4955.26 | 4.56% | 4997.57 | 4.60% | 2960.40 | 2.72% |
Settlement | 2126.48 | 1.96% | 2112.43 | 1.94% | 2328.82 | 2.14% | 2232.39 | 2.05% |
Wetland | 11,146.60 | 10.26% | 8735.59 | 8.04% | 9786.77 | 9.01% | 10,026.52 | 9.23% |
Other | 12.96 | 0.01% | 14.27 | 0.01% | 36.60 | 0.03% | 16.61 | 0.02% |
q Statistic | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 |
---|---|---|---|---|---|---|---|---|---|
CS | 0.1424 | 0.1236 | 0.0539 | 0.07 | 0.0352 | 0.043 | 0.1935 | 0.0163 | 0.022 |
HQ | 0.1458 | 0.1074 | 0.0774 | 0.1146 | 0.04 | 0.0649 | 0.1483 | 0.0374 | 0.0704 |
SC | 0.5155 | 0.4899 | 0.132 | 0.0725 | 0.0148 | 0.1612 | 0.3425 | 0.0372 | 0.1128 |
WY | 0.1072 | 0.1172 | 0.0204 | 0.0654 | 0.0418 | 0.1397 | 0.1658 | 0.0252 | 0.0706 |
FP | 0.2207 | 0.1861 | 0.1275 | 0.0792 | 0.042 | 0.2726 | 0.2034 | 0.0194 | 0.107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, X.; Meng, L.; Li, Y.; Yu, Y.; Zang, D.; Zhang, S.; Zhou, J.; Li, D.; Luo, C.; Wang, Y.; et al. Impact of Paddy Field Expansion on Ecosystem Services and Associated Trade-Offs and Synergies in Sanjiang Plain. Agriculture 2024, 14, 2063. https://doi.org/10.3390/agriculture14112063
Dai X, Meng L, Li Y, Yu Y, Zang D, Zhang S, Zhou J, Li D, Luo C, Wang Y, et al. Impact of Paddy Field Expansion on Ecosystem Services and Associated Trade-Offs and Synergies in Sanjiang Plain. Agriculture. 2024; 14(11):2063. https://doi.org/10.3390/agriculture14112063
Chicago/Turabian StyleDai, Xilong, Linghua Meng, Yong Li, Yunfei Yu, Deqiang Zang, Shengqi Zhang, Jia Zhou, Dan Li, Chong Luo, Yue Wang, and et al. 2024. "Impact of Paddy Field Expansion on Ecosystem Services and Associated Trade-Offs and Synergies in Sanjiang Plain" Agriculture 14, no. 11: 2063. https://doi.org/10.3390/agriculture14112063
APA StyleDai, X., Meng, L., Li, Y., Yu, Y., Zang, D., Zhang, S., Zhou, J., Li, D., Luo, C., Wang, Y., & Liu, H. (2024). Impact of Paddy Field Expansion on Ecosystem Services and Associated Trade-Offs and Synergies in Sanjiang Plain. Agriculture, 14(11), 2063. https://doi.org/10.3390/agriculture14112063