Season and Processing Technology Impact on a Traditional Mountain Emmental Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Proximate Composition Analysis
2.2.2. Fatty Acid Profile Analysis
2.2.3. Amino Acid Analysis
2.2.4. Total Phenolic Content
2.3. Texture Parameters Analysis
2.3.1. Compression
2.3.2. Cutting Force
2.3.3. Color Determination
2.3.4. Sensory Properties
2.3.5. Statistics
3. Results
3.1. Proximate Composition
3.2. Fatty Acid Profile
3.3. Amino Acid Profile
3.4. Total Phenolic Content (TPC)
3.5. Texture Parameters
3.6. Color
3.7. Sensory Characteristics
3.8. Relationships Among the Chemical Properties and Samples
3.9. Relationships Among the Physical and Sensory Properties and Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Muehlhoff, E.; Bennett, A.; McMahon, D. Milk and Dairy Products in Human Nutrition; FAO: Rome, Italy, 2013; ISBN 9251078637. [Google Scholar]
- Manuelian, C.L.; Currò, S.; Penasa, M.; Cassandro, M.; De Marchi, M. Characterization of major and trace minerals, fatty acid composition, and cholesterol content of Protected Designation of Origin cheeses. J. Dairy Sci. 2017, 100, 3384–3395. [Google Scholar] [CrossRef]
- Hartmann, K.I.; Dunkel, A.; Hillmann, H.; Hansen, D.; Schieberle, P.; Hofmann, T.; Hinrichs, J. Identification of physical properties and volatile and non-volatile compounds for discrimination between different Emmental-type cheeses: A preliminary study. Dairy Sci. Technol. 2015, 95, 701–717. [Google Scholar] [CrossRef]
- Bisig, W.; Fröhlich-Wyder, M.T.; Jakob, E.; Wechsler, D. Comparison between Emmentaler PDO and generic emmental cheese production in Europe. Aust. J. Dairy Technol. 2010, 65, 206–213. [Google Scholar]
- Whalter, B.; Schmid, A.; Sieber, R.; Wehrmuller, K. Cheese in nutrition and health. Dairy Sci. Technol. 2008, 88, 389–405. [Google Scholar] [CrossRef]
- Mato Rodriguez, L.; Alatossava, T. Effects of copper on germination, growth and sporulation of Clostridium tyrobutyricum. Food Microbiol. 2010, 27, 434–437. [Google Scholar] [CrossRef]
- Khattab, A.R.; Guirguis, H.A.; Tawfik, S.M.; Farag, M.A. Cheese ripening: A review on modern technologies towards flavor enhancement, process acceleration and improved quality assessment. Trends Food Sci. Technol. 2019, 88, 343–360. [Google Scholar] [CrossRef]
- Sousa, M.J.; Ardö, Y.; McSweeney, P.L.H. Advances in the study of proteolysis during cheese ripening. Int. Dairy J. 2001, 11, 327–345. [Google Scholar] [CrossRef]
- Azarnia, S.; Robert, N.; Lee, B.H. Biotechnological methods to accelerate cheddar cheese ripening. Crit. Rev. Biotechnol. 2006, 26, 121–143. [Google Scholar] [CrossRef] [PubMed]
- Altomonte, I.; Conte, G.; Serra, A.; Mele, M.; Cannizzo, L.; Salari, F.; Martini, M. Nutritional characteristics and volatile components of sheep milk products during two grazing seasons. Small Rumin. Res. 2019, 180, 41–49. [Google Scholar] [CrossRef]
- Turri, F.; Cremonesi, P.; Battelli, G.; Severgnini, M.; Brasca, M.; Gandini, G.; Pizzi, F. High biodiversity in a limited mountain area revealed in the traditional production of Historic Rebel cheese by an integrated microbiota–lipidomic approach. Sci. Rep. 2021, 11, 10374. [Google Scholar] [CrossRef]
- Lopez, A.; Bellagamba, F.; Savoini, G.; Moretti, V.M.; Cattaneo, D. Characterization of fat quality in cow milk from alpine farms as influenced by seasonal variations of diets. Animals 2022, 12, 515. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Orellana Rivas, R.M.; Marins, T.N.; Chen, Y.C.; Gao, J.; Bernard, J.K. Impact of heat stress on lactational performance of dairy cows. Theriogenology 2020, 150, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Necula, D.; Tamas-Krumpe, O.; Feneșan, D.; Ungureanu-Iuga, M.; Ognean, L. Analysis of the milk raw materials used in the production of Dorna Swiss cheese in different seasons. Ukr. Food J. 2023, 12, 265–284. [Google Scholar] [CrossRef]
- Necula, D.; Tamas-Krumpe, O.; Fenesan, D.; Todoran, D.; Ognean, L. Aspects regarding the production and the hygiene- sanitary control of the Dorna Swiss Cheese. Sci. Pap. Ser. D. Anim. Sci. 2022, 65, 517–524. [Google Scholar]
- Necula, D.; Ungureanu-Iuga, M.; Dan, S.D.; Tamas-Krumpe, O.; Ognean, L. Analysis of the mineral profile of milk and Swiss cheese from Ţara Dornelor in relation to seasonal and technological factors. Stud. UBB Chem. 2023, 68, 35–49. [Google Scholar] [CrossRef]
- AOAC International. Official Method 933.05, Fat in Cheese; AOAC: Rockville, MD, USA, 2013. [Google Scholar]
- AOAC International. Official Method 969.19-1974, Moisture in Cheese; AOAC: Rockville, MD, USA, 2015. [Google Scholar]
- AOAC International. Official Method 935.4, Gravimetric Method, Ash of Cheese; AOAC: Rockville, MD, USA, 2015. [Google Scholar]
- AOAC International. Official Method 920.123-1920, Nitrogen in Cheese; AOAC: Rockville, MD, USA, 2015. [Google Scholar]
- Poșta, D.S.; Radulov, I.; Cocan, I.; Berbecea, A.A.; Alexa, E.; Hotea, I.; Iordănescu, O.A.; Băla, M.; Cântar, I.C.; Rózsa, S.; et al. Hazelnuts (Corylus avellana L.) from spontaneous flora of the west part of Romania: A Source of Nutrients for Locals. Agronomy 2022, 12, 214. [Google Scholar] [CrossRef]
- Aleya, A.; Mihok, E.; Pecsenye, B.; Jolji, M.; Kertész, A.; Bársony, P.; Vígh, S.; Cziaky, Z.; Máthé, A.B.; Burtescu, R.F.; et al. Phytoconstituent profiles associated with relevant antioxidant potential and variable nutritive effects of the olive, sweet almond, and black mulberry gemmotherapy extracts. Antioxidants 2023, 12, 1717. [Google Scholar] [CrossRef]
- Al-Hilphy, A.R.; Ali, H.I.; Al-IEssa, S.A.; Gavahian, M.; Mousavi-Khaneghah, A. Assessing compositional and quality parameters of unconcentrated and refractive window concentrated milk based on color components. Dairy 2022, 3, 400–412. [Google Scholar] [CrossRef]
- SR 6345:1995; Milk and Dairy Products. Sensory Analysis. ASRO: Bucharest, Romania, 1995.
- Liu, N.; Pustjens, A.M.; Erasmus, S.W.; Yang, Y.; Hettinga, K.; van Ruth, S.M. Dairy farming system markers: The correlation of forage and milk fatty acid profiles from organic, pasture and conventional systems in the Netherlands. Food Chem. 2020, 314, 126153. [Google Scholar] [CrossRef]
- Timlin, M.; Tobin, J.T.; Brodkorb, A.; Murphy, E.G.; Dillon, P.; Hennessy, D.; O’Donovan, M.; Pierce, K.M.; O’Callaghan, T.F. The impact of seasonality in pasture-based production systems on milk composition and functionality. Foods 2021, 10, 1–32. [Google Scholar] [CrossRef]
- Florio, M.; Giannone, C.; Ianni, A.; Bennato, F.; Grotta, L.; Martino, G. Seasonal and Feeding System Effects on Qualitative Parameters of Bovine Milk Produced in the Abruzzo Region (Italy). Agriculture 2022, 12, 917. [Google Scholar] [CrossRef]
- Fox, P.F.; Guinee, T.P. Cheese Science and Technology. In Milk and Dairy Products in Human Nutrition; Wiley-Blackwell Publishers: Oxford, UK, 2013; ISBN 9780470674185. [Google Scholar]
- Mihai, A.L.; Mulțescu, M.; Negoiță, M.; Horneț, G.A.; Surdu, I.; Nicula, A.S. Nutritional Characterization of Some Romanian Mountain Products. Ann. Univ. Dunarea Jos Galati, Fascicle VI Food Technol. 2022, 46, 104–124. [Google Scholar] [CrossRef]
- Leiber, F.; Kreuzer, M.; Nigg, D.; Wettstein, H.R.; Scheeder, M.R.L. A study on the causes for the elevated n-3 fatty acids in cows’ milk of alpine origin. Lipids 2005, 40, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Koba, K.; Yanagita, T. Health benefits of conjugated linoleic acid (CLA). Obes. Res. Clin. Pract. 2014, 8, e525–e532. [Google Scholar] [CrossRef]
- Shin, Y.K.; Oh, N.S.; Nam, M.S. Changes of organic acids and free fatty acids during the ripening of emmental cheese. Korean J. Food Sci. Anim. Resour. 2011, 31, 928–934. [Google Scholar] [CrossRef]
- Ziarno, M.; Bryś, J.; Kowalska, E.; Cichońska, P. Effect of metabolic activity of lactic acid bacteria and propionibacteria on cheese protein digestibility and fatty acid profile. Sci. Rep. 2023, 13, 15363. [Google Scholar] [CrossRef]
- Mato Rodriguez, L.; Ritvanen, T.; Joutsjoki, V.; Rekonen, J.; Alatossava, T. The role of copper in the manufacture of Finnish Emmental cheese. J. Dairy Sci. 2011, 94, 4831–4842. [Google Scholar] [CrossRef]
- Muñoz, N.; Ortigosa, M.; Torre, P.; Izco, J.M. Free amino acids and volatile compounds in an ewe’s milk cheese as affected by seasonal and cheese-making plant variations. Food Chem. 2003, 83, 329–338. [Google Scholar] [CrossRef]
- Addis, M.; Fiori, M.; Riu, G.; Pes, M.; Salvatore, E.; Pirisi, A. Physico-chemical characteristics and acidic profile of PDO Pecorino Romano cheese: Seasonal variation. Small Rumin. Res. 2015, 126, 73–79. [Google Scholar] [CrossRef]
- Danieli, P.P.; Lopez, A.; Bellagamba, F.; Vetturini, T.; Bernabucci, U.; Ronchi, B.; Moretti, V.M.; Basiricò, L. Effects of season and management on fatty acid profile, ACE-inhibitory activity and anti-oxidant properties of Italian Alpine cheeses. Ital. J. Anim. Sci. 2022, 21, 1021–1033. [Google Scholar] [CrossRef]
- Levkov, V.; Gadžovska, S.; Tuševski, O.; Gjorgovska, N.; Mateva, N. Preliminary study of total phenolic content in traditional sheep cheese (Bieno Sirenje). Maced. J. Anim. Sci. 2014, 4, 31–35. [Google Scholar] [CrossRef]
- Prema, P.; Smila, D.; Palavesam, A.; Immanuel, G. Production and characterization of an antifungal compound (3-phenyllactic acid) produced by Lactobacillus plantarum strain. Food Bioprocess Technol. 2010, 3, 379–386. [Google Scholar] [CrossRef]
- Renes, E.; Fernández, D.; Abarquero, D.; Ladero, V.; Álvarez, M.A.; Tornadijo, M.E.; Fresno, J.M. Effect of forage type, season, and ripening time on selected quality properties of sheep milk cheese. J. Dairy Sci. 2021, 104, 2539–2552. [Google Scholar] [CrossRef] [PubMed]
- de Jesus Filho, M.; Klein, B.; Quintão Teixeira, L.J.; Silva, J.G.S.; Pallone, J.A.L.; Wagner, R.; Godoy, H.T. The influence of production units and seasons on the physicochemical characteristics, mineral and fatty acid content, and texture profile of the artisanal cheeses from Serra da Canastra, Brazil. J. Food Compos. Anal. 2023, 123, 105589. [Google Scholar] [CrossRef]
- Rohm, H.; Jaros, D. Colour of hard cheese: 2. Factors of influence and relation to compositional parameters. Eur. Food Res. Technol. 1997, 204, 259–264. [Google Scholar]
- Pillonel, L.; Dufour, E.; Schaller, E.; Bosset, J.O.; De Baerdemaeker, J.; Karoui, R. Prediction of colour of European Emmental cheeses by using near infrared spectroscopy: A feasibility study. Eur. Food Res. Technol. 2007, 226, 63–69. [Google Scholar] [CrossRef]
- Faulkner, H.; O’Callaghan, T.F.; McAuliffe, S.; Hennessy, D.; Stanton, C.; O’Sullivan, M.G.; Kerry, J.P.; Kilcawley, K.N. Effect of different forage types on the volatile and sensory properties of bovine milk. J. Dairy Sci. 2018, 101, 1034–1047. [Google Scholar] [CrossRef]
- Kirdar, S.S.; Ocak, E.; Köse, S.; Özer, E. Seasonal changes in mineral and trace elements of çanak cheese. Asian J. Chem. 2013, 25, 6177–6180. [Google Scholar] [CrossRef]
Fatty Acid | CAW | CAS | TCW | TCS |
---|---|---|---|---|
Caproic acid, C6:0 | 0.75 ± 0.19 aA | 0.25 ± 0.19 bA | 0.90 ± 0.15 aA | 0.18 ± 0.09 bA |
Capric acid, C10:0 | 1.46 ± 0.24 aB | 1.02 ± 0.17 bB | 1.76 ± 0.22 aA | 1.38 ± 0.30 bA |
Lauric acid, C12:0 | 1.97 ± 0.26 aB | 1.35 ± 0.22 bB | 2.33 ± 0.21 aA | 1.78 ± 0.34 bA |
Tetradecenoic acid, cis | 0.74 ± 0.08 aA | 0.36 ± 0.07 bA | 0.88 ± 0.05 aA | 0.47 ± 0.06 bA |
Myristic acid, C14:0 | 9.87 ± 1.10 aA | 6.66 ± 0.95 bA | 10.91 ± 0.80 aA | 8.36 ± 1.26 bA |
14 methyl myristic acid | 0.69 ± 0.07 aA | 0.56 ± 0.10 bA | 0.76 ± 0.09 aA | 0.61 ± 0.07 bA |
Pentadecanoic acid, C15:0 | 1.60 ± 0.13 A | 1.27 ±0.18 bA | 1.55 ± 0.16 aA | 1.22 ± 0.13 bA |
Palmitoleic acid, C16:1 | 1.30 ± 0.11 A | 0.71 ± 0.14 bA | 1.39 ± 0.18 aA | 0.82 ± 0.08 bA |
13-methyl palmitic acid, C16:0 | 0.53 ± 0.04 bA | 21.50 ± 3.07 aA | 0.48 ± 0.08 bA | 24.33 ± 2.84 aA |
15-methyl palmitic acid, C16:0 | 0.53 ± 0.06 aA | 0.39 ± 0.02 bA | 0.50 ± 0.10 aA | 0.40 ± 0.02 bA |
Isomargaric acid, C17:0 | 0.51 ± 0.06 aA | 0.48 ± 0.07 aA | 0.53 ± 0.04 aA | 0.52 ± 0.04 aA |
Margaric acid, C17:0 | 1.03 ± 0.06 aA | 0.81 ± 0.11 bA | 0.94 ± 0.10 aA | 0.73 ± 0.08 bA |
Linolenic acid, C18:3 | 1.26 ± 0.10 aA | 1.54 ± 0.27 aA | 1.35 ± 0.21 aA | 1.38 ± 0.14 aA |
Oleic acid, C18:1, Δ9 cis | 22.21 ± 0.81 aA | 20.57 ± 4.52 aA | 21.16 ± 0.66 aA | 21.11 ± 1.88 aA |
Isooleic acid, C18:1, Δ10 | 2.50 ± 0.31 aA | 0.88 ± 0.17 bA | 2.87 ± 0.14 aA | 0.83 ± 0.08 bA |
Vaccenic acid, C18:1, Δ11 | 0.29 ± 0.05 bA | 4.11 ± 0.68 aA | 0.40 ± 0.33 bA | 4.00 ± 0.54 aA |
13-Octadecenoic acid, C18:1, Δ13 | 3.87 ± 0.78 aA | 0.43 ± 0.05 aA | 0.41 ± 0.35 aA | 0.50 ± 0.01 aA |
Stearic acid, C18:0 | 12.31 ± 1.07 bA | 15.07 ± 2.16 aA | 11.96 ± 1.49 bA | 14.98 ± 1.24 aA |
1-Methylbutyl hexadecanoate | 1.84 ± 0.24 aA | 1.32 ± 0.17 aA | 2.12 ± 0.09 aA | 1.32 ± 0.09 aA |
Arachidic acid, C20:0 | 0.37 ± 0.05 bA | 5.13 ± 0.31 aA | 0.36 ± 0.10 bA | 3.90 ± 0.24 aA |
Linoleic acid, C18:2, Δ9, 12 | 1.78 ± 0.12 aA | 0.46 ± 0.34 bA | 1.49 ± 0.02 aA | 0.26 ± 0.17 bA |
CLA, C18:2, Δ9, 11 | 0.90 ± 0.12 aA | 1.16 ± 0.07 aA | 1.06 ± 0.05 aA | 2.12 ± 0.14 aA |
11,14-Octadecadienoic acid, C18:2, Δ11, 14 | 0.25 ± 0.03 bA | 3.15 ± 0.18 aA | 0.38 ± 0.02 bA | 0.75 ± 0.04 aA |
AA (m/m%) | CAW | CAS | TCW | TCS |
---|---|---|---|---|
ASP | 2.01 ± 0.10 aA | 1.50 ± 0.11 bA | 1.85 ± 0.11 aA | 1.50 ± 0.10 bA |
THR | 1.10 ± 0.06 aA | 0.74 ± 0.13 bA | 1.00 ± 0.09 aA | 0.79 ± 0.05 bA |
SER | 1.58 ± 0.05 aA | 1.17 ± 0.11 bA | 1.45 ± 0.05 aA | 1.17 ± 0.09 bA |
GLU | 5.88 ± 0.16 aA | 5.61 ± 0.45 aA | 5.68 ± 0.24 aA | 5.83 ± 0.28 aA |
PRO | 4.10 ± 0.19 aA | 4.09 ± 0.56 aA | 3.99 ± 0.28 aA | 3.38 ± 0.37 aA |
GLY | 0.49 ± 0.02 aA | 0.41 ± 0.06 bA | 0.46 ± 0.03 aA | 0.42 ± 0.02 bA |
ALA | 0.77 ± 0.03 aA | 0.65 ± 0.07 bA | 0.76 ± 0.04 aA | 0.67 ± 0.03 bA |
CYS | 0.07 ± 0.02 aA | 0.05 ± 0.02 bA | 0.08 ± 0.01 aA | 0.06 ± 0.02 bA |
VAL | 1.50 ± 0.06 aA | 1.39 ± 0.17 aA | 1.47 ± 0.07 aA | 1.44 ± 0.07 aA |
MET | 0.70 ± 0.03 aA | 0.70 ± 0.08 aA | 0.67 ± 0.04 aA | 0.71 ± 0.04 aA |
ILE | 1.06 ± 0.05 aA | 1.08 ± 0.11 aA | 1.08 ± 0.11 aA | 1.12 ± 0.05 aA |
LEU | 1.46 ± 0.09 bA | 2.23 ± 0.14 aA | 1.51 ± 0.20 bA | 2.23 ± 0.12 aA |
TYR | 1.61 ± 0.06 aA | 1.10 ± 0.02 bA | 1.44 ± 0.12 aA | 1.17 ± 0.08 bA |
PHE | 1.57 ± 0.08 aA | 1.04 ± 0.02 bA | 1.41 ± 0.10 aA | 1.13 ± 0.07 bA |
HIS | 0.67 ± 0.03 aA | 0.60 ± 0.04 bA | 0.64 ± 0.05 aA | 0.58 ± 0.07 bA |
LYS | 1.38 ± 0.08 bA | 2.51 ± 0.28 aA | 1.37 ± 0.20 bA | 2.36 ± 0.12 aA |
ARG | 0.74 ± 0.05 aA | 0.48 ± 0.01 bA | 0.54 ± 0.12 aA | 0.47 ± 0.06 bA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Necula, D.; Ungureanu-Iuga, M.; Máthé, E.; Pecsenye, B.; Surdu, I.; Turcuş, V.; Ognean, L. Season and Processing Technology Impact on a Traditional Mountain Emmental Cheese. Agriculture 2024, 14, 2149. https://doi.org/10.3390/agriculture14122149
Necula D, Ungureanu-Iuga M, Máthé E, Pecsenye B, Surdu I, Turcuş V, Ognean L. Season and Processing Technology Impact on a Traditional Mountain Emmental Cheese. Agriculture. 2024; 14(12):2149. https://doi.org/10.3390/agriculture14122149
Chicago/Turabian StyleNecula, Doru, Mădălina Ungureanu-Iuga, Endre Máthé, Bence Pecsenye, Ioan Surdu, Violeta Turcuş, and Laurenț Ognean. 2024. "Season and Processing Technology Impact on a Traditional Mountain Emmental Cheese" Agriculture 14, no. 12: 2149. https://doi.org/10.3390/agriculture14122149
APA StyleNecula, D., Ungureanu-Iuga, M., Máthé, E., Pecsenye, B., Surdu, I., Turcuş, V., & Ognean, L. (2024). Season and Processing Technology Impact on a Traditional Mountain Emmental Cheese. Agriculture, 14(12), 2149. https://doi.org/10.3390/agriculture14122149