Directions in Ornamental Herbaceous Plant Selection in the Central European Temperate Zone in the Time of Climate Change: Benefits and Threats
Abstract
:1. Introduction: Why Should We Look for New Ornamental Plants?
2. Plants and Environment
2.1. Most of the Human Population Exists in Inhospitable Urbanized Areas with a High Level of Anthropopression
2.2. Climate Change Threatens Local and Global Biodiversity
- -
- Hot weather and record-breaking heat waves include sudden and prolonged periods of extremely high temperatures and accompanying dry and hot air.
- -
- Heavy drenching rainfall and flash floods include excessive and sudden rainfall that can lead to flooding, waterlogging, or landslides.
- -
- Hailstorms and snow at unusual times of the year result in damage to property and agricultural crops.
- -
- Heavy lightning and dry thunderstorms result in power grid failures and fires.
- -
- Fires and wildfires are destructive to all ecosystems.
- -
- Water deficits and droughts result in prolonged periods of a lack of rainfall, counted in years, which can lead to water shortages and problems with plant growth and development as well as the yield of agricultural crops.
- -
- Acid rain is rain with a low pH. It is formed when rainwater mixes with gases emitted by industry, cars, and other sources of pollution. The sulfuric acid and nitrogen oxides react with rainwater to form sulfuric acid and nitric acid. Harmful to plants, animals, and humans, acid rain causes soil and groundwater to acidify, which destroys ecosystems and can lead to species extinction.
- -
- Windstorms and tornadoes cause damage to property and destroy ecosystems [36].
2.3. Salt Tolerance
2.4. Risks Associated with the Introduction of Alien Species
No. | Taxa | Family | Distribution | Habitat Type | Threat and Conservation Status | Vitality | Cultivation | Invasiveness |
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1 | Asphodelus fistulosus L. | Asphodelaceae | Mediterranean region (Eurasia, Asia, Africa) [88,89] | forest, shrubland, rocky areas [86] | last concerns [86], not evaluated [90] | annual or short-lived perennial | yes [88,89] | California, Arizona, New Mexico, and Texas [91,92] |
2 | Allium aestivus Brot. | Amaryllidaceae | Southwestern Europe—Portugal, Spain [88,89] | grasslands, rocky outcroppings, dry slopes, and other open areas from low to middle elevations in the mountains [93] | no data [86] | perennial with a bulb | — | — |
3 | Allium neapolitanum Cyr. | Amaryllidaceae | Western Asia, Cyprus, East Aegean Is., Southeastern Europe—Albania, Greece, Italy, Crete, Sicilia, France, Portugal, Spain [88,89] | grasslands, rocky outcroppings, dry slopes, and other open areas from low to middle elevations in the mountains [93] | no data [86], last concern [90] | perennial with a bulb | yes [88,89] | parts of the U.S., (California, Texas, Louisiana, and Florida) [91,92] |
4 | Allium siculum Ucria | Amaryllidaceae | Western Asia, Eastern and South-eastern Europe: Bulgaria, Greece, Italy, Romania, Sicilia, Corse, Turkey in Europe, Crimea, France, Sardegna [88,89] | grasslands, rocky outcroppings, dry slopes, and other open areas from low to middle elevations in the mountains [93] | no data [86], not evaluated [90] | perennial with a bulb | yes [88,89] | — |
5 | Anchusa cespitosa Lam. | Boraginaceae | Western Asia, Turkey, Southeastern Europe, Crete [88,89] | dry grasslands, scrublands, and rocky slopes [93] | rare (R) according to IUCN 19,115 [86], not evaluated [90] | annual herb or cespitose perennial | yes [88,89] | — |
6 | Anchusa variegata L. Lehm. | Boraginaceae | Western Asia, East, Aegean Is., Southeastern Europe—Greece, Crete [88,89] | rocky locations, on slopes, and in ditches, often near the sea [93] | no data [86] | annual herb or perennial | yes [88,89] | is a noxious weed in Oregon, Washington, British Columbia; in Montana Lincoln, and Ravalli countries [91,92] |
7 | Centaurea spinosa L. | Asteraceae | Western Asia, East Aegean Is., Turkey, Southeastern Europe Greece, Crete [88,89] | usually near the sea [93] | no data [86,89,90] | perennial | yes [88,89] | in the Western United States [91,92] |
8 | Cichorium spinosum L. | Asteraceae | Northern Africa, Libya, temperate Western Asia, Cyprus, East Aegean Is., Turkey Europe, South Europe [88,89] | stony locations, from the sea right up to the mountain [93] | no data [86,89] | biennial or perennial | yes [88,89] | — |
9 | Colchicum bivonae Guss. | Colchicaceae | Temperate Western Asia, East Aegean Is., South Europe, Albania, Bulgaria, Greece, Italy, Sicilia, Turkey in Europe, Sardegna [88,89] | occurs in dry, grassy, and stony places in scrub; in the belt of xerothermic oak forests [93] | no data [86,89] | perennial with a bulb | yes [88,89] | — |
10 | Colchicum chalcedonicum Azn. | Colchicaceae | Temperate Western Asia East Aegean Is., Southeastern Europe—Albania Bulgaria, Greece, Italy, Sicilia, Turkey in Europe, Southwestern Europe—Sardegna [88,89] | on dry rocky or sandy hills [93] | no data [86,89] | perennial with a bulb | yes [88,89] | — |
11 | Colchicum macrophyllum B.L. Burtt | Colchicaceae | Western Asia, East Aegean Is., Turkey Europe, Southeastern Europe Greece, Crete [88,89] | on dry rocky or sandy hills [93] | no data [86,89] | perennial with a bulb | yes [88,89] | — |
12 | Convolvulus dorycnium L. | Convolvulaceae | Northern Africa, Libya, Tunisia, temperate Middle Asia Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan, Western Asia—Afghanistan, Cyprus, East Aegean Is., Iran, Lebanon, Syria, Palestine, Turkey, Southeastern Europe—Greece, Crete [88,89] | infertile and dry locations, usually near the sea [93] | no data [86,89] | perennial herbaceous plant, subshrub [94] | not found | — |
13 | Crocus boryi J.Gay. | Iridaceae | Southeastern Europe, Greece, Crete [88,89] | common in rocky places in phrygana [93] | no data [86,89] | cormous perennial | yes [88,89] | — |
14 | Crocus tournefortii J. Gay | Iridaceae | Western Asia, East Aegean Is., Southeastern Europe—Greece, Crete [88,89] | dryish, often stony places or scrub [93] | no data [86,89] | cormous perennial | yes [88,89] | — |
15 | Cyclamen hederifolium Aiton | Primulaceae | Western Asia, East Aegean Is., Turkey in Europe, Middle Europe—Switzerland, Southeastern Europe Albania, Bulgaria, Greece, Italy, Southwestern Europe, France [88,89] | grows in shade and deciduous woodland, sometimes among rocks under scrub, from sea level to 1300 m [93] | no data [86,89] | perennial grown from a flat disc-like bulb | yes [88,89] | — |
16 | Digitalis ferruginea L. | Plantaginaceae | North Caucasus, Transcaucasus Western Asia, Lebanon–Syria, Turkey, Europe Middle Europe—Hungary, Southeastern Europe—Albania, Bulgaria, Greece, Italy, Romania [88,89] | lowland, open woodland, grassland, scrub, and verges wild | no data [86,89] | biennial or short-lived perennial plant | yes [88,89] | — |
18 | Drimia maritima (L.) Stearn | Asparagaceae | Northern Africa, Algeria, Southwestern Europe Baleares, Portugal, Spain [88,89] | open spaces in sandy or gravely soil and on limestone cliffs [93] | no data [86,89] | bulbous perennial | yes [88,89] | — |
19 | Echium angustifolium Mill. | Boraginaceae | Northeast Tropical Africa Chad, Egypt, Libya, Tunisia, Asia, temperate—Arabian, Peninsula, Kuwait, Western Asia, Cyprus, East Aegean Is., Lebanon–Syria, Palestine, Sinai, Turkey, Southeastern Europe—Greece, Crete [88,89] | roadsides, waste ground, coastal land, and other rocky and stony areas [93] | no data [86,89] | biannual or short-lived perennial | yes [88,89] | South Africa, Australia, New Zealand, and parts of South America and the United States [91,92] |
20 | Euphorbia dendroides L. | Euphorbiaceae | Northern Africa—Algeria, Egypt, Libya, Morocco, Tunisia, Asia, temperate—Western Asia East, Aegean Is., Lebanon–Syria, Palestine, Turkey, Southeastern Europe—Albania, Greece, Italy, Crete, Sicilia, Southwestern Europe—Baleares, Corsica, France, Sardegna, Spain [88,89] | protected and sunny mountainsides in hilly areas near the sea [93] | no data [86,89] | a rounded shrub | yes [88,89] | — |
21 | Hypericum amblyocalyx Coustur. and Gand. | Hypericaceae | Southeastern Europe, Crete [88,89] | dry, desert areas to being in shallow water [93] | no data [86,89] | perennial | not found | — |
22 | Malva arborea (L.) Webb and Berthel | Malvaceae | Northern Africa Algeria, Libya, Tunisia, Asia, temperate Western Asia East Aegean Is., Lebanon–Syria, Palestine, Turkey, Northern Europe—Great Britain, Ireland, Southeastern Europe—Albania, Greece, Italy, Crete, Sicilia, Southwestern Europe—Baleares, Corsica, France, Portugal, Sardegna, Spain [88,89] | maritime rocks or waste ground by the sea [93] | no data [86,89] | biennial/short-lived perennial | yes [88,89] | — |
23 | Paeonia clusii Stern | Paeoniaceae | Western Asia, East Aegean Is., Southeastern Europe—Crete [88,89] | rocky places, rich soil, open woodland [93] | no data [86,89] | herbaceous perennials, subshrubs | yes [88,89] | — |
24 | Petromarula pinnata A.DC. | Campanulaceae | Southeastern Europe—Crete [88,89] | calcareous cliffs, crevices, steep banks, rocky and shady places, old stone walls [93] | no data [86,89] | robust perennial plant | yes [88,89] | — |
25 | Prospero autumnale (L.) Speta | Asparagaceae | Northern Africa—Algeria, Libya, Morocco, Tunisia, North Caucasus, Western Asia—Lebanon–Syria, Palestine, Turkey; Eastern Europe—Crimea, Ukraine, Northern Europe—Great Britain, Mediterranean region [88,89] | rocky hillsides with scrubland vegetation and open dry shrubby [93] | no data [86,89] | bulbous perennial | not found | — |
26 | Prunella cretensis Gand. | Lamiaceae | Southeastern Europe, Crete [88,89] | seasonally damp patches in mixed scrub, open woodland [93] | no data [86,89] | pubescent perennial | not found | — |
27 | Tulipa humilis Herb. | Liliaceae | North Caucasus, Western Asia Iran, Lebanon–Syria, Turkey [88,89] | rocky mountain slopes, well-drained soils [95] | no data [86,89] | bulbous perennial | yes [88,89] | — |
28 | Valeriana asarifolia Dufr. | Caprifoliaceae | Western Asia, East Aegean Is., Southeastern Europe—Greece, Crete [88,89] | cliffs, rocks, walls, ravines, boulders [93] | no data [86,89] | short tuberous rhizome | not found | — |
No. | Taxa | Family | Distribution | Habitat Type | Threat and Conservation Status | Vitality | Cultivation | Invasiveness |
---|---|---|---|---|---|---|---|---|
1 | Anemonoides caucasica (Rupr.) Holub | Ranunculaceae | North Caucasus, Transcaucasus, Western Asia—Iran, Turkey, Abkhazia in the Western Caucasus and through Georgia and Armenia, enters NW Iran [88,89] | rich, humus-filled soil [96] | not listed as threatened or endangered [86,89] | perennial with an oblong to cylindrical, sometimes branched, rootstock (tuber-like rhizomes) | — | — |
2 | Corydalis angustifolia (M.Bieb.) DC. | Papaveraceae | North Caucasus, Transcaucasus, Western Asia—Iran, Turkey [88,89] | grassland and thickets [97] | no data [86,89] | tuberous perennial | yes [88,89] | — |
3 | Erythronium caucasicum Woronow | Liliaceae | North Caucasus, Transcaucasus, Western Asia, Iran [88,89] | grows in humus-rich soil in moist woodland, well-drained soil [97] | no conservation status for this taxon [86,89] | bulbous perennial | — | — |
4 | Tulipa humilis var. violacea (Boiss. and Buhse) Christenh. | Liliaceae | North Caucasus, Western Asia—Iran, Lebanon–Syria, Turkey [88,89] | thrives in rocky and well-drained areas [97] | no conservation status for this taxon [86,89] | dwarf perennial bulbs | yes [88,89] | — |
5 | Tulipa suaveolens Roth | Liliaceae | North Caucasus, Transcaucasus, Middle Asia—Kazakhstan, Eastern Europe, Krym [88,89] | well-draining, neutral, or calcareous soils [96] | no data [86,89] | bulbous herbaceous perennial | yes [88,89] | — |
No. | Taxa | Family | Distribution | Habitat Type | Threat and Conservation Status | Vitality | Cultivation | Invasiveness |
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1 | Allium callidyction C.A.Mey. ex Kunth | Amaryllidaceae | Temperate Caucasus, Transcaucasus, Western Asia—Iran, Iraq, Turkey [88,89] | well-drained soil [98] | no data [86,89] | perennial with a bulb | — | — |
2 | Allium myrianthum Boiss. | Amaryllidaceae | Northern Africa—Egypt, Libya, temperate Western Asia, Iran, Iraq, Lebanon–Syria, Sinai, Turkey [88,89] | it prefers full sun and well-drained soil and will tolerate a wide range of soil types [98] | predicted extinction risk: not threatened [92] | perennial with a bulb | — | — |
3 | Allium paradoxum (M.Bieb.) G.Don | Amaryllidaceae | Asia, temperate—Caucasus, North Caucasus, Transcaucasus, Middle Asia: Turkmenistan, Western Asia, Iran [88,89] | hedge banks and waste places on damp soils [98] | no data [86,89] | herbaceous perennial with a small solitary bulb | yes [99] | considered an invasive in Europe [99] |
4 | Colchicum soboliferum (C.A.Mey.) Stef. | Colchicaceae | Asia, temperate—Caucasus, Transcaucasus, Middle Asia: Tajikistan, Turkmenistan; Western Asia—Afghanistan, East Aegean Is., Iran, Lebanon–Syria, Turkey, Southeastern Europe—Bulgaria, Greece, Romania, Turkey [88,89] | sunny situation on moderately moist and sandy soil [98] | no data [86,89] | perennial with a bulb | yes [88,89] | — |
5 | Eremurus altaicus Steven | Asphodelaceae | Asia, temperate, China Xinjiang, Middle Asia: Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan, Mongolia, Siberia, Altay [88,89] | dry grasslands and semi-desert [98] | no conservation status for this taxon [86,89] | clump-forming perennials | yes [88,89] | — |
6 | Eremurus olgae Regel. | Asphodelaceae | Asia, temperate, Middle Asia: Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan, Western Asia: Afghanistan, Iran [88,89] | grow on clayey soil, light (sandy) and medium (loamy) soils, and prefers well-drained soil [98] | no conservation status for this taxon [86,89] | clump-forming perennials | not found | — |
7 | Eremurus persicus Boiss | Asphodelaceae | Asia, temperate, Western Asia, Afghanistan, Iran, Asia, tropical Indian subcontinent Pakistan, West Himalaya [88,89] | grows in arid and semi-arid regions, on rocky mountains [98] | no conservation status for this taxon [86,89] | clump-forming perennials | yes [88,89] | — |
8 | Fritillaria olivieri Baker | Liliaceae | Asia, temperate, Western Asia, Iran [88,89] | meadows and near streams, often growing in wet soils [98] | no conservation status for this taxon | perennial herbaceous bulbiferous geophytes | yes [88,89] | — |
9 | Fritillaria reuteri Boiss. | Liliaceae | Asia, temperate, Western Asia, Iran, Turkey [88,89] | meadows and near streams, often growing in wet soils [98] | no conservation status for this taxon | a perennial herbaceous bulbous plant | — | — |
10 | Hyacinthus litwinovii Czerniak | Asparagaceae | Central Asia and the Caucasus, northeast Iran to southern Turkmenistan [88,89] | cool, higher elevation habitats and loose soils [98] | no conservation status for this taxon | bulbous perennials | — | — |
11 | Lilium akkusianum Gämperle | Liliaceae | Asia, temperate, Western Asia, Turkey [88,89] | mesophytic forests with the dominant tree species [98] | predicted extinction risk: threatened | bulbous perennials | — | — |
12 | Lilium ciliatum P.H. Davies | Liliaceae | Asia, temperate, Western Asia, Turkey [88,89] | well-drained, slightly acidic to neutral soil enriched with organic matter [98] | no data [86,89] | bulbous perennials | yes [88,89] | — |
13 | Tulipa armena Boiss. | Liliaceae | Northeast Turkey through Transcaucasia (Armenia, Azerbaijan, and Georgia) to northwestern Iran [88,89] | grows on rocky slopes and screes [98] | predicted extinction risk: not threatened | a bulbous herbaceous perennial | yes [88,89] | — |
14 | Tulipa linifolia Regel | Liliaceae | Asia, temperate, Middle Asia—Tajikistan, Uzbekistan, Western Asia Afghanistan, Iran [88,89] | screes and rocky meadows in mountains [98] | no data [86,89] | a bulbous herbaceous perennial | yes [88,89] | — |
No. | Taxa | Family | Distribution | Habitat Type | Threat and Conservation Status | Vitality | Cultivation | Invasiveness |
---|---|---|---|---|---|---|---|---|
1 | Galatella altaica Tzvel. | Asteraceae | China Xinjiang, Kazakhstan, Mongolia Mongolia, Siberia, Altay [88,89] | mountain steppes, slightly river floodplains, solonetzic sites, well-drained soils [100] | no statutory protection; neoendemic [100] | perennial herb | Tomsk [101] | — |
2 | Tulipa ferganica Vved. | Liliaceae | Temperate Middle Asia, Kyrgyzstan, Uzbekistan [88,89] | growing on the rocky hillsides [98] | no conservation status [86] | a bulbous herbaceous perennial | yes [88,89] | — |
3 | Tulipa fosteriana W. Irving | Liliaceae | Temperate Middle Asia Kyrgyzstan, Tajikistan, Uzbekistan Western Asia Afghanistan [88,89] | well-draining soil [102] | no conservation status [86] | a bulbous herbaceous perennial | yes [88,89] | — |
4 | Tulipa ingens Hoog | Liliaceae | Asia, temperate, Middle Asia—Tajikistan, Uzbekistan [88,89] | well-drained soil in full sun [97] | — | a bulbous herbaceous perennial | — | — |
5 | Tulipa intermedia Tojibaev and J.J. de Groot | Liliaceae | Asia, temperate, Middle Asia—Uzbekistan [88,89] | gray-brown soils of the southern foothills [102] | conservation status is critically endangered | a bulbous herbaceous perennial | — | — |
6 | Tulipa korolkowii Regel | Liliaceae | Temperate Middle Asia—Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan [88,89] | alpine areas deep in the mountains [103] | vulnerable (VU) and endangered (EN) in the National Red (data) books | a bulbous herbaceous perennial | yes [88,89] | — |
7 | Tulipa lehmanniana Merckl. | Liliaceae | Temperate Middle Asia Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan, Western Asia Afghanistan, Iran [88,89] | sandy or stony soil among rocky outcrops [103] | vulnerable (VU) and endangered (EN) in the National Red (data) books | a perennial, herbaceous, polycarpic, bulbous plant | — | — |
8 | Tulipa scharipovii Tojibaev | Liliaceae | Temperate Middle Asia Kyrgyzstan, Uzbekistan [88,89] | gray-brown soils of the southern foothills [103] | — | a bulbous herbaceous perennial | — | — |
2.5. Selected Other Important Ecological Aspects
3. Discussion in Horticulture
3.1. Introduction Challenges
3.2. Reproductive Material and Nursery Production
3.3. Effective Propagation and Ease of Cultivation
3.4. Customers’ Requirements and Ornamental Value
3.5. Additional Values
4. Hotspot Biodiversity in Areas with a Warmer but Similar Climate
4.1. Mediterranean Basin
4.2. Caucasus
4.3. Irano-Anatolian
4.4. Mountains of Central Asia
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Beruto, M. Introduction of new ornamental plants and production technologies: Case studies. Acta Hort. 2013, 1000, 23–34. [Google Scholar] [CrossRef]
- CAP. CAP Specific Objective: Agriculture and Climate Mitigation. 2019. Available online: https://www.mapa.gob.es/es/pac/pac-2023-2027/brief_oe4_tcm30-520584.pdf (accessed on 18 December 2024).
- EPA. Agriculture and Climate. 2024. Available online: https://www.epa.gov/agriculture/agriculture-and-climate (accessed on 9 August 2024).
- Zandalinas, S.I.; Fritschi, F.B.; Mittler, R. Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster. Special Issue: Feeding the World: The Future of Plant Breeding. Trends Plant Sci. 2021, 26, 6. [Google Scholar] [CrossRef] [PubMed]
- Speak, A.F.; Mizgajski, A.; Borysiak, J. Allotment gardens and parks: Provision of ecosystem services with an emphasis on biodiversity. Urban For. Urban Green. 2015, 14, 772–781. [Google Scholar] [CrossRef]
- Ochoa, J.; Muñoz, M.; Vicente, M.J.; Martínez-Sánchez, J.J.; Franco, J.A. Native ornamental species for urban landscaping and xero-gardening in semi-arid environments. Acta Hortic. 2010, 881, 425–428. [Google Scholar] [CrossRef]
- Karlović, K. Introduction of ornamental native plants into commercial production in Croatia. Acta Hortic. 2009, 813, 107–112. [Google Scholar] [CrossRef]
- Lütken, H.; Favero, B.T. New ornamental bedding plants for temperate regions. Acta Hortic. 2020, 1288, 43–50. [Google Scholar] [CrossRef]
- Zinowiec-Cieplik, K. Zagadnienia projektowania regeneratywnego w mieście. Acta Sci. Pol. Archit. 2020, 19, 107–115. [Google Scholar] [CrossRef]
- Larcher, F.; Battisti, L.; Pomatto, E.; Devecchi, M. Woody species and supporting ecosystem services: The case study of the city of Turin (Italy). Acta Hortic. 2021, 1331, 181–186. [Google Scholar] [CrossRef]
- Sjöman, H.; Hirons, A.; Bassuk, N. Urban forest resilience through tree selection—Variation in drought tolerance in Acer. Urban For. Urban Green. 2015, 14, 858–865. [Google Scholar] [CrossRef]
- Pomatto, E.; Larcher, F.; Caser, M.; Gaino, W.; Devecchi, M. Evaluation of different combinations of ornamental perennials for sustainable management in urban greening. Plants 2023, 12, 3293. [Google Scholar] [CrossRef]
- Tribble, C.M.; Martínez-Gómez, J.; Howard, C.C.; Males, J.; Sosa, V.; Sessa, E.B.; Cellinese, N.; Specht, C.D. Get the shovel: Morphological and evolutionary complexities of belowground organs in geophytes. Am. J. Bot. 2020, 108, 372–387. [Google Scholar] [CrossRef] [PubMed]
- Bibri, S.E.; Krogstie, J. Smart Eco-City Strategies and Solutions for Sustainability: The Cases of Royal Seaport, Stockholm, and Western Harbor, Malmö, Sweden. Urban Sci. 2020, 4, 11. [Google Scholar] [CrossRef]
- Wilson, B.; Dolotbakov, A.; Burgess, B.J.; Clubbe, C.; Lazkov, G.; Shalpykov, K.; Ganybaeva, M.; Brockington, S.F. Central Asian wild tulip conservation requires a regional approach, especially in the face of climate change. Biodiversity 2021, 30, 1705–1730. [Google Scholar] [CrossRef]
- Dekhkonov, D.; Asatulloev, T.; Tojiboeva, U.; Idris, S.; Tojibaev, S.K. Suitable habitat prediction with a huge set of variables on some Central Asian tulips. J. Asia-Pacific Biodiv. 2023, 16, 75–82. [Google Scholar]
- Santamouris, M. Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energ. Build. 2020, 207, 109482. [Google Scholar] [CrossRef]
- EPA. Heat Island Effects. 2024. Available online: https://www.epa.gov/heatislands (accessed on 18 December 2024).
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef]
- Tan, Z.; Lau, K.K.-L.; Ng, R. Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy Build. 2015, 14, 265–274. [Google Scholar] [CrossRef]
- Rahman, M.A.; Stratopoulos, L.M.F.; Moser-Reischl, A.; Zölch, T.; Häberle, K.H.; Rötzer, T.; Pretzsch, H.; Pauleit, S. Traits of trees for cooling urban heat islands: A meta-analysis. Build. Environ. 2020, 170, 106606. [Google Scholar] [CrossRef]
- Aboleata, A.; Sadoudi, S. Evaluating the effect of trees on UHI mitigation and reduction of energy usage in different built up areas in Cairo. Build. Environ. 2020, 168, 106490. [Google Scholar] [CrossRef]
- Tan, J.K.N.; Belcher, R.N.; Tan, H.T.W.; Menz, S.; Schroepfer, T. The urban heat island mitigation potential of vegetation depends on local surface type and shade. Urban For. Urban Green. 2021, 62, 127128. [Google Scholar] [CrossRef]
- Weber, F.; Kowarik, I.; Säumel, I. Herbaceous plants as filters: Immobilization of particulates along urban street corridors. Environ. Pollut. 2014, 186, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Dudkiewicz, M.; Kopacki, M.; Iwanek, M.; Hortyńska, P. Problemy zachowania bioróżnorodności na przykładzie wybranych miast Polski. Ann. Univ. Mariae Curie-Skłodowska Sect. E Agric. 2021, 76, 1. [Google Scholar] [CrossRef]
- Hall, C.; Knuth, M. An update of the literature supporting the well-being benefits of plants: A review of the emotional and mental health benefits of plants. J. Environ. Hortic. 2019, 37, 30–38. [Google Scholar] [CrossRef]
- Barthel, S.; Isendahl, C. Urban gardens, agriculture, and water management: Sources of resilience for long-term food security in cities. Ecol. Econ. 2013, 86, 215–225. [Google Scholar] [CrossRef]
- Lwasa, S.; Mugagga, F.; Wahab, B.; Simon, D.; Connors, J.; Griffith, C. Urban and peri-urban agriculture and forestry: Transcending poverty alleviation to climate change mitigation and adaptation. Urban Clim. 2014, 7, 92–106. [Google Scholar] [CrossRef]
- Hall, C.R.; Hodges, A.W. Economic, environmental and well-being benefits of lifestyle horticulture. Chron. Hortic. 2011, 51, 5–8. [Google Scholar]
- Yu, P.; Zhang, S.; Yung, E.H.; Chan, E.H.; Luan, B.; Chen, Y. On the urban compactness to ecosystem services in a rapidly urbanising metropolitan area: Highlighting scale effects and spatial non–stationary. Environ. Impact Assess. Rev. 2023, 98, 106975. [Google Scholar] [CrossRef]
- Francini, A.; Romano, D.; Toscano, S.; Ferrante, A. The Contribution of Ornamental Plants to Urban Ecosystem Services. Earth 2022, 3, 71. [Google Scholar] [CrossRef]
- Ungaro, F.; Maienza, A.; Ugolini, F.; Lanini, G.M.; Baronti, S.; Calzolari, C. Assessment of joint soil ecosystem services supply in urban green spaces: A case study in Northern Italy. Urban For. Urban Green. 2022, 67, 127455. [Google Scholar] [CrossRef]
- Nicotra, A.B.; Atkin, O.K.; Bonser, S.P.; Davidson, A.M.; Finnegan, E.J.; Mathesius, U.; Poot, P.; Purugganan, M.D.; Richards, C.L.; Valladares, F.; et al. Plant phenotypic plasticity in changing climate. Trends Plant Sci. 2010, 12, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Molder, A.L.; Duan, Z.; Boulianne, S.; Eckart, C.; Mallari, P.; Yang, D. How climate movement actors and news media frame climate change and strike: Evidence from analyzing twitter and news media discourse from 2018 to 2021. Int. J. Press Politics 2023, 28, 384–413. [Google Scholar] [CrossRef]
- Zeller, K.A.; Povak, N.A.; Manley, P.; Flake, S.W.; Hefty, K.L. Managing for biodiversity: The effects of climate, management and natural disturbance on wildlife species richness. Divers. Distrib. 2023, 29, 1623–1638. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Attribution of Extreme Weather Events in the Context of Climate Change; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Wang, H.; Wu, C.; Ciais, P.; Peñuelas, J.; Dai, J.; Fu, Y.; Ge, Q. Overestimation of the effect of climatic warming on spring phenology due to misrepresentation of chilling. Nat. Commun. 2020, 11, 4945. [Google Scholar] [CrossRef]
- Bakkenes, M.; Alkemade, J.R.M.; Ihle, F.; Leemans, R.; Latour, J.B. Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob. Chang. Biol. 2002, 8, 390–407. [Google Scholar] [CrossRef]
- Cleland, E.E.; Chiariello, N.R.; Loarie, S.R.; Mooney, H.A.; Field, C.B. Diverse responses of phenology to global changes in a grassland ecosystem. Proc. Natl. Acad. Sci. USA 2006, 103, 13740–13744. [Google Scholar] [CrossRef]
- Gordo, O.; Sanz, J.J. Impact of climate change on plant phenology in Mediterranean ecosystems. Glob. Change Biol. 2010, 16, 1082–1106. [Google Scholar] [CrossRef]
- Kovaleski, A.P.; Reisch, B.I.; Londo, J.P. Deacclimation kinetics as quantitative phenotype for delineating the dormancy transition and thermal efficiency for budbreak in Vitis species. AOB Plants 2018, 10, ply066. [Google Scholar] [CrossRef]
- Heywood, V.; Culham, A. The impacts of climate change on plant species in Europe. Report T-PVS/Inf9E. In Proceedings of the Convention on the Conservation of European Wildlife and Natural Habitats 29th Meeting of the Standing Committee, Bern, Switzerland, 23–26 November 2009. [Google Scholar]
- Sjöman, H.; Östberg, J. Vulnerability of ten major Nordic cities to potential tree losses caused by longhorned beetles. Urban Ecosyst. 2019, 22, 385–395. [Google Scholar] [CrossRef]
- Prandecki, K.; Wrzaszcz, W.; Zieliński, M. Environmental and climate challenges to agriculture in Poland in the context of objectives adopted in the European green deal strategy. Sustainability 2021, 13, 10318. [Google Scholar] [CrossRef]
- Zani, D.; Crowther, T.W.; Mo, L.; Renner, S.S.; Zohner, C.M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 2020, 370, 1066–1071. [Google Scholar] [CrossRef]
- Vitasse, Y.; Klein, G.; Kirchner, J.W.; Rebetez, M. Intensity, frequency and spatial configuration of winter temperature inversions in the closed La Brevine valley, Switzerland. Theor. Appl. Climatol. 2016, 130, 1073–1083. [Google Scholar] [CrossRef]
- Vitra, A.; Lenz, A.; Vitasse, Y. Frost hardening and dehardening potential in temperate trees from winter to budburst. New Phytol. 2017, 216, 113–123. [Google Scholar] [CrossRef]
- Horvath, D.P.; Anderson, J.V.; Chao, W.S.; Foley, M.E. Knowing when to grow: Signals regulating bud dormancy. Trends Plant Sci. 2003, 8, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Vitasse, Y.; Basler, D. Is the use of cuttings a good proxy to explore phenological responses of temperate forests in warming and photoperiod experiments? Tree Physiol. 2014, 34, 174–183. [Google Scholar] [CrossRef] [PubMed]
- McDonald, A.G.; Bealey, W.J.; Fowler, D.; Dragosits, U.; Skiba, U.; Smith, R.I.; Donovan, R.G.; Brett, H.E.; Hewitt, C.N.; Nemitz, E. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmos. Environ. 2007, 41, 8455–8467. [Google Scholar] [CrossRef]
- Koch, E.; Bruns, E.; Chmielewski, F.M.; Defila, C.; Lipa, W.; Menzel, A. World climate data and monitoring programme. In Guidelines for Plant Phenological Observations; Baddour, O., Kontongomde, H., Eds.; World Meteorological Organization (WMO): Geneva, Switzerland, 2011. [Google Scholar]
- Rubenstein, M.A.; Weiskopf, S.R.; Bertrand, R.; Carter, S.L.; Comte, L.; Eaton, M.J.; Johnson, C.G.; Lenoir, J.; Lynch, A.J.; Miller, B.W.; et al. Climate change and the global redistribution of biodiversity: Substantial variation in empirical support for expected range shifts. Environ. Evid. 2023, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Batsatsashvili, K.; Nersesyan, A.; Mehdiyeva, N.; Murtazaliev, R.; Eminağaoğlu, Ö.; Kavousi, K. Flora and vegetation of the Caucasus. In Ecoregional Conservation Plan for the Caucasus, 2020th ed.; Supplementary Reports; Zazanashvili, N., Garforth, M., Bitsadze, M., Eds.; WWF KfW: Tbilisi, Georgia, 2020; pp. 29–36. [Google Scholar]
- Breshears, D.D.; Huxman, T.E.; Adams, H.D.; Davison, J.E. Vegetation synchronously leans upslope as climate warms. Proc. Natl. Acad. Sci. USA 2008, 105, 11591–11592. [Google Scholar] [CrossRef]
- Rodriguez-Pérez, J.; Traveset, A. Effects of flowering phenology and synchrony on the reproductive success of a long-flowering shrub. AoB Plants 2016, 8, Plw007. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Tao, Z.; Liu, Y.; Xu, Y.; Dai, J.; Ge, Q. Variation of main phenophases in phenological calendar in East China and their response to climate change. Adv. Meteorol. 2016, 2016, 9546380. [Google Scholar] [CrossRef]
- Aitken, S.N.; Yeaman, S.; Holliday, J.A.; Wang, T.; Curtis-McLane, S. Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evol. Appl. 2008, 1, 95–111. [Google Scholar] [CrossRef]
- Ambarlı, D.; Zeydanlı, U.S.; Balkız, Ö.; Aslan, S.; Karaçetin, E.; Sözen, M.; Ilgaz, Ç.; Gürsoy Ergen, A.; Lise, Y.; Demirbaş Çağlayan, S.; et al. An overview of biodiversity and conservation status of steppes of the Anatolian Biogeographical Region. Biodivers. Conserv. 2016, 25, 2491–2519. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, G.; Zhang, Y.; Guan, X.; Wei, Y.; Guo, R. Global desertification vulnerability to climate change and human activities. Land Degrad. Dev. 2020, 31, 1380–1391. [Google Scholar] [CrossRef]
- Leitão, R.P.; Zuanon, J.; Villéger, S.; Williams, S.E.; Baraloto, C.; Fortunel, C.; Mendonca, F.P.; Mouillot, D. Rare species contribute disproportionately to the functional structure of species assemblages. Proc. R. Soc. B 2016, 283, 20160084. [Google Scholar] [CrossRef] [PubMed]
- FAO. FAO Launches First Major Global Assessment of Salt-Affected Soils in 50 Years. 2024. Available online: http://www.fao.org/newsroom/detail/fao-launches-first-major-global-assessment-of-salt-affected-soils-in-50-years/en (accessed on 18 December 2024).
- Carrow, R.N.; Duncan, R.R. Best Management Practices for Saline and Sodic Turfgrass Soils: Assessment and Reclamation; CRC Press (Taylor and Francis Group): Boca Raton, FL, USA, 2011. [Google Scholar]
- Wicke, B.; Smeets, E.; Dornburg, V. The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ. Sci. 2011, 4, 2669. [Google Scholar] [CrossRef]
- Flowers, T.J. Improving crop salt tolerance. J. Exp. Bot. 2004, 55, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- James, R.A.; Blake, C.; Byrt, C.S.; Munns, R. Major genes for Na+ exclusion, Nax1 and Nax2 (wheatHKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J. Exp. Bot. 2011, 62, 2939–2947. [Google Scholar] [CrossRef]
- Rahnama, A.; James, R.A.; Poustini, K.; Munns, R. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct. Plant Biol. 2010, 37, 255–263. [Google Scholar] [CrossRef]
- Munns, R. Genes and salt tolerance: Bringing them together. New Phytol. 2005, 167, 645–663. [Google Scholar] [CrossRef] [PubMed]
- Rozema, J.; Flowers, T. Ecology: Crops for a salinized world. Science 2008, 322, 1478–1480. [Google Scholar] [CrossRef] [PubMed]
- Goodrich, B.A.; Jacobi, W.R. Foliar damage, ion content, and mortality rate of five common roadside tree species treated with soil applications of magnesium chloride. Water Air Soil Poll. 2012, 223, 847–862. [Google Scholar] [CrossRef]
- Cekstere, G.; Osvalde, A. A study of chemical characteristics of soil in relation to street trees status in Riga (Latvia). Urban For. Urban Green. 2013, 12, 69–78. [Google Scholar] [CrossRef]
- Sera, B. Green areas for sustainable city development. Curr. Opin. Biotechnol. 2013, 24, S73. [Google Scholar] [CrossRef]
- Sera, B. Salt-tolerant trees usable for Central European cities—A review. Hort. Sci. 2017, 44, 43–48. [Google Scholar] [CrossRef]
- Hulme, P.E.; Brundu, G.; Carboni, M.; Dehnen-Schmutz, K.; Dullinger, S.; Early, R.; Essl, F.; González-Moreno, P.; Groom, Q.J.; Kueffer, C.; et al. Integrating invasive species policies across ornamental horticulture supply chains to prevent plant invasions. J. Appl. Ecol. 2017, 55, 92–98. [Google Scholar] [CrossRef]
- Niemiera, A.X.; Holle, B. Invasive Plant Species and the Ornamental Horticulture Industry. In Management of Invasive Weeds; Drake, J.A., Ed.; Springer: Delhi, India, 2009. [Google Scholar]
- Knight, T.M.; Havens, K.; Vitt, P. Will the use of less fecund cultivars reduce the invasiveness of perennial plants? BioScience 2011, 61, 816–822. [Google Scholar] [CrossRef]
- Tesfay, Y.B.; Kreyling, J. The invasive Opuntia ficus-indica homogenizes native plant species compositions in the highlands of Eritrea. Biol. Invasions 2021, 23, 433–442. [Google Scholar] [CrossRef]
- Kowarik, I. On the Role of Alien Species in Urban Flora and Vegetation. In Urban Ecology; Marzluff, J.M., Shulenberger, W.E., Alberti, M., Bradley, G., Ryan, C., Simon, U., ZumBrunnen, C., Eds.; Springer: Boston, MA, USA, 2008. [Google Scholar] [CrossRef]
- Bhatta, S.; Hejda, M.; Pyšek, P. Impact of invasive plants on vegetation in protected areas of Nepal. Biol. Invasions 2024, 26, 3745–3759. [Google Scholar] [CrossRef]
- Heywood, V.; Brunel, S. Code of Conduct on Horticulture and Invasive Alien Plants; Council of Europe Publishing: Strasbourg, France, 2009. [Google Scholar]
- Frigerio, J.; Ouled Larbi, M.; Guidi Nissim, W.; Grassi, F.; Cortis, P.; Labra, M. Early Molecular Detection of Invasive Alien Plants in Urban and Peri-Urban Areas. Diversity 2024, 16, 647. [Google Scholar] [CrossRef]
- Bąbelewski, P.; Czekalski, M. Distribution of tree—Of heaven Ailanthus altissima (Mill.) Swingle, in Wroclaw, lower Silesia, Poland. Acta Sci. Pol. Hortorum Cultus 2005, 4, 45–57. [Google Scholar]
- Marosz, A. Introducing new species and cultivars according to climate, demographic and economic changes in Poland—Horticultural view. Infrastruct. Ecol. Rural. Areas 2015, III/2/2015, 797–807. [Google Scholar]
- Plant Map. Plant Hardiness Zone Map. 2024. Available online: https://www.plantmaps.com/index.php (accessed on 1 August 2024).
- Starzyk, N.; Skibińska, K. Inwazyjne Bezkręgowce w Polsce—Nie Tylko Szopy i Żółwie Czerwonolice. Dzikie życie, 7–8. 2018. Available online: https://dzikiezycie.pl/archiwum/2018/lipiec-i-sierpien-2018/inwazyjne-bezkregowce-w-polsce-nie-tylko-szopy-i-zolwie-czerwonolice (accessed on 11 September 2024).
- IUCN. The IUCN of Threatened Species. 2024. Available online: https://www.iucnredlist.org/ (accessed on 11 September 2024).
- Bachman, S.P.; Brown, M.J.M.; Leão, T.C.C.; Nic Lughadha, E.; Walker, B.E. Extinction risk predictions for the world’s flowering plants to support their conservation. New Phytol. 2024, 242, 797–808. [Google Scholar] [CrossRef]
- Platis, D.P.; Papoui, E.; Bantis, F.; Katsiotis, A.; Koukounaras, A.; Mamolos, A.P.; Mattas, K. Underutilized vegetable crops in the mediterranean region: A literature review of their requirements and the ecosystem services provided. Sustainability 2023, 15, 4921. [Google Scholar] [CrossRef]
- Sheasby, P. Bulbous Plants of Turkey and Iran (Including the Adjacent Greek Islands); Alpine Garden Society: Pershore, UK, 2007. [Google Scholar]
- European Environment Agency. Access Information About Species in Europe. 2024. Available online: https://eunis.eea.europa.eu/species.jsp (accessed on 7 November 2024).
- PlantNet. Explorer. 2024. Available online: https://identify.plantnet.org/pl/k-world-flora/species (accessed on 7 November 2024).
- CALIPC. Plants. Invasive Species. 2024. Available online: https://www.cal-ipc.org/plants/ (accessed on 7 November 2024).
- Papiomytoglou, V. Wild Flowers of Crete; Mediterraneo Editions: Rethimno, Greece, 2006. [Google Scholar]
- Communication from the Commission to the European Parliament, The Council; The European Economic and Social Committee; The Committee of the Regions and European Investment Bank. A Clean Planet for All a European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Center for Invasive Species and Ecosystem Health. Invasive and Exotic Species Profiles & State, Regional and National Lists. 2024. Available online: https://www.invasive.org/species.cfm (accessed on 7 November 2024).
- Communication from the Commission to the European Parliament; The European Council; The Council; The European Economic and Social Committee; The Committee of the Regions. The European Green Deal; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Williams, L. (Ed.) Ecosystem Profile. Caucasus Biodiversity Hotspot; Critical Ecosystem Partnership Fund: Arlington, VA, USA, 2003. [Google Scholar]
- Çelik, Y.; Arisoy, H. Competitive analysis of outdoor ornamental plants sector: A case study of Konya province, Turkey. J. Hortic. Res. 2013, 21, 5–16. [Google Scholar] [CrossRef]
- Plantlife. Schedule 9 Part 2 of the Wildlife & Countryside Act. Available online: https://www.ukwildlife.com/index.php/wildlife-countryside-act-1981/schedule-9/schedule-9-part-2/ (accessed on 24 November 2024).
- Pyak, A.I.; Shaw, S.C.; Ebel, A.I.; Zverev, A.A.; Hodgson, J.G.; Wheeler, B.D.; Gaston, K.J.; Morenko, M.O.; Revushkin, A.S.; Kotukhov, Y.A.; et al. Endemic Plants if the Altai Mountain Country; WildGuides Ltd.: Basingstoke, UK, 2008. [Google Scholar]
- Koenig, K. Biodiversity Hotspots Map (English Labels). Licensed Under CC BY-SA 4.0. 2016. Available online: https://zenodo.org/records/4311850 (accessed on 6 August 2024).
- Tojibaev, K.; Beshko, N. Reassessment of diversity and analysis of distribution in Tulipa (Liliaceae) in Uzbekistan. Nord. J. Bot. 2015, 33, 324–334. [Google Scholar] [CrossRef]
- Irano-Anatolian-Species. 2024. Available online: https://www.cepf.net/our-work/biodiversity-hotspots/irano-anatolian/species (accessed on 9 August 2024).
- Silva, S.V.; Andermann, T.; Zizka, A.; Kozlowski, G.; Silvestro, D. Global estimation and mapping of the conservation status of tree species using artificial intelligence. Front. Plant Sci. 2022, 13, 839792. [Google Scholar] [CrossRef] [PubMed]
- Piana, M.R.; Aronson, M.F.J.; Pickett, S.T.A.; Handel, S.N. Plants in the city: Understanding recruitment dynamics in urban landscapes. Front. Ecol. Environ. 2019, 17, 455–463. [Google Scholar] [CrossRef]
- Ruas, R.B.; Costa, L.M.S.; Bered, F. Urbanization driving changes in plant species and communities—A global view. Glob. Ecol. Conserv. 2022, 38, e02243. [Google Scholar] [CrossRef]
- Lucatero, A.; Jha, S.; Philpott, S.M. Local Habitat Complexity and Its Effects on Herbivores and Predators in Urban Agroecosystems. Insects 2024, 15, 41. [Google Scholar] [CrossRef] [PubMed]
- Koranyi, D.; Egerer, M.; Rusch, A.; Szabó, B.; Batáry, P. Urbanization Hampers Biological Control of Insect Pests. Sci. Total Environ. 2022, 834, 1553114. [Google Scholar] [CrossRef]
- Shimwell, D.W. The Description and Classification of Vegetation; Sidgwick & Jackson: London, UK, 1971; p. 11151. [Google Scholar]
- Griffits, H.; Males, J. Succulents plants. Curr. Biol. 2017, 27, R890–R896. [Google Scholar] [CrossRef] [PubMed]
- Yeler, O.; Yeler, S.T.; Hocagil, M.M.; Aydin, A. Investigation of common cluster model in ornamental plants sector. Int. J. Sci. Technol. Res. 2018, 4, 34–40. [Google Scholar]
- Yeler, O.; Şatir, Y.N. Overview and suggestions for common production base planning in the outdoor ornamental plants sector. Int. J. Sci. Technol. Res. 2020, 6, 79–85. [Google Scholar]
- Marosz, A. Raport Średnio-i Długoterminowych Kierunków Rozwoju Polskiego Ogrodnictwa w Zakresie Produkcji Roślin Rabatowych i Balkonowych, Roślin Cebulowych i Bulwiastych Oraz Aktualizacji Danych Ozdobnej Produkcji Szkółkarskiej. [Report of Medium and Long-Term Directions of Development of Polish Horticulture in the Production of Bed and Balcony Plants, Bulbous and Tuberous Plants and Update of Data of Ornamental Nursery Production]; Research Institute of Horticulture: Skierniewice, Poland, 2017; Available online: http://www.inhort.pl/files/program_wieloletni/PW_2015_2020_IO/spr_2017/5.1_Raport2017_ozdobne_Marosz.pdf (accessed on 4 May 2018). (In Polish)
- Van Huylenbroeck, J. Ornamental Crops; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Communication from the Commission to the European Parliament; The European Council; The Council; The European Economic and Social Committee; The Committee of the Regions. Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Communication from the Commission to the European Parliament; The Council; The European Economic and Social Committee; The Committee of the Regions. EU Biodiversity Strategy for 2030; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Rukšāns, J. Puschkinia kurdistanica (Asparagaceae)—A new species from the shores of Lake Van in Turkey. Int. Rock Gard. IRG 2019, 116, 3–18. [Google Scholar]
- Dekhkonov, D.; Tojibaev, K.; Yusupov, Z.; Makhmudjanov, D.; Asatulloev, T. Morphology of tulips (Tulipa, Liliaceae) in its primary centre of diversity. Plant Divers. Cent. Asia 2022, 1, 52–70. [Google Scholar] [CrossRef]
- Pironon, S.; Borrell, J.S.; Ondo, I.; Douglas, R.; Phillips, C.; Khoury, C.K.; Kantar, M.B.; Fumia, N.; Soto Gomez, M.; Viruel, J.; et al. Toward unifying global hotspots of wild and domesticated biodiversity. Plants 2020, 9, 1128. [Google Scholar] [CrossRef]
- Zazanashvili, N.; Manvelyan, K.; Askerov, E.; Mousavi, M.; Shmunk, V.; Kalem, S.; Beruchashvili, G.; Bitsadze, M.; Garforth, M. Conservation landscapes in the Caucasus ecoregion. In Ecoregional Conservation Plan for the Caucasus, 2020th ed.; Supplementary Reports; Zazanashvili, N., Garforth, M., Bitsadze, M., Eds.; WWF, KfW: Tbilisi, Georgia, 2020; pp. 29–36. [Google Scholar]
- Derneği, D.; on behalf of BirdLife International. Ecosystem Profile. Mediterranean Basin Biodiversity Hotspot. BirdLife International. Critical Ecosystem Partner Found. Monaco. p. 259. 2010. Available online: https://dogadernegi.org/wp-content/uploads/2024/04/MEDITERRANEAN-BASIN-BIODIVERSITY-HOTSPOT.pdf (accessed on 9 August 2024).
- Guardiola, M.; Sáez, L. Are Mediterranean Island Mountains Hotspots of Taxonomic and Phylogenetic Biodiversity? The Case of the Endemic Flora of the Balearic Islands. Plants 2023, 12, 2640. [Google Scholar] [CrossRef]
- Schönfelder, P.; Schönfelder, I. Wild Flowers of the Mediterranean; John Beaufoy Publishing Limited: Oxford, UK, 2017. [Google Scholar]
- Plant of the World on Line. 2024. Available online: https://powo.science.kew.org/ (accessed on 7 November 2024).
- Caucasus Hotspot. 2024. Available online: https://www.caucasus-naturefund.org/ecoregion/caucasus-hotspot/ (accessed on 9 August 2024).
- Eken, G.; Evans, M.; Karataş, A.; Balkız, Ö.; Karaçetin, E.; Kılıç, T.; Özbağdatlı, N.; Neumann-Denzau, G.; Gem, E.; Karataş, A. Irano-Anatolian. In Hotspots (Revisited): Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions; Mittermeier, R.A., Robles Gil, P., Hoffmann, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., Lamoreaux, J., da Fonseca, G.A.V., Eds.; Conservation International: Arlington, VA, USA, 2004. [Google Scholar]
- Kiani, M.; Mohammadi, S.; Babaei, A.; Sefidkon, F.; Naghavi, M.R.; Ranjbar, M.; Razavi, S.A.; Saeidi, K.; Jafari, H.; Asgari, D.; et al. Iran supports a great share of biodiversity and floristic endemism for Fritillaria spp. (Liliaceae): A review. Plant Divers. 2017, 39, 245–262. [Google Scholar] [CrossRef] [PubMed]
- Rønsted, N.; Law, S.; Thornton, H.; Fay, M.F.; Chase, M.W. Molecular phylogenetic evidence for the monophyly of Fritillaria and Lilium (Liliaceae; Liliales) and the infrageneric classification of Fritillaria. Mol. Phylogen. Evol. 2005, 35, 509–527. [Google Scholar] [CrossRef]
- Ecosystem Profile. Mountains of Central Asia Biodiversity Hotspot Extended Technical Summary. 2017. Available online: http://aarhus.kg/wp-content/uploads/2017/11/2_eng.pdf (accessed on 9 August 2024).
- Erst, A.S.; Baasanmunkh, S.; Tsegmed, Z.; Oyundelger, K.; Sharples, M.T.; Oyuntsetseg, B.; Krivenko, D.A.; Gureyeva, I.I.; Romanets, R.; Kutznetsov, A.; et al. Hotspot and conservation gap analysis of endemic vascular plants in the Altai Mountain Country based on a new global conservation assessment. Glob. Ecol. Conser. 2023, 47, e02647. [Google Scholar] [CrossRef]
- Everett, D. The Genus Tulipa. Tulips of the World; Kew Garden Press: London, UK, 2013. [Google Scholar]
- Shukrullo Qizi, S.; Burxonovich, D.; Kudratovich, K.; Iskandarovna, U.; Gùlomjon Qizi, O.; Komiljon Qizi, N. Analysis of the distribution of Tulipa fosteriana and Tulipa ingens. The importance of protecting wild plants, in particular tulips all over the world. Am. J. Plant Sci. 2023, 14, 613–624. [Google Scholar] [CrossRef]
- Christenhusz, M.J.; Govaerts, R.; David, J.C.; Hall, T.; Borland, K.; Roberts, P.S.; Tuomisto, A.; Buerki, S.; Chase, M.W.; Fay, M.F.; et al. Tiptoe through the tulips–cultural history, molecular phylogenetics and classification of Tulipa (Liliaceae). Bot. J. Linn. Soc. 2013, 172, 280–328. [Google Scholar] [CrossRef]
- Kamenetsky, R.; Chastagner, G.A.; Okubo, H. Conclusions and future research. In Ornamental Geophytes—From Basic Science to Sustainable Production; Kamenetsky, R., Okubo, H., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 519–523. [Google Scholar]
- GUS. Powszechny Spis Rolny 2010 (Agricultural Census 2010)—Uprawy Ogrodnicze; Horticultural Crops; Główny Urząd Statystyczny (Central Statistical Office): Warsaw, Poland, 2011. [Google Scholar]
- ISFP. International Statistics Flowers and Plants 2023; Griesbach, I., Ed.; International Association of Horticultural Producers: Oxfordshire, UK, 2023; Volume 71, pp. 86–88. [Google Scholar]
- BKD. Bloembollenkultuurdienst. Voorlopige Statistiek Voorjaarsbloeiers. 2017. Available online: https://kwiatycebulowe.pl/pliki/cebulowe.pdf (accessed on 4 January 2018). (In Dutch).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monder, M.J.; Pacholczak, A.; Zajączkowska, M. Directions in Ornamental Herbaceous Plant Selection in the Central European Temperate Zone in the Time of Climate Change: Benefits and Threats. Agriculture 2024, 14, 2328. https://doi.org/10.3390/agriculture14122328
Monder MJ, Pacholczak A, Zajączkowska M. Directions in Ornamental Herbaceous Plant Selection in the Central European Temperate Zone in the Time of Climate Change: Benefits and Threats. Agriculture. 2024; 14(12):2328. https://doi.org/10.3390/agriculture14122328
Chicago/Turabian StyleMonder, Marta Joanna, Andrzej Pacholczak, and Małgorzata Zajączkowska. 2024. "Directions in Ornamental Herbaceous Plant Selection in the Central European Temperate Zone in the Time of Climate Change: Benefits and Threats" Agriculture 14, no. 12: 2328. https://doi.org/10.3390/agriculture14122328
APA StyleMonder, M. J., Pacholczak, A., & Zajączkowska, M. (2024). Directions in Ornamental Herbaceous Plant Selection in the Central European Temperate Zone in the Time of Climate Change: Benefits and Threats. Agriculture, 14(12), 2328. https://doi.org/10.3390/agriculture14122328