Vegetative and Reproductive Responses Induced by Organo-Mineral Fertilizers on Young Trees of Almond cv. Tuono Grown in a Medium-High Density Plantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trials Site and Bioastimulant Treatments
2.2. The Climate
2.3. Plant Measurements
2.3.1. Vegetative Growth
2.3.2. Bud, Flower, and Fruit Counting
2.4. Harvesting, Fruit Collection and Yield
2.5. Statistical Analysis
3. Results
3.1. Trunk and Shoot Development
3.2. Agronomical Characteristics: Bud, Flower, and Fruit Productivity
3.3. Yield-Related Variables
3.4. The Nut and Kernel Morphological Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTATS 2021–2022. Available online: https://www.fao.org/faostat/en/#search/almond (accessed on 20 December 2023).
- Almond Production by Country—World Population Review 2023. Available online: https://worldpopulationreview.com (accessed on 20 December 2023).
- ISTAT. Electronic Information System on Agriculture and Livestock; Italian National Statistical Institute (ISTAT): Rome, Italy, 2023; Available online: http://agri.istat.it/ (accessed on 20 December 2023).
- Catalano, L.; Laghezza, L.; Digiaro, D.; Concetta Gentile, C. Uno sguardo alla nuova mandorlicoltura italiana sempre più in crescita. Riv. Fruttic. Ortofloric. 2021, 1, 21–25. Available online: https://rivistafrutticoltura.edagricole.it (accessed on 20 December 2023).
- Pica, A.L.; Silvestri, C.; Cristofori, V. Evaluation of phenological and agronomical traits of different almond grafting combinations under testing in central Italy. Agriculture 2021, 11, 1252. [Google Scholar] [CrossRef]
- Felipe, A.J. On the origin of “Guara” almond. FAO-CIHEAM Nucis-Newsl. 2017, 17, 16–18. [Google Scholar]
- Maldera, F.; Vivaldi, G.A.; Castellarnau, I.I.; Camposeo, S. Two almond cultivars trained in a super-high density ochard show different growth, yield efficiencies and damages by mechanical harvesting. Agronomy 2021, 11, 1406. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Synergistic Biostimulatory Action: Designing the Next Generation of Plant Biostimulants for Sustainable Agriculture. Front. Plant Sci. 2018, 9, 1655. [Google Scholar] [CrossRef] [PubMed]
- Le Mire, G.; Nguyen, M.L.; Fassotte, B.; Du Jardin, P.; Verheggen, F.; Delaplace, P.; Jijakli, M.H. Review: Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. BASE Biotechnol. Agron. Soc. Environ. 2016, 20, 299–313. [Google Scholar] [CrossRef]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Toward a Sustainable Agriculture Through Plant Biostimulants: From Experimental Data to Practical Applications. Agronomy 2020, 10, 1461. [Google Scholar] [CrossRef]
- Franzoni, G.; Cocetta, G.; Prinsi, B.; Ferrante, A.; Espen, L. Biostimulants on crops: Their impact under abiotic stress conditions. Horticulturae 2022, 8, 189. [Google Scholar] [CrossRef]
- du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- du Jardin, P. Plant biostimulants: A new paradigm for the sustainable intensification of crops. In Biostimulants for Sustainable Crop Production; Rouphael, Y., du Jardin, P., Brown, P., De Pascale, S., Colla, G., Eds.; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2020; pp. 3–29. [Google Scholar]
- Rodrigues, M.; Baptistella, J.L.C.; Horz, D.C.; Bortolato, L.M.; Mazzafera, P. Organic plant biostimulants and fruit quality—A Review. Agronomy 2020, 10, 988. [Google Scholar] [CrossRef]
- Andreotti, C.; Rouphael, Y.; Colla, G.; Basile, B. Rate and timing of application of biostimulant substances to enhance fruit tree tolerance toward environmental stresses and fruit quality. Agronomy 2022, 12, 603. [Google Scholar] [CrossRef]
- Rana, V.S.; Sharma, S.; Rana, N.; Sharma, U. Sustainable production through biostimulants under fruit orchards. CABI Agric. Biosci. 2022, 3, 38. [Google Scholar] [CrossRef]
- López-López, M.; Espadafor, M.; Testi, L.; Lorite, I.J.; Orgaz, F.; Fereres, E. Water use of irrigated almond trees when subjected to water deficits. Agric. Water Manag. 2018, 195, 84–93. [Google Scholar] [CrossRef]
- Helalia, S.A.; Anderson, R.G.; Skaggs, T.H.; Šimůnek, J. Impact of drought and changing water sources on water use and soil salinity of almond and pistachio orchards: 2. Modeling Soil Syst. 2021, 5, 58. [Google Scholar] [CrossRef]
- Heerema, R.; Weinbaum, S.A.; Pernice, F.D.T.M. Spur survival and return bloom in almond [Prunus dulcis (Mill.) d.a. webb] varied with spur fruit load, specific leaf weight, and leaf area. J. Hortic. Sci. Biotechnol. 2008, 83, 274–281. [Google Scholar] [CrossRef]
- Tombesi, S.; Lampinen, B.D.; Metcalf, S.G.; DeJong, T.M. Relationship between spur- and orchard-level fruit bearing in almond (Prunus dulcis). Tree Physiol. 2011, 31, 1413–1421. [Google Scholar] [CrossRef] [PubMed]
- Tombesi, S.; Lampinen, B.D.; Metcalf, S.; DeJong, T.M. Yield in almond related more to the abundance of flowers than the relative number of flowers that set fruit. Calif. Agric. 2016, 71, 68–74. [Google Scholar] [CrossRef]
- Guillamón, J.G.; Egea, J.; Mañas, F.; Egea, J.A.; Dicenta, F. Risk of extreme early frosts in almond. Horticulturae 2022, 8, 687. [Google Scholar] [CrossRef]
- Ahmed, N.; Verma, M.K. Scientific Almond Cultivation for Higher Returns Central Institute of Temperate Horti-Culture; J&K: Srinagar, India, 2009. [Google Scholar]
- Saa, S.; Del Rio, A.O.; Castro, S.; Browm, P.H. Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] D. A. Webb). Front. Plant Sci. 2015, 6, 87. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, I.; Alfonso, S.; Pinto, L.; Vieira, S.; Vilela, A.; Silva, A.P. Preliminary Evaluation of the Application of Algae-Based Biostimulants on Almond. Plants 2022, 11, 3083. [Google Scholar] [CrossRef] [PubMed]
- Pascoalino, L.A.; Reis, F.S.; Barros, L.; Rodrigues, M.Â.; Correia, C.M.; Vieira, A.L.; Ferreira, I.C.F.R.; Barreira, J.C.M. Effect of plant biostimulants on nutritional and chemical profiles of almond and hazelnut. Appl. Sci. 2021, 11, 7778. [Google Scholar] [CrossRef]
- Gutiérrez-Gordillo, S.; García-Tejero, I.F.; García-Escalera, A.; Galindo, P.; Arco, M.; Hugo, V.; Durán Zuazo, V.H. Approach to yield response of young almond trees to deficit irrigation and biostimulant applications. Horticulturae 2019, 5, 38. [Google Scholar] [CrossRef]
- Eisa, R.A.; Thanaa, S.H.M.; Nabila, E.K.; Abou Rayya, M.S. Foliar application of low-biuret urea and humic acid influences on the growth and leaf mineral composition of Nonpareil almond seedlings under South Sinai conditions. J. Innov. Pharm. Biol. Sci. 2016, 3, 143–153. [Google Scholar]
- Abourayya, M.S.; Kaseem, N.E.; Mahmoud, T.S.M.; Rakha, A.M.; Eisa, R.A.; Amin, O.A. Impact of soil application with humic acid and foliar spray of milagro bio-stimulant on vegetative growth and mineral nutrient uptake of Nonpareil almond young trees under Nubaria conditions. Bull. Natl. Res. Cent. 2020, 44, 38. [Google Scholar] [CrossRef]
- Dicenta, F.; Sànchez-Pèrez, R.; Rubio, M.; Egea, J.; Battle, I.; Miarnau, X.; Palasciano, M.; Lipari, E.; Confolent, C.; Martìnez-Gòmez, P.; et al. The origin of the self-compatible almond ‘Guara. Sci. Hortic. 2015, 197, 1–4. [Google Scholar] [CrossRef]
- De Giorgio, D.; Polignano, G.B. Evaluation the biodiversity of almond cultivar from a germplas m collection field in Southern Italy. In Sustaining the Global Farm; Stott, D.E., Mohtar, R.H., Steinhardt, G.C., Eds.; ISCO: West Lafayette, IN, USA, 2001; pp. 305–311. [Google Scholar]
- Soil Survey Staff, USDA. Soil Survey Staff, USDA. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. In Agriculture Handbook, 2nd ed.; USDA: Washington, DC, USA, 1999; No. 436. Available online: https://www.nrcs.usda.gov/sites/default/files/2022-06/Soil%20Taxonomy.pdf (accessed on 20 December 2023).
- Drobek, M.; Frac, M.; Cybulska, J. Plant Biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—A Review. Agronomy 2019, 6, 335. [Google Scholar] [CrossRef]
- UNESCO/FAO. Bioclimatic Map of the Mediterranean Zone; Explanatory Notes, Arid Zone Research; UNESCO/FAO: Rome, Italy, 1963; Volume 2217, p. 26. [Google Scholar]
- Ventrella, D.; Charfeddine, M.; Moriondo, M.; Rinaldi, M.; Bindi, M. Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: Irrigation and nitrogen fertilization. Reg. Environ. Chang. 2012, 12, 407–412. [Google Scholar] [CrossRef]
- Syngenta. Center for Experimentation and Valorization of Mediterranean Crops—Foggia. Available online: https://www.syngenta.it/agrometeo (accessed on 28 November 2023).
- Bollettino Ufficiale della Regione Puglia-n. 42 del 6-4-2017-Disciplinare di Produzione Integrata Regione Puglia–Anno 2017. Available online: www.agrometeopuglia.it/node/29 (accessed on 30 November 2023).
- Church, R.M.; Williams, R.R. Comparison of flower number and pollen production of several dessert apple and ornamental Malus cultivars. J. Hortic. Sci. 1983, 58, 327–336. [Google Scholar] [CrossRef]
- Felipe, A.J. Phenological states of almond. In Proceedings of the Third GREMPA Colloquium, Bari, Italy, 3–7 October 1977; pp. 101–103. [Google Scholar]
- Lampinen, B.D.; Tombesi, S.; Metcalf, S.G.; De Jong, T.M. Spur behavior in almond trees: Relationships between previous year spur leaf area, fruit bearing and mortality. Tree Physiol. 2011, 31, 700–706. [Google Scholar] [CrossRef]
- Bernad, D.; Socias, R. Bud density and shoot morphology of some self-compatible almond selections. Acta Hortic. 1998, 470, 273–279. [Google Scholar] [CrossRef]
- Kodad, O.; Socias, i. Company, R. Significance of Flower Bud Density for Cultivar Evaluation in Almond. HortScience 2008, 43, 1753–1758. [Google Scholar] [CrossRef]
- Seipasa. Natural Technology. Biostimulants for Almond Tree Flowering: How, When and Why. 2020. Available online: https://www.seipasa.com/en/blog/biostimulants-for-almond-tree-flowering/ (accessed on 30 November 2023).
- Tarantino, A.; Lops, F.; Disciglio, G.; Lopriore, G. Effects of plant biostimulants on fruit set, growth, yield and fruit quality attributes of ‘Orange rubis® apricot (Prunus armeniaca L.) cultivar in two consecutive years. Sci. Hortic. 2018, 239, 226–234. [Google Scholar] [CrossRef]
- Gradziel, T.M.; Curtis, R.; Socias i Company, R. Almonds: Botany, Production and Uses. In Almonds: Botany, Production and Uses; CABI: Boston, MA, USA, 2017; pp. 70–86. [Google Scholar]
- Vitra, A.; Lenz, A.; Vitasse, Y. Frost Hardening and Dehardening Potential in Temperate Trees from Winter to Budburst. New Phytol. 2017, 216, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Bhupenchandra, I.; Chongtham, S.K.; Devi, E.L.; Ramesh, R.; Choudhary, A.K.; Salam, M.D.; Manas Sahoo, M.R.; Bhutia, T.L.; Devi, S.L.; Thounaojam, A.S.; et al. Role of biostimulants in mitigating the effects of climate change on crop performance. Front. Plant Sci. 2022, 13, 967665. [Google Scholar] [CrossRef]
- Erogul, D.D.; Karabiyik, H.; Çantal, D. Effect of foliar treatments of seaweed on fruit quality and yield in almond cultivation. Ege Univ. Ziraat Fak. Derg. 2022, 59, 591–600. [Google Scholar] [CrossRef]
- EPA (Environmental Protection Agency). Emissions Factors & AP 42. In Chapter 9: Food and Agricultural Industries, 5th ed.; Environmental Protection Agency: Washington, DC, USA, 1995; Volume 1. 9.10.2.1 Almond Processing, Accessed Sep. 1995, 12, 2019. Available online: https://www3.epa.gov/ttn/chief/ap42/ch09/index.html (accessed on 15 November 2023).
- Sottile, F.; Barone, E.; Barbera, G.; Palasciano, M. The Italian almond industry: New perspectives and ancient tradition. Acta Hortic. 2014, 1028, 401–406. [Google Scholar] [CrossRef]
- Barbera, G.; La Mantia, T.; Monastra, F.; de Palma, L.; Schirra, M. Response of ferragnes and tuono almond cultivars to different environmental conditions in southern italy*. Acta Hortic. 1994, 373, 125–128. [Google Scholar] [CrossRef]
- Lovicu, G.; Pala, M.; De Pau, L.; Satta, D.; Farci, M. Bioagronomical Behaviour of Some Almond Cultivars in Sardinia. Acta Hortic. 2002, 591, 487–491. [Google Scholar] [CrossRef]
- Kester, D.E.; Martin, G.C.; Labavitch, J.M. Growth and Development. In Almond Production Manual; Micke, W.C., Ed.; University of California, Division of Agriculture and Natural Resources: Oakland, CA, USA, 1996; pp. 90–97. [Google Scholar]
- Palasciano, M.; Godini, A.; de Palma, L. Optimized self-pollination and production of double kernel in almond. Acta Hortic. 1993, 373, 215–218. [Google Scholar] [CrossRef]
- Mougioun, N.; Maletsika, P.; Konstantinidis, A. Morphological and Molecular Characterization of a New Self-Compatible Almond Variety. Agriculture 2023, 13, 1362. [Google Scholar] [CrossRef]
- Rapposelli, E.; Rigoldi, M.P.; Satta, D.; Delpiano, D.; Secci, S.; Porceddu, A. Genetic, Phenotypic, and Commercial Characterization of an Almond Collection from Sardinia. Plants 2018, 7, 86. [Google Scholar] [CrossRef]
- Arteaga, N.; Socias I Company, R. Heritability of fruit and kernel traits in almond. Acta Hortic. 2002, 591, 269–274. [Google Scholar] [CrossRef]
- Spiegel-Roy, P.; Kochba, J. The inheritance of bitter and double kernel characters in the almond. Z. Pflanz. 1974, 71, 319–329. [Google Scholar]
- Egea, J.; Burgos, L. Double kerneled fruits in almond (Prunus dulcis Mill.) as related to pre-blossom temperatures. Ann. Appl. Biol. 1995, 126, 163–168. [Google Scholar] [CrossRef]
- Barral-Martinez, M.; Fraga-Corral, M.; Garcia-Perez, P.; Simal-Gandara, J.; Prieto, M.A. Almond By-Products: Valorization for Sustainability and Competitiveness of the Industry. Foods 2021, 10, 1793. [Google Scholar] [CrossRef]
- Martínez-García, P.J.; Ortega, O.; Cremades, T.; Dicenta, F. Heritability and Phenotypic Variation of Double Seeds in Almond (Prunus dulcis). Available online: https://digital.csic.es/bitstream/10261/338791/1/PJMartinezEuphytica2014.pdf (accessed on 15 December 2023).
- Rharrabti, Y.; Sakar, E. Some physical properties in nut and kernel of two almond varieties (‘Marcona’ and ‘Tuono’) grown in Northern Morocco. In Proceedings of the XVI GREMPA Meeting on Almonds and Pistachios, Meknès, Morocco, 12–14 May 2015; Kodad, O., López-Francos, A., Rovira, M., Socias i Company, R., Eds.; CIHEAM: Zaragoza, Spain, 2016; pp. 297–301, (Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 119). [Google Scholar]
- Razouk, R.; Kajji, A.; Hamdani, A.; Charafi, J.; Hssaini, L.; Bouda, S. Yield And Fruit Quality Of Almond, Peach And Plum Under Regulated Deficit Irrigation. Front. Agric. Sci. Eng. 2021, 8, 583–593. [Google Scholar] [CrossRef]
- Socias i Company, R.; Ansón, J.M.; Espiau, M.T. Taxonomy, botany and physiology. In Almonds. Botany, Production and Uses; Socias i Company, R., Gradziel, T.M., Eds.; CABI: Wallingford, UK, 2017; pp. 1–42. [Google Scholar]
ABsTreatment |
---|
HENDOPHYT PS (Iko-Hydro): a fully water-soluble powder comprising biopolymers of polysaccharides (polyglucosamine), 60%; carbon, 35%; organic nitrogen, 4%; boron, 0.25%; applied at a dose of 150 g 100 L−1 of water. ERGOSTIM XL (Isagro): a concentrated water-soluble liquid N-acetiltiazolidin-4-carboxylic acid (AATC), 2.5%; and triazolidine-carboxylic acid (ATC) 2%; applied at a dose of 200 mL 100 L−1 of water. RADICON (Fertek): a suspension–solution of humic and fulvic acids, obtained from worm compost (night crawled). Dry composition: total organic matter, 60%; extractable organic substance of organic matter, 4%; humified organic substance extractable organic matter, 90%; organic substance of extractable organic nitrogen, 1.0%; C/N ratio = 4; applied at a dose of 500 g 100 L−1 of water. |
Month | Tmax | Tmin | RHmax | RHmin | Ws | P |
---|---|---|---|---|---|---|
(°C) | (°C) | (%) | (%) | (m s−1) | (mm) | |
2019 | ||||||
Jan | 10.6 | 1.6 | 99.2 | 63.3 | 3.4 | 61.0 |
Feb | 14.6 | 2.6 | 95.1 | 51.2 | 4.3 | 21.2 |
Mar | 18.6. | 4.5 | 98.8 | 44.2 | 4.4 | 32.0 |
April | 20.6 | 8.2 | 94.4 | 51.0 | 3.7 | 40.3 |
May | 21.3 | 10.2 | 95.3 | 56.3 | 4.0 | 86.7 |
June | 33.2 | 17.5 | 85.9 | 35.1 | 3.7 | 9.2 |
July | 33.7 | 19.5 | 84.0 | 33.9 | 3.7 | 30.0 |
Aug | 34.8 | 20.3 | 79.9 | 33.9 | 3.6 | 5.7 |
Sept | 29.5 | 16.8 | 88.7 | 42.6 | 3.6 | 3.8 |
Oct | 25.5 | 11.5 | 93.2 | 43.9 | 2.6 | 29.2 |
Nov | 19.3 | 9.4 | 98.5 | 62.2 | 5.2 | 112.6 |
Dec | 14.7 | 5.0 | 99.0 | 65.2 | 6.5 | 30.0 |
Mean | 23.4 | 10.6 | 92.7 | 48.6 | 4.1 | |
Total | 461.7 | |||||
2020 | ||||||
Jan | 10.5 | 1.6 | 98.3 | 55.1 | 4.8 | 3.6 |
Feb | 14.6 | 2.9 | 94.8 | 42.6 | 5.1 | 51.0 |
Mar | 15.6. | 2.1 | 96.4 | 60.8 | 3.3 | 83.0 |
April | 18.8 | 6.1 | 94.1 | 53.2 | 3.4 | 48.9 |
May | 27.5 | 14.7 | 90.8 | 43.1 | 3.8 | 25.8 |
June | 28.8 | 17.7 | 80.5 | 48.3 | 4.0 | 19.7 |
July | 31.0 | 21.2 | 79.7 | 40.6 | 3.9 | 20.4 |
Aug | 31.5 | 21.8 | 83.7 | 44.3 | 3.9 | 40.0 |
Sept | 22.2 | 17.4 | 72.8 | 58.4 | 4.0 | 38.5 |
Oct | 25.5 | 9.7 | 97.1 | 47.6 | 3.9 | 44.6 |
Nov | 19.3 | 7.7 | 99.5 | 72.8 | 4.2 | 68.6 |
Dec | 14.7 | 5.2 | 99.6 | 71.9 | 4.3 | 83.0 |
Mean | 21.7 | 10.9 | 90.6 | 53.2 | 4.1 | |
Total | 527.1 | |||||
2021 | ||||||
Jan | 12.2 | 2.4 | 99.5 | 63.3 | 5.8 | 58.2 |
Feb | 15.5 | 3.4 | 99.6 | 56.0 | 5.1 | 35.2 |
Mar | 15.4 | 3.4 | 98.9 | 52.3 | 4.7 | 57.8 |
April | 19.9 | 4.7 | 99.5 | 44.7 | 4.3 | 40.4 |
May | 26.5 | 10.8 | 95.7 | 30.3. | 3.5 | 26.0 |
June | 33.2 | 15.9 | 85.1 | 24.7 | 3.3 | 8.6 |
July | 35.4 | 19.3 | 83.8 | 26.1 | 3.7 | 100.8 |
Aug | 34.9 | 19.4 | 92.3 | 28.3 | 3.8 | 29.2 |
Sept | 29.5 | 15.4 | 94.8 | 35.6 | 3.5 | 19.4 |
Oct | 21.2 | 10.9 | 98.5 | 54.9 | 3.5 | 70.2 |
Nov | 17.2 | 10.8 | 99.6 | 80.0 | 3.1 | 135.4 |
Dec | 13.7 | 4.8 | 99.0 | 64.9 | 4.7 | 46.6 |
Mean | 22.9 | 10.1 | 95.5 | 48.3 | 4.1 | |
Total | 627.8 |
Date | Tmax | Tmin | RHmax | RHmin | Ws | P |
---|---|---|---|---|---|---|
(°C) | (°C) | (%) | (%) | (m s−1) | (mm) | |
2020 | ||||||
24 March | 5.8 | −0.3 | 99.5 | 67.0 | 5.0 | 10.8 |
25 March | 6.5 | −1.4 | 99.6 | 81.2 | 1.1 | 14.4 |
Mean | 6.1 | −0.8 | 99.5 | 74.1 | 3.05 | |
Total | 24.4 | |||||
2021 | ||||||
8 April | 13.9 | −0.6 | 99.4 | 23.2 | 1.7 | 1.0 |
9 April | 18.1 | −2.6 | 99.3 | 23.4 | 2.7 | 0 |
10 April | 21.1 | −0.9 | 99.4 | 15.9 | 3.7 | 0 |
Mean | 17.7 | −1.4 | 99.4 | 20.8 | 2.7 | |
Total | 1.0 |
Parameter | Year | Treatment | ||||
---|---|---|---|---|---|---|
Control | Hendophit PS® | Ergostim XL® | Radicon® | Average | ||
Bud density (No cm−1) | 2019 | 1.02 ± 0.30 | 0.99 ± 0.17 | 1.02 ± 0.17 | 0.97 ± 0.12 | 1.00 ± 0.19 |
2020 | 1.10 ± 0.30 | 0.97 ± 0.28 | 1.08 ± 0.25 | 1.15 ± 0.16 | 1.08 ± 0.22 | |
2012 | 0.88 ± 0.18 | 0.89 ± 0.21 | 0.85 ± 0.26 | 0.94 ± 0.16 | 0.89 ± 0.20 | |
Flower density (No cm−1) | 2019 | 0.51 ± 0.10 | 0.43 ± 0.07 | 0.54 ± 0.10 | 0.44 ± 0.08 | 0.48 ± 0.08 |
2020 | 0.45 ± 0.11 | 0.44 ± 0.18 | 0.50 ± 0.11 | 0.40 ± 0.09 | 0.45 ± 0.12 | |
2021 | 0.53 ± 0.19 | 0.56 ± 0.11 | 0.54 ± 0.15 | 0.65 ± 0.21 | 0.57 ± 0.20 | |
Final fruit set incidence (%) | 2019 | 21.5 ± 4.5 b | 28.3 ± 1.3 a | 28.4 ± 4.5 a | 34.4 ± 5.4 a | 28.4 ± 4.9 A |
2020 | 5.8 ± 7.8 | 2.4 ± 4.7 | 1.6 ± 5.2 | 2.8 ± 4.3 | 3.1 ± 5.5 B | |
2021 | 9.8 ± 9.2 | 6.2 ± 5.1 | 6.9 ± 6.8 | 15.9 ± 9.9 | 9.7 ± 7.7 B | |
Fruit set per tree (No tree−1) | 2019 | 66.3 ± 8.5 b | 85.7 ± 4.6 a | 96.7 ± 5.3 a | 81.6 ± 6.5 a | 82.6 ± 6.2 A |
2020 | 55.3 ± 12.3 | 65.7 ± 11.4 | 55.0 ± 9.0 | 71.9 ± 8.2 | 65.0 ± 10.2 B | |
2021 | 44.3 ± 8.0 | 48.5 ± 9.4 | 46.6 ± 10.0 | 46.9 ± 11.3 | 46.6 ± 9.7 B | |
Fresh kernel yield per tree (g) | 2019 | 359.5 ± 74.5 b | 460.2 ± 14.9 a | 477.3 ± 40.0 a | 405.7 ± 32.8 a | 425.7 ± 56.3 A |
2020 | 298.2 ± 29.6 | 420.6 ± 57.9 | 333.6 ± 29.6 a | 296.4 ± 65.1 | 337.2 ± 40.5 A | |
2021 | 221.4 ± 16.1 c | 242.0 ± 15.3 c | 251.0 ± 18.4 c | 235.2 ± 16.1 b | 237.4 ± 16.5 A |
Parameter | Year | Treatment | ||||
---|---|---|---|---|---|---|
Control | Hendophit PS® | Ergostim XL® | Radicon® | Average | ||
Hull per fruit (% of total fresh weight) | 2019 | 52.3 ± 7.1 | 48.4 ± 8.9 | 44.9 ± 0.9 | 44.8 ± 3.4 | 47.6 ± 5.1 |
2020 | 44.6 ± 9.4 | 43.7 ± 2.1 | 44.3 ± 7.6 | 39.6 ± 2.7 | 43.0 ± 5.4 | |
2021 | 44.1 ± 3.1 | 45.0 ± 4.1 | 43.9 ± 3.7 | 43.3 ± 5.0 | 44.1 ± 4.0 | |
Shelling: Kernel per nut dry (%) | 2019 | 28.1 ± 4.5 | 30.1 ± 4.9 | 31.4 ± 5.2 | 29.8 ± 6.1 | 29.8 ± 5.2 |
2020 | 31.3 ± 0.9 | 30.3 ± 0.8 | 30.8 ± 0.8 | 30.2 ± 2.9 | 30.6 ± 1.3 | |
2021 | 30.2 ± 1.3 | 30.7 ± 0.9 | 29.9 ± 1.0 | 29.5 ± 1.4 | 30.1 ± 1.1 | |
Double Seeds (%) | 2019 | 6.4 ± 2.4 | 7.3 ± 3.5 | 10.4 ± 4.4 | 9.3 ± 2.5 | 8.3 ± 3.2 |
2020 | 7.5 ± 1.3 | 8.1 ± 2.9 | 7.2 ± 2.4 | 6.9 ± 1.0 | 7.4 ± 1.9 | |
2021 | 6.9 ± 3.5 | 7.1 ± 2.4 | 6.9 ± 1.2 | 8.0 ± 3.5 | 7.2 ± 2.6 |
Parameter | Year | Treatment | ||||
---|---|---|---|---|---|---|
Control | Hendophit PS® | Ergostim XL® | Radicon® | Average | ||
Nut dry weight (g nut−1) | 2019 | 6.8 ± 0.8 | 5.7 ± 0.9 | 5.8 ± 0.9 | 6.1 ± 0.8 | 6.1 ± 0.8 |
2020 | 5.1 ± 0.7 | 5.1 ± 1.0 | 5.4 ± 0.8 | 5.1 ± 0.9 | 5.2 ± 0.7 | |
2021 | 5.8 ± 0.6 | 5.4 ± 0.7 | 5.3 ± 0.8 | 5.6 ± 0.7 | 5.5 ± 0.7 | |
Nut length (mm) | 2019 | 41.6 ± 2.0 | 41.9 ± 2.0 | 44.3 ± 1.9 | 42.9 ± 2.1 | 42.7 ± 2.0 A |
2020 | 33.1 ± 2.3 | 35.5 ± 3.9 | 35.4 ± 2.8 | 35.6 ± 2.1 | 34.9 ± 2.8 B | |
2021 | 34.0 ± 2.3 | 36.1 ± 2.7 | 37.2 ± 2.5 | 37.9 ± 2.3 | 36.3 ± 2.8 B | |
Nut width (mm) | 2019 | 32.0 ± 1.4 | 32.0 ± 3.7 | 33.8 ± 1.8 | 32.9 ± 2.0 | 32.7 ± 2.2 A |
2020 | 27.1 ± 1.4 | 27.0 ± 2.2 | 27.6 ± 1.6 | 26.7 ± 2.3 | 27.1 ± 1.9 B | |
2021 | 28.2 ± 2.3 | 28.9 ± 2.0 | 28.3 ± 2.2 | 28.5 ± 1.8 | 28.5 ± 2.1 B | |
Nut thickness (mm) | 2019 | 22.5 ± 0.8 | 22.5 ± 5.4 | 24.1 ± 1.5 | 23.7 ± 0.9 | 23.2 ± 2.1 A |
2020 | 17.4 ± 0.5 | 17.3 ± 1.0 | 17.7 ± 0.9 | 17.1 ± 1.0 | 17.4 ± 0.8 B | |
2021 | 18.0 ± 0.9 | 17.9 ± 0.8 | 18.4 ± 0.5 | 18.5 ± 0.8 | 18.2 ± 0.7 B |
Parameter | Year | Treatment | ||||
---|---|---|---|---|---|---|
Control | Hendophit PS® | Ergostim XL® | Radicon® | Average | ||
Kernel dry weight (g kernel−1) | 2019 | 1.6 ± 0.3 | 1.6 ± 0.2 | 1.5 ± 0.2 | 1.6 ± 0.2 | 1.6 ± 0.2 |
2020 | 1.7 ± 0.3 | 1.5 ± 0.2 | 1.6 ± 0.2 | 1.7 ± 0.2 | 1.7 ± 0.2 | |
2021 | 1.5 ± 0.2 | 1.6 ± 0.2 | 1.5 ± 0.2 | 1.6 ± 0.2 | 1.5 ± 0.2 | |
Kernel length (mm) | 2019 | 26.6 ± 2.4 | 25.4 ± 1.4 | 25.7 ± 1.3 | 26.0 ± 1.1 | 25.9 ± 1.5 |
2020 | 26.3 ± 1.9 | 25.9 ± 1.0 | 26.0 ± 1.0 | 26.3 ± 1.6 | 26.1 ± 1.4 | |
2021 | 24.3 ± 2.3 | 24.3 ± 2.3 | 24.3 ± 2.3 | 26.3 ± 1.98 | 24.8 ± 2.2 | |
Kernel width (mm) | 2019 | 15.9 ± 1.5 | 15.8 ± 1.2 | 16.0 ± 1.0 | 16.0 ± 1.2 | 15.9 ± 1.2 |
2020 | 16.6 ± 1.2 | 15.5 ± 1.4 | 16.4 ± 1.4 | 16.6 ± 1.1 | 16.3 ± 1.3 | |
2021 | 15.9 ± 1.1 | 16.1 ± 1.1 | 15.7 ± 1.2 | 16.3 ± 1.3 | 16.0 ± 1.2 | |
Kernel thickness (mm) | 2019 | 7.3 ± 1.5 | 7.9 ± 0.5 | 7.3 ± 0.7 | 7.6 ± 0.4 | 7.5 ± 0.8 |
2020 | 8.1 ± 0.6 | 8.0 ± 0.7 | 8.1 ± 0.6 | 7.9 ± 0.8 | 8.0 ± 0.7 | |
2021 | 8.3 ± 0.6 | 8.0 ± 0.5 | 7.9 ± 0.7 | 7.7 ± 0.6 | 8.0 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarantino, A.; Frabboni, L.; Disciglio, G. Vegetative and Reproductive Responses Induced by Organo-Mineral Fertilizers on Young Trees of Almond cv. Tuono Grown in a Medium-High Density Plantation. Agriculture 2024, 14, 230. https://doi.org/10.3390/agriculture14020230
Tarantino A, Frabboni L, Disciglio G. Vegetative and Reproductive Responses Induced by Organo-Mineral Fertilizers on Young Trees of Almond cv. Tuono Grown in a Medium-High Density Plantation. Agriculture. 2024; 14(2):230. https://doi.org/10.3390/agriculture14020230
Chicago/Turabian StyleTarantino, Annalisa, Laura Frabboni, and Grazia Disciglio. 2024. "Vegetative and Reproductive Responses Induced by Organo-Mineral Fertilizers on Young Trees of Almond cv. Tuono Grown in a Medium-High Density Plantation" Agriculture 14, no. 2: 230. https://doi.org/10.3390/agriculture14020230