How Does Specialization in Agricultural Production Affect Soil Health?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Agricultural Farms Characteristics
2.2. Soil Sampling and Laboratory Analysis
2.3. Synthetic Soil Fertility Index (SSFI)
2.4. Statistical Analysis
3. Results and Discussion
3.1. Soil Organic Carbon
3.2. Soil Nutrient Status
3.3. Soil Micro-Nutrients and Heavy Metals Status
3.4. Soil Acidification
3.5. The Synthetic Index of Soil Fertility (SSFI)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prăvălie, R.; Patriche, C.; Borrelli, P.; Panagos, P.; Roșca, B.; Dumitraşcu, M.; Nita, I.-A.; Săvulescu, I.; Birsan, M.-V.; Bandoc, G. Arable lands under the pressure of multiple land degradation processes. A global perspective. Environ. Res. 2021, 194, 110697. [Google Scholar] [CrossRef] [PubMed]
- Veerman, C.; Correia, T.P.; Bastioli, C.; Biro, B.; Bouma, J.; Cienciala, E.; Emmett, B.; Frison, E.A.; Grand, A.; Hristov, L.; et al. Caring for Soil Is Caring for Life Ensure 75% of Soils Are Healthy by 2030 for Healthy Food, People, Nature and Climate; Interim Report of the Mission Board for Soil Health and Food; Publications Office of the European Union: Luxembourg, 2020; Available online: https://era.gv.at/public/documents/4226/Soil.pdf (accessed on 5 December 2023).
- EC. Communication from the Commission ‘The European Green Deal’ (COM(2019) 640 Final of 11 December 2019. 2019. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 5 December 2023).
- EC. Communication from the Commission ‘EU Biodiversity Strategy for 2030: Bringing Nature Back into Our Lives’ (COM(2020) 380 Final of 20 May 2020. 2020. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:a3c806a6-9ab3-11ea-9d2d-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 5 December 2023).
- EC. Communication from the Commission ‘A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System’ (COM(2020) 381 final of 20 May 2020. 2020. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:ea0f9f73-9ab2-11ea-9d2d-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 5 December 2023).
- Kelting, D.L.; Burger, J.A.; Patternson, S.C.; Aust, W.M.; Miwa, M.; Trettin, C.C. Soil Quality management in domesticated forest—A southern pine example. For. Ecol. Manag. 1999, 122, 167–185. [Google Scholar] [CrossRef]
- Nortcliff, S. Standardisation of soil quality attributes. Agric. Ecosyst. Environ. 2002, 88, 161–168. [Google Scholar] [CrossRef]
- Smreczak, B.; Ukalska-Jaruga, A.; Łysiak, M.; Strzelecka, J.; Niedźwiecki, J.; Sobich, D. Functions, Quality and Ecosystem Services of Soils. Stud. Rap. IUNG-PIB 2017, 54, 9–23. (In Polish) [Google Scholar]
- Vogel, H.-J.; Eberhardt, E.; Franko, U.; Lang, B.; Ließ, M.; Weller, U.; Wiesmeier, M.; Wollschläger, U. Quantitative Evaluation of Soil Functions: Potential and State. Front. Environ. Sci. 2019, 7, 164. [Google Scholar] [CrossRef]
- Baritz, R.; Amelung, W.; Antoni, V.; Boardman, J.; Hijbeek, R.; Horn, R.; Prokop, G.; Römbke, J.; Romkens, P.; Steinhoff-Knopp, B.; et al. Soil Monitoring in Europe—Indicators and Thresholds for Soil Health Assessments; EEA Report No 08/2022; European Environment Agency: Copenhagen, Denmark, 2023.
- Sojka, R.E.; Upchurch, D.R. Reservations regarding the soil quality concept. Soil Sci. Soc. Am. J. 1999, 63, 1039–1054. [Google Scholar] [CrossRef]
- Karlen, D.L.; Stott, D.E. A framework for evaluating physical and chemical indicators of soil quality. In Defining Soil Quality for a Sustainable Environment; Doran, J.W., Coleman, D.C., Bezdicek, D.F., Stewart, B.A., Eds.; SSSA Special Publication, Soil Science Society of America: Madison, WI, USA, 1994; Volume 35, pp. 53–72. [Google Scholar]
- Jurga, B.; Ochal, P.; Podleśna, A. Selected agrochemical indicators of soil fertility used in rational fertilization. Stud. Rap. IUNG-PIB 2021, 65, 47–61. (In Polish) [Google Scholar]
- Ochal, P. Use of a Synthetic Indicator for Assessing the Agrochemical Condition of Soils in Poland. Ph.D. Thesis, IUNG-PIB, Puławy, Poland, 2012; p. 108. (In Polish). [Google Scholar]
- Bellassen, V.; Angers, D.; Kowalczewski, T.; Olesen, A. Soil Carbon Is the Blind Spot of European National GHG Inventories. Nat. Clim. Chang. 2022, 12, 324–331. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Poeplau, C.; Sierra, C.; Maier, H.; Frühauf, C.; Hübner, R.; Kühnel, A.; Spörlein, P.; Geuß, U.; Hangen, E.; et al. Projected loss of soil organic carbon in temperate agricultural soils in the 21st century: Effects of climate change and carbon input trends. Sci. Rep. 2016, 6, 32525. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, D.; Ballabio, C.; Lugato, E.; Fasiolo, M.; Jones, A.; Panagos, P. Soil organic carbon stocks in European croplands and grasslands: How much have we lost in the past decade? Glob. Chang. Biol. 2023, 30, e16992. [Google Scholar] [CrossRef] [PubMed]
- Monitoring the Chemistry of Polish Arable Soils. IUNG. 2017. Available online: http://www.gios.gov.pl/chemizm_gleb/index.php?mod=wyniki&cz=C (accessed on 20 August 2023). (In Polish)
- Meena, S.C.; Singh, D.P.; Meena, S.R. Effect of long-term application of fertilizer and manure on establish relationship between soil organic carbon fractions with yield of maize and wheat crops under maize-wheat sequence in Heplustepts. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 600–606. [Google Scholar]
- Sosulski, T.; Srivastava, A.K.; Ahrends, H.E.; Smreczak, B.; Szymańska, M. Carbon Storage Potential and Carbon Dioxide Emissions from Mineral-Fertilized and Manured Soil. Appl. Sci. 2023, 13, 4620. [Google Scholar] [CrossRef]
- Du, Y.; Cui, B.; Zhang, Q.; Wang, Z.; Sun, J.; Niu, W. Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. Catena 2020, 193, 104617. [Google Scholar] [CrossRef]
- Emde, D.; Hannam, K.; Most, I.; Nelson, L.; Jones, M. Soil organic carbon in irrigated agricultural systems: A meta-analysis. Glob. Chang. Biol. 2021, 27, 3898–3910. [Google Scholar] [CrossRef] [PubMed]
- Audette, Y.; Congreves, K.A.; Schneider, K.; Zaro, G.C.; Nunes, A.L.P.; Zhang, H.; Voroney, R.P. The effect of agroecosystem management on the distribution of C functional groups in soil organic matter: A review. Biol. Fertil. Soils 2021, 57, 881–894. [Google Scholar] [CrossRef]
- Kan, Z.R.; Ma, S.R.; Liu, Q.Y.; Liu, B.Y.; Virk, A.L.; Qi, J.Y.; Zhao, X.; Lal, R.; Zhang, H.L. Carbon sequestration and mineralization in soil aggregates under long-term conservation tillage in the North China Plain. Catena 2020, 188, 104428. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Szostek, M.; Szpunar-Krok, E.; Pawlak, R.; Stanek-Tarkowska, J.; Ilek, A. Effect of Different Tillage Systems on Soil Organic Carbon and Enzymatic Activity. Agronomy 2022, 12, 208. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Baic, Z.; Creamer, R.E.; De Deynb, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mädera, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Drexler, S.; Broll, G.; Flessa, H.; Don, A. Benchmarking soil organic carbon to support agricultural carbon management: A German case study. J. Plant Nutr. Soil Sci. 2022, 185, 427–440. [Google Scholar] [CrossRef]
- Wessolek, G.; Kaupenjohann, M.; Dominik, P.; Ilg, K.; Schmitt, A.; Zeitz, J.; Gahre, F.; Schulz, E.; Ellerbrock, R.; Utermann, J.; et al. ‘Ermittlung von Optimalgehalten an Organischer Substanz Landwirtschaftlich Genutzter Böden nach §17(2). 7 BBodSchG’, Umweltbundesamt. Forschungsprojekt im Auftrag des Umweltbundesamtes FuE-Vorhaben Förderkennzeichen 202 71 264. 2008. Publikationen des Umweltbundesamtes. Dessan Roßlan, German. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3707.pdf (accessed on 5 December 2023).
- Niedźwiecki, J.; Ukalska-Jaruga, A.; Gałązka, A.; Wawer, R.; Nowocień, E.; Klimkowicz-Pawlas, A. Guide for Agricultural Advisors the Best Ways to Manage Agricultural Soils in the Context of Climate Change; IUNG-PIB: Pulawy, Poland, 2020; ISBN 978-83-7562-340-6. (In Polish) [Google Scholar]
- Ballabio, C.; Lugato, E.; Fernández-Ugalde, O.; Orgiazzi, A.; Jones, A.; Borrelli, P.; Montanarella, L.; Panagos, P. Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression. Geoderma 2019, 355, 113912. [Google Scholar] [CrossRef]
- Sosulski, T.; Szara, E.; Stępień, W.; Szymańska, M.; Borowska-Komenda, M. Carbon and nitrogen leaching in long-term experiments and DOC/N-NO3− ratio in drainage water as an indicator of denitrification potential in different fertilization and crop rotation system. Fresenius Environ. Bull. 2016, 25, 2813–2824. [Google Scholar]
- Fertilizers by Nutrient. Available online: https://www.fao.org/faostat/en/#data/RFN (accessed on 20 August 2023).
- Bray, R.H.; Kurtz, L.T. Determination of total, organic and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; USDA Circular 939; U.S. Government Publishing Office: Washington, DC, USA, 1954.
- Joret, G.; Hebert, J. Contribution a `la de’termination du besoin des sols en acide phosphorique. Ann. Agron. 1955, 2, 233–299. [Google Scholar]
- Egner, M.T.; Riehm, H.; Domingo, W.R. Untersuchungen uber die chemishe boden-analyse als grundlage fur die beurteilung des nahrsoffzustandes der boden. II. Chemiche extraktionsmethoden zur phosphor und kalimbestimmung kungl.Lantbrukshoegskolans. Annales 1960, 26, 199–215. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Mallarino, A.P.; Blackmer, A.M. Comparison of methods for determining critical concentrations of soil test phosphorus for corn. Agron. J. 1992, 84, 850–856. [Google Scholar] [CrossRef]
- Li, H.; Huang, G.; Meng, Q.; Ma, L.; Yuan, L.; Wang, F.; Zhang, W.; Cui, Z.; Shen, J.; Chen, X.; et al. Integrated soil and plant phosphorus management for crop and environment in China. A review. Plant Soil 2011, 349, 157–167. [Google Scholar] [CrossRef]
- Szara, E.; Sosulski, T.; Szymańska, M. Impact of long-term liming on sandy soil phosphorus sorption properties. Soil Sci. Annu. 2019, 70, 13–20. [Google Scholar] [CrossRef]
- Szara, E.; Sosulski, T.; Szymańska, M.; Stępień, W. Phosphate sorption and p soil-test in sandy loam soil as affected by manure and lime applications in a long-term fertilization experiment. Fresenius Environ. Bull. 2017, 26, 3191–3199. [Google Scholar]
- Das, S.; Liptzin, D.; Maharjan, B. Long-term manure application improves soil health and stabilizes carbon in continuous maize production system. Geoderma 2023, 430, 116338. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, X.; Hsu, L.-C.; Liu, Y.-T.; Wang, S.-L.; White, J.R.; Shaheen, S.M.; Chen, Q.; Rinklebe, J. Soil acidification enhances the mobilization of phosphorus under anoxic conditions in an agricultural soil: Investigating the potential for loss of phosphorus to water and the associated environmental risk. Sci. Total Environ. 2021, 793, 148531. [Google Scholar] [CrossRef] [PubMed]
- Łopatka, A.; Siebielec, G.; Smerczak, B. Soil abundance in nutrients and soil and water contamination with nitrates. Stud. Rap. IUNG-PIB 2020, 64, 77–90. (In Polish) [Google Scholar]
- Becking, G.C.; Nordberg, M.; Nordberg, G.F. Essential Metals: Assessing Risks from Deficiency and Toxicity. In Handbook on the Toxicology of Metals, 3rd ed.; Friberg, L., Nordberg, G.F., Vouk, V.B., Eds.; Elsevier: San Diego, CA, USA, 2007; pp. 163–176. [Google Scholar]
- Korzeniowska, J.; Stanisławska-Glubiak, E.; Jadczyszyn, T. Evolution of methods for assessing the abundance of available forms of microelements in Polish soils. Stud. Rap. IUNG-PIB 2020, 63, 133–144. (In Polish) [Google Scholar]
- EU. Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on Environmental Quality Standards in the Field of Water Policy, Amending and Subsequently Repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and Amending Directive 2000/60/EC of the European Parliament and of the Council. Off. J. Eur. Union 2008, 348, 84–97. [Google Scholar]
- Wang, B.B.; Gao, F.; Qin, N.; Duan, X.L.; Li, Y.J.; Cao, S.Z. A comprehensive analysis on source-distribution-bioaccumulation-exposure risk of metal(loid)s in various vegetables in peri-urban areas of Shenzhen, China. Environ. Pollut. 2022, 293, 118613. [Google Scholar] [CrossRef]
- Liu, W.R.; Zeng, D.; She, L.; Su, W.X.; He, D.C.; Wu, G.Y.; Ma, X.R.; Jiang, S.; Jiang, C.H.; Ying, G.G. Comparisons of pollution characteristics, emission situations, and mass loads for heavy metals in the manures of different livestock and poultry in China. Sci. Total Environ. 2020, 734, 139023. [Google Scholar] [CrossRef]
- Pham, V.D.; Fatimah, M.S.; Sasaki, A.; Duong, V.H.; Pham, K.L.; Praise, S.; Watanabe, T. Seasonal variation and source identification of heavy metal(loid) contamination in peri-urban farms of Hue city, Vietnam. Environ. Pollut. 2021, 278, 116813. [Google Scholar] [CrossRef] [PubMed]
- Hu, N.W.; Yu, H.W.; Deng, B.L.; Hu, B.; Zhu, G.P.; Yang, X.T.; Wang, T.Y.; Zeng, Y.; Wang, Q.Y. Levels of heavy metal in soil and vegetable and associated health risk in peri-urban areas across China. Ecotoxicol. Environ. Saf. 2023, 259, 115037. [Google Scholar] [CrossRef]
- De Vries, W.; Posch, M.; Sverdup, H.U.; Larssen, T.; de Wit, H.A.; Bobbink, R.; Hettelingh, J.-P. Geochemical indicators for use in the computation of critical loads and dynamic risk assessments. In Critical Loads and Dynamic Risk Assessments: Nitrogen, Acidity and Metals in Terrestrial and Aquatic Ecosystems; de Vries, W., Hettelingh, J.-P., Posch, M., Eds.; Environmental Pollution; Springer: Dordrecht, The Netherlands, 2015; Volume 25, pp. 15–58. ISSN 1566-0745. [Google Scholar]
- Yadav, D.S.; Jaiswal, B.; Gautam, M.; Agrawal, M. Soil Acidification and its Impact on Plants. In Plant Responses to Soil Pollution; Singh, P., Singh, S.K., Prasad, S.M., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Holland, J.; White, P.; Glendining, M.; Goulding, K.; McGrath, S. Yield responses of arable crops to liming–An evaluation of relationships between yields and soil pH from a long-term liming experiment. Eur. J. Agron. 2019, 105, 176–188. [Google Scholar] [CrossRef]
- Schröder, J.; Zhang, H.; Desta, K.; Raun, W.; Penn, C.; Payton, M. Soil Acidification from Long-Term Use of Nitrogen Fertilizers on Winter Wheat. Soil Sci. Soc. Am. J. 2011, 75, 957–964. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Liu, X.; Zhang, D.; Li, L.; Li, W.; Sheng, L. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil Tillage Res. 2019, 195, 104382. [Google Scholar] [CrossRef]
- Jadczyszyn, T.; Lipiński, W. Principles of Determining Lime Dosages in Fertilization Advisory; IUNG-PIB: Puławy, Poland, 2022; pp. 1–17. Available online: https://dpr.iung.pl/wp-content/uploads/Zasady_ustalania_dawek_wapna_2022_cyfrowy.pdf (accessed on 1 March 2024). (In Polish)
- Fu, B.; Chen, L.; Huang, H.; Qu, P.; Wie, Z. Impacts of crop residues on soil health: A review. Environ. Pollut. Bioavail. 2021, 33, 164–173. [Google Scholar] [CrossRef]
- Sosulski, T.; Korc, M. Effects of different mineral and organic fertilization on the content of nitrogen and carbon in soil organic matter fractions. Ecol. Chem. Eng. 2011, 18, 601–609. [Google Scholar]
- Gransee, A.; Führs, H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil. 2013, 368, 5–21. [Google Scholar] [CrossRef]
Farm Code | ha | Dominant Crops on Arable Land | Dominant Animal Species | Crops 1 | Average Yield [t ha−1] | Types of Fertilizers Used on the Farm 2 |
---|---|---|---|---|---|---|
E1 | 17.7 | Triticale, oat, rye, serradella, potatoes | Cattle | Triticale | 2.8 | Cattle manure and slurry |
E2 | 18.0 | Triticale, oat, rye, clover, potatoes | Cattle | Triticale | 2.5 | |
E3 | 15.6 | Triticale, oat, rye, serradella, potatoes | Cattle | Triticale | 2.4 | |
R1 | 51.8 | Wheat, maize, barley, rape | - | Wheat | 5.6 | Ammonium nitrate, superphosphate, potassium chloride |
R2 | 59.5 | Wheat, maize, triticale, rape | - | Wheat | 4.9 | |
R3 | 57.3 | Wheat, maize, barley, rape | - | Wheat | 5.2 | |
W1 | 12.3 | Onion, white cabbage, carrot, pumpkin, wheat potatoes | - | Carrot | 45.2 | Ammonium nitrate, superphosphate, potassium chloride |
W2 | 12.8 | Onion, white cabbage, carrot, red beet, wheat potatoes | - | Carrot | 46.5 | |
W3 | 12.5 | Onion, white cabbage, carrot, parsley, celery, wheat potatoes | - | Carrot | 48.3 | |
B1 | 27.4 | Maize, triticale, spring cereal mix | Cattle | Maize | 47.5 | Cattle manure and slurry, ammonium nitrate, superphosphate, potassium chloride |
B3 | 35.8 | Maize, triticale, wheat, serradella | Cattle | Maize | 49.2 | |
B3 | 32.7 | Maize, triticale, wheat, spring cereal mix, serradella | Cattle | Maize | 44.9 | |
T1 | 14.0 | Wheat, triticale, barley, clover | Pig | Triticale | 3.7 | Pig manure and slurry, ammonium nitrate, superphosphate, potassium chloride |
T2 | 17.5 | Wheat, triticale, barley, serradella | Pig | Triticale | 4.1 | |
T3 | 13.5 | Wheat, triticale, potatoes | Pig | Triticale | 3.0 | |
D1 | 16.3 | Wheat, maize, barley, lupine | Turkey | Wheat | 5.5 | Poultry manure, ammonium nitrate, superphosphate, potassium chloride |
D2 | 16.3 | Wheat, triticale, barley, buckwheat | Geese, duck | Wheat | 4.8 | |
D3 | 21.6 | Wheat, maize, oats, lupine | Turkey, laying hens | Wheat | 4.7 |
Farms | ha | Organic Fertilizer 1 | Mineral Fertilizer 2 | ||||
---|---|---|---|---|---|---|---|
N | P | K | N | P | K | ||
kg ha−1 | |||||||
E1–E3 | 17.1 | 39 | 9 | 36 | na | na | na |
R1–R3 | 56.2 | na 3 | na | na | 76 | 17 | 52 |
W1–W3 | 12.5 | na | na | na | 93 | 37 | 77 |
B1–B3 | 32.0 | 43 | 10 | 48 | 68 | 12 | 32 |
T1–T3 | 15.0 | 150 | 50 | 124 | 62 | 18 | 33 |
D1–D3 | 18.1 | 170 | 22.5 | 46 | 20 | 25 | 45 |
Farm Type | Mean * (%) | Minimum (%) | Maximum (%) | Standard Deviation | Coefficient of Variation (%) |
---|---|---|---|---|---|
R1 | 1.13 b | 0.97 | 1.48 | 0.16 | 14.09 |
R2 | 0.88 a | 0.68 | 1.06 | 0.11 | 12.65 |
R3 | 0.88 a | 0.71 | 1.08 | 0.12 | 13.19 |
R1–R3 | 0.96 A | ||||
W1 | 0.82 a | 0.63 | 1.08 | 0.19 | 22.75 |
W2 | 1.33 a | 1.06 | 1.67 | 0.22 | 16.58 |
W3 | 1.84 b | 1.25 | 3.05 | 0.63 | 34.34 |
W1–W3 | 1.33 A | ||||
E1 | 1.01 a | 0.80 | 1.22 | 0.14 | 13.47 |
E2 | 0.95 a | 0.81 | 1.25 | 0.15 | 15.60 |
E3 | 1.13 a | 0.76 | 2.38 | 0.53 | 47.12 |
E1–E3 | 1.04 A | ||||
B1 | 0.95 a | 0.76 | 1.38 | 0.20 | 20.11 |
B2 | 1.05 ab | 0.75 | 2.58 | 0.62 | 59.27 |
B3 | 1.82 b | 1.16 | 3.90 | 0.88 | 48.67 |
B1–B3 | 1.50 A | ||||
T1 | 1.43 a | 0.74 | 2.82 | 0.80 | 56.10 |
T2 | 1.14 a | 0.59 | 2.87 | 0.72 | 62.91 |
T3 | 0.97 a | 0.87 | 1.13 | 0.08 | 8.29 |
T1–T3 | 1.04 A | ||||
D1 | 1.41 a | 1.03 | 2.67 | 0.53 | 37.53 |
D2 | 1.44 a | 1.30 | 1.55 | 0.10 | 6.90 |
D3 | 1.70 a | 0.81 | 2.90 | 0.75 | 44.03 |
D1–D3 | 1.53 A |
Farm Type | NT | P | K | Mg |
---|---|---|---|---|
g kg−1 | mg kg−1 | |||
E1–E3 | 1.17 ns | 51.62 c | 59.61 a | 49.43 a |
R1–R3 | 1.22 ns | 107.56 a | 111.65 abc | 71.85 ab |
W1–W3 | 1.46 ns | 168.04 b | 178.32 d | 93.84 ab |
B1–B3 | 1.59 ns | 104.70 a | 101.60 ab | 109.30 b |
T1–T3 | 1.43 ns | 115.20 a | 132.40 bcd | 93.02 ab |
D1–D3 | 1.55 ns | 194.01 b | 166.55 cd | 97.92 ab |
Farm Type | Plant Nutrients | Heavy Metals | |||||
---|---|---|---|---|---|---|---|
Ni | Zn | Cu | Mn | Fe | Pb | Cd | |
mg kg−1 | |||||||
R1–R3 | 1.72 d | 15.31 a | 5.41 a | 129.41 a | 1708.98 a | 8.37 a | 0.16 bc |
W1–W3 | 1.37 cd | 30.96 b | 16.40 b | 86.30 ab | 1606.13 a | 22.31 b | 0.18 c |
E1–E3 | 0.09 a | 7.19 a | 1.54 a | 91.14 ab | 901.13 b | 6.62 a | 0.07 a |
B1–B3 | 0.63 ab | 6.72 a | 3.37 a | 86.52 ab | 1205.82 ab | 7.53 a | 0.09 ab |
T1–T3 | 0.84 bc | 7.40 a | 7.21 a | 134.80 a | 1152.70 ab | 6.88 a | 0.08 ab |
D1–D3 | 0.20 a | 11.39 a | 3.16 a | 59.93 b | 1210.32 ab | 6.87 a | 0.08 ab |
Farm Type | Mean * | Minimum | Maximum | Standard Deviation | Coefficient of Variation (%) |
---|---|---|---|---|---|
E1 | 5.21 b | 4.38 | 5.77 | 0.39 | 7.61 |
E2 | 4.13 a | 3.92 | 4.34 | 0.14 | 3.44 |
E3 | 4.51 a | 3.91 | 5.70 | 0.64 | 14.18 |
E1–E3 | 4.62 A | ||||
R1 | 6.21 a | 5.22 | 7.04 | 0.76 | 12.27 |
R2 | 5.28 a | 4.19 | 6.93 | 0.81 | 15.41 |
R3 | 5.44 a | 4.23 | 6.75 | 0.96 | 17.65 |
R1–R3 | 5.64 BC | ||||
W1 | 5.71 ab | 4.68 | 7.00 | 0.81 | 14.25 |
W2 | 5.22 a | 3.84 | 6.72 | 1.04 | 19.88 |
W3 | 6.62 b | 6.11 | 7.11 | 0.40 | 6.10 |
W1–W3 | 5.85 C | ||||
B1 | 5.48 b | 4.31 | 6.61 | 0.93 | 17.44 |
B2 | 5.56 b | 4.70 | 6.22 | 0.60 | 10.82 |
B3 | 4.21 a | 4.06 | 4.62 | 0.19 | 4.53 |
B1–B3 | 5.08 AB | ||||
T1 | 4.98 b | 4.17 | 6.75 | 0.80 | 16.29 |
T2 | 5.37 b | 4.50 | 6.60 | 0.66 | 12.56 |
T3 | 3.68 a | 3.47 | 3.95 | 0.14 | 3.90 |
T1–T3 | 4.68 A | ||||
D1 | 6.31 b | 5.08 | 6.98 | 0.57 | 8.97 |
D2 | 4.54 a | 4.21 | 4.88 | 0.26 | 5.93 |
D3 | 4.56 a | 3.92 | 5.80 | 0.60 | 13.52 |
D1–D3 | 5.14 ABC |
Soil Parameter | E1–E3 | R1–R3 | W1–W3 | B1–B3 | T1–T3 | D1–D3 |
---|---|---|---|---|---|---|
r(N=24) | ||||||
P | −0.02 | 0.34 | 0.45 * | 0.48 * | 0.16 | 0.69 * |
K | 0.17 | 0.00 | −0.26 | 0.53 * | 0.04 | 0.24 |
Mg | 0.60 * | 0.12 | 0.57 * | 0.53 * | 0.28 | 0.85 * |
SOC | 0.12 | 0.61 * | 0.53 * | 0.02 | 0.24 | −0.17 |
NT | 0.12 | 0.56 * | 0.56 * | 0.07 | 0.23 | 0.26 |
Farm Type | SSFI | Fertility Class 1 |
---|---|---|
R1–R3 | 0.59 | high |
W1–W3 | 2.13 | very high |
E1–E3 | −1.16 | low |
B1–B3 | 0.55 | medium |
T1–T3 | 0.51 | medium |
D1–D3 | 2.27 | very high |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymańska, M.; Gubiec, W.; Smreczak, B.; Ukalska-Jaruga, A.; Sosulski, T. How Does Specialization in Agricultural Production Affect Soil Health? Agriculture 2024, 14, 424. https://doi.org/10.3390/agriculture14030424
Szymańska M, Gubiec W, Smreczak B, Ukalska-Jaruga A, Sosulski T. How Does Specialization in Agricultural Production Affect Soil Health? Agriculture. 2024; 14(3):424. https://doi.org/10.3390/agriculture14030424
Chicago/Turabian StyleSzymańska, Magdalena, Wiktoria Gubiec, Bożena Smreczak, Aleksandra Ukalska-Jaruga, and Tomasz Sosulski. 2024. "How Does Specialization in Agricultural Production Affect Soil Health?" Agriculture 14, no. 3: 424. https://doi.org/10.3390/agriculture14030424
APA StyleSzymańska, M., Gubiec, W., Smreczak, B., Ukalska-Jaruga, A., & Sosulski, T. (2024). How Does Specialization in Agricultural Production Affect Soil Health? Agriculture, 14(3), 424. https://doi.org/10.3390/agriculture14030424