Comparison of the Effect of Drying Treatments on the Physicochemical Parameters, Oxidative Stability, and Microbiological Status of Yellow Mealworm (Tenebrio molitor L.) Flours as an Alternative Protein Source
Abstract
:1. Introduction
2. Materials and Methods
2.1. Larvae Rearing
2.2. Drying Treatments
2.3. Water Activity (aw) and Instrumental Colour Measurements
2.4. Proximate Composition
2.5. Acid Value (AV)
- V—volume of KOH used for titration, g.
- F—factor of 0.1 nKOH = 0.996.
- m—the weight of the sample, g.
2.6. Peroxide Value (PV)
2.7. TBARS Content
2.8. Antioxidant Activity
2.9. Microbiological Assay
2.10. Statistical Evaluation
3. Results
3.1. Water Activity and Instrumental Colour
3.2. Proximate Composition
3.3. Lipid Stability
3.4. Antioxidant Activity
3.5. Microbiological Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Selaledi, L.; Mabelebele, M. The influence of drying methods on the chemical composition and body color of yellow mealworm (Tenebrio molitor L.). Insects 2021, 12, 333. [Google Scholar] [CrossRef]
- Food Security Update. World Bank Response to Rising Food Insecurity. The World Bank. Available online: https://thedocs.worldbank.org/en/doc/40ebbf38f5a6b68bfc11e5273e1405d4-0090012022/related/Food-Security-Update-XCV-11-9-23.pdf (accessed on 11 December 2023).
- Insects as Replacement of Animal Protein Gets a Boost. Available online: https://www.wur.nl/en/newsarticle/insects-as-replacement-of-animal-protein-gets-a-boost.htm (accessed on 21 January 2024).
- Smarzyński, K.; Sarbak, P.; Musiał, S.; Jeżowski, P.; Piątek, M.; Kowalczewski, P.Ł. Nutritional analysis and evaluation of the consumer acceptance of pork pâté enriched with cricket powder—Preliminary study. Open Agric. 2019, 4, 159–163. [Google Scholar] [CrossRef]
- Kim, T.K.; Yong, H.I.; Kim, Y.B.; Kim, H.W.; Choi, Y.S. Edible Insects as a protein source: A review of public perception, processing technology, and research trends. Food Sci. Anim. Resour. 2019, 39, 521–540. [Google Scholar] [CrossRef] [PubMed]
- Schäeufele, I.; Albores, E.B.; Hamm, U. The role of species for the acceptance of edible insects: Evidence from a consumer survey. Br. Food J. 2019, 121, 2190–2204. [Google Scholar] [CrossRef]
- Fischer, A.R.H.; Steenbekkers, B. All insects are equal, but some insects are more equal than others. Br. Food J. 2018, 120, 852–863. [Google Scholar] [CrossRef] [PubMed]
- Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch Ernst, K.; Kearney, J.; Maciuk, A.; Knutsen, H. Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, 6343. [Google Scholar] [CrossRef]
- Novel Food: Insects–Food of the Future?! Available online: https://www.eurofins.de/food-analysis/food-news/food-testing-news/novel-food_insects-as-food-of-the-future/ (accessed on 30 January 2024).
- Hartmann, C.; Shi, J.; Giusto, A.; Siegrist, M. The psychology of eating insects: A cross-cultural comparison between Germany and China. Food Qual. Prefer. 2015, 44, 148–156. [Google Scholar] [CrossRef]
- Vlahova-Vangelova, D.; Balev, D.; Kolev, N.; Stoyanov, V. Effect of drying regimes on the quality and safety of alternative protein source (Tenebrio molitor L.). Acta Sci. Pol. Technol. Aliment. 2023, 22, 217–225. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International: AOAC 984.13 1994 Protein (Crude) in Animal Feed and Pet Food; AOAC: Rockville, MD, USA, 1996. [Google Scholar]
- Janssen, R.; Vincken, J.; van den Broek, L.; Fogliano, V.; Lakemond, C. Nitrogen to protein conversion factors for three edible insects: Tenebrio molitor, Alphitobiu diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef]
- ISO 1444:1996; Meat and Meat Products—Determination of Free Fat Content. ISO: Geneva, Switzerland, 1996.
- Lenaerts, S.; Van Der Borght, M.; Callens, A.; Van Campenhout, L. Suitability of microwave drying for mealworms (Tenebrio molitor) as alternative to freeze drying: Impact on nutritional quality and colour. Food Chem. 2018, 254, 129–136. [Google Scholar] [CrossRef]
- Vandeweyer, D.; Lenaerts, S.; Callens, A.; Van Campenhout, L. Effect of blanching followed by refrigerated storage or industrial microwave drying on the microbial load of yellow mealworm larvae (Tenebrio molitor). Food Control 2017, 71, 311–314. [Google Scholar] [CrossRef]
- Joymak, W.; Ngamukote, S.; Chantarasinlapin, P.; Adisakwattana, S. Unripe papaya by-product: From food wastes to functional ingredients in pancakes. Foods 2021, 10, 615. [Google Scholar] [CrossRef]
- Kardash, E.; Tur’yan, Y.I. Acid value determination in vegetable oils by indirect titration in aqueous-alcohol media. Croat. Chem. Acta 2005, 78, 99–103. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Shantha, N.C.; Decker, E.A. Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. J. AOAC Int. 1994, 7, 421–424. [Google Scholar] [CrossRef]
- Botsoglou, N.A.; Fletouris, D.J.; Papageorgiou, G.E.; Vassilopoulos, V.N.; Mantis, A.J.; Trakatellis, A.G. Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples. J. Agric. Food Chem. 1994, 42, 1931–1937. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Dinkova, R.; Heffels, P.; Shikov, V.; Weber, F.; Schieber, A.; Mihalev, K. Effect of enzyme-assisted extraction on the chilled storage stability of bilberry (Vaccinium myrtillus L.) anthocyanins in skin extracts and freshly pressed juices. Food Res. Int. 2014, 65, 35–41. [Google Scholar] [CrossRef]
- ISO 6887 4:2017; Microbiology of the Food Chain—Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination—Part 4: Specific Rules for the Preparation of Miscellaneous Products. ISO: Geneva, Switzerland, 2017.
- ISO 4833 1:2013/Amd 1:2022; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique—Amendment 1: Clarification of Scope. ISO: Geneva, Switzerland, 2013.
- JMP, Version 7; SAS Institute Inc.: Cary, NC, USA, 2007.
- Fombong, F.T.; Van Der Borght, M.; Vanden Broeck, J. Influence of freeze-drying and oven-drying post blanching on the nutrient composition of the edible insect Ruspolia differens. Insects 2017, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Kröncke, N.; Böschen, V.; Woyzichovski, J.; Demtröder, S.; Benning, R. Comparison of suitable drying processes for mealworms (Tenebrio molitor). Innov. Food Sci. Emerg. Technol. 2018, 50, 20–25. [Google Scholar] [CrossRef]
- Yisa, N.K.; Osuga, I.M.; Subramanian, S.; Ekesi, S.; Emmambux, M.N.; Duodu, K.G. Effect of drying methods on the nutrient content, protein and lipid quality of edible insects from East Africa. J. Insects Food Feed 2022, 9, 647–659. [Google Scholar] [CrossRef]
- Allen, L.V., Jr. Quality control: Water activity considerations for beyond-use dates. Int. J. Pharm. Compd. 2018, 22, 288–293. [Google Scholar] [PubMed]
- Tapia, M.S.; Alzamora, S.M.; Chirife, J. Effects of Water Activity (aw) on Microbial Stability: As a Hurdle in Food Preservation. In Water Activity in Foods: Fundamentals and Applications; Barbosa-Cánovas, G.V., Fontana, A.J., Jr., Schmidt, S.J., Labuza, T.P., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2008; pp. 239–271. [Google Scholar] [CrossRef]
- Hidalgo, F.J.; Zamora, R. The role of lipids in nonenzymatic browning. Grasas Aceites 2000, 51, 35–49. [Google Scholar] [CrossRef]
- Bonazzi, C.; Dumoulin, E. Quality changes in food materials as influenced by drying processes. In Modern Drying Technology; Tsotsas, E., Mujumdar, A.S., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; pp. 1–20. [Google Scholar]
- Trukhanova, K.A.; Mechtaeva, E.V.; Novikova, M.V.; Sorokoumov, P.N.; Ryabukhin, D.S. Influence of drying and pretreatment methods on certain parameters of yellow mealworm larvae (Tenebrio molitor). Theory Pract. Meat Process. 2022, 7, 247–257. [Google Scholar] [CrossRef]
- Zamora, R.; Hidalgo, F.J. Coordinate contribution of lipid oxidation and Maillard reaction to the nonenzymatic food browning. Crit. Rev. Food Sci. Nutr. 2005, 45, 49–59. [Google Scholar] [CrossRef]
- Cotoras, M.; Vivanco, H.; Melo, R.; Aguirre, M.; Silva, E.; Mendoza, L. In vitro and in vivo evaluation of the antioxidant and prooxidant activity of phenolic compounds obtained from grape (Vitis vinifera) pomace. Molecules 2014, 19, 21154. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Jo, K.; Jeong, H.G.; Choi, Y.-S.; Kyoung, H.; Jung, S. Freezing-induced denaturation of myofibrillar proteins in frozen meat. Crit. Rev. Food Sci. Nutr. 2024, 64, 1385–1402. [Google Scholar] [CrossRef] [PubMed]
- Kröncke, N.; Grebenteuch, S.; Keil, C.; Demtröder, S.; Kroh, L.; Thünemann, A.F.; Benning, R.; Haase, H. Effect of different drying methods on nutrient quality of the yellow mealworm (Tenebrio molitor L.). Insects 2019, 10, 84. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave food processing—A review. Food Res. Int. 2013, 52, 243–261. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, Z.; Wang, S. Microwave processing: Effects and impacts on food components. Crit. Rev. Food Sci. Nutr. 2018, 58, 2476–2489. [Google Scholar] [CrossRef]
- Pérez-Torres, I.; Guarner-Lans, V.; Rubio-Ruiz, M.E. Reductive stress in inflammation-associated diseases and the pro-oxidant effect of antioxidant agents. Int. J. Mol. Sci. 2017, 18, 2098. [Google Scholar] [CrossRef] [PubMed]
- Talbot, G. The stability and shelf life of fats and oils. In The Stability and Shelf Life of Food; Subramaniam, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 461–503. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Scientific opinion on fish oil for human consumption. Food hygiene, including rancidity. EFSA J. 2010, 8, 1874. [Google Scholar] [CrossRef]
- Kumar, S.; Sandhir, R.; Ojha, S. Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC Res. Notes 2014, 7, 560. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.K.; Yeo, J.D.; Jang, E.Y.; Kim, M.-J.; Lee, J.H. Aldehydes from oxidized lipids can react with 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals in isooctane systems. J. Am. Oil Chem. Soc. 2012, 89, 1831–1838. [Google Scholar] [CrossRef]
- Bußler, S.; Rumpold, B.A.; Jander, E.; Rawel, H.M.; Schlüter, O.K. Recovery and techno-functionality of flours and proteins from two edible insect species: Meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon 2016, 2, e00218. [Google Scholar] [CrossRef]
- Klunder, H.C.; Wolkers-Rooijackers, J.; Korpela, J.M.; Nout, M.J.R. Microbiological aspects of processing and storage of edible insects. Food Control 2012, 26, 628–631. [Google Scholar] [CrossRef]
- Caparros Megido, R.; Desmedt, S.; Blecker, C.; Béra, F.; Haubruge, É.; Alabi, T.; Francis, F. Microbiological load of edible insects found in Belgium. Insects 2017, 8, 12. [Google Scholar] [CrossRef]
- Messina, C.M.; Gaglio, R.; Morghese, M.; Tolone, M.; Arena, R.; Moschetti, G.; Santulli, A.; Francesca, N.; Settanni, L. Microbiological profile and bioactive properties of insect powders used in food and feed formulations. Foods 2019, 8, 400. [Google Scholar] [CrossRef]
Protein, % | Fat, % | Ashes, % | Moisture, % | Carbohydrates, % |
---|---|---|---|---|
14.85 | 1.20 | 1.02 | 77.30 | 5.63 |
Treatment | aw | L* | a* | b* |
---|---|---|---|---|
FD | 0.35 d | 52.76 b | 6.55 c | 11.79 b |
CD | 0.14 e | 49.09 c | 6.17 d | 9.95 c |
MWD | 0.50 c | 51.74 b | 7.29 a | 12.94 a |
MWDL | 0.54 b | 54.70 a | 6.63 c | 13.27 a |
MWDA | 0.63 a | 49.54 c | 7.00 b | 13.37 a |
SEM | 0.01 | 0.44 | 0.05 | 0.34 |
p | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Treatment | Protein, % | Fat, % | Ash, % | Moisture, % | Carbohydrate, % |
---|---|---|---|---|---|
FD | 41.21 d | 20.82 a | 4.17 a | 6.07 | 27.73 c |
CD | 41.42 d | 21.11 a | 4.23 a | 5.62 | 27.62 c |
MWD | 47.14 b | 12.71 b | 2.87 c | 5.71 | 31.57 ab |
MWDL | 49.99 a | 11.35 b | 3.83 b | 5.18 | 29.65 bc |
MWDA | 44.97 c | 11.42 b | 4.17 a | 6.29 | 33.15 a |
SEM | 0.75 | 0.55 | 0.10 | 0.46 | 0.97 |
p | <0.0001 | <0.0001 | <0.0001 | 0.1034 | 0.0001 |
Treatment | AV, mgKOH/g | PV, meqO2/kg | TBARS, mgMDA/kg |
---|---|---|---|
FD | 1.94 c | 1.27 a | 0.05 c |
CD | 1.69 d | 1.22 ab | 0.06 c |
MWD | 2.58 b | 0.97 bc | 0.12 a |
MWDL | 2.55 b | 0.91 c | 0.10 b |
MWDA | 3.10 a | 1.16 abc | 0.10 b |
SEM | 0.04 | 0.10 | 0.005 |
p | <0.0001 | 0.0080 | <0.0001 |
Treatment | TPC, log10 CFU/g | Coliforms, log10 CFU/g | Yeasts Moulds, log10 CFU/g | E. coli, log10 CFU/g |
---|---|---|---|---|
FD | 4.52 | 2.93 | N.D. | N.D. |
CD | 3.91 | 3.19 | N.D. | N.D. |
MWD | 3.93 | 2.97 | N.D. | N.D. |
MWDL | 3.97 | 2.87 | N.D. | N.D. |
MWDA | 3.99 | 2.90 | N.D. | N.D. |
SEM | 0.62 | 0.50 | ||
p | 0.7279 | 0.9411 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlahova-Vangelova, D.; Balev, D.; Kolev, N.; Dragoev, S.; Petkov, E.; Popova, T. Comparison of the Effect of Drying Treatments on the Physicochemical Parameters, Oxidative Stability, and Microbiological Status of Yellow Mealworm (Tenebrio molitor L.) Flours as an Alternative Protein Source. Agriculture 2024, 14, 436. https://doi.org/10.3390/agriculture14030436
Vlahova-Vangelova D, Balev D, Kolev N, Dragoev S, Petkov E, Popova T. Comparison of the Effect of Drying Treatments on the Physicochemical Parameters, Oxidative Stability, and Microbiological Status of Yellow Mealworm (Tenebrio molitor L.) Flours as an Alternative Protein Source. Agriculture. 2024; 14(3):436. https://doi.org/10.3390/agriculture14030436
Chicago/Turabian StyleVlahova-Vangelova, Desislava, Desislav Balev, Nikolay Kolev, Stefan Dragoev, Evgeni Petkov, and Teodora Popova. 2024. "Comparison of the Effect of Drying Treatments on the Physicochemical Parameters, Oxidative Stability, and Microbiological Status of Yellow Mealworm (Tenebrio molitor L.) Flours as an Alternative Protein Source" Agriculture 14, no. 3: 436. https://doi.org/10.3390/agriculture14030436
APA StyleVlahova-Vangelova, D., Balev, D., Kolev, N., Dragoev, S., Petkov, E., & Popova, T. (2024). Comparison of the Effect of Drying Treatments on the Physicochemical Parameters, Oxidative Stability, and Microbiological Status of Yellow Mealworm (Tenebrio molitor L.) Flours as an Alternative Protein Source. Agriculture, 14(3), 436. https://doi.org/10.3390/agriculture14030436