From Fields to Films: Exploring Starch from Agriculture Raw Materials for Biopolymers in Sustainable Food Packaging
Abstract
:1. Introduction
2. Starch as a Biodegradable Matrix for Bioplastics
2.1. Starch Physicochemical Characteristics
2.2. Starch Extraction and Transformation into Biodegradable Plastics
2.2.1. Starch Isolation from the Matrix
2.2.2. Starch-Based Bioplastics Manufacturing Methods
3. Starch-Based Films and Coatings as Food Packaging
3.1. Starch-Based Bioplastics Physicochemical Properties
3.2. Functionalization of Starch-Based Bioplastics
3.2.1. Changing Properties of Native Starch for More Films and Coatings
Physical Modifications Induced in Starch
Starch Modifications by Chemical Treatments
3.2.2. Effect of Lipid and Polysaccharide Incorporation into the Film-Forming Solution
3.2.3. The Reinforcement of Starch-Based Films and Coatings with Nanoparticles, Biopolymers, and Clays
4. Application of Starch-Based Bioplastics in Food Preservation
4.1. Fruits and Vegetables
4.2. Dairy Products
4.3. Fish and Meat Products
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Niranjana, P.T.; Prashantha, K. A review on present status and future challenges of starch-based polymer films and their composites in food packaging applications. Polym. Compos. 2018, 39, 2499–2522. [Google Scholar] [CrossRef]
- Kumar, R.; Verma, A.; Shome, A.; Sinha, R.; Sinha, S.; Jha, P.K.; Kumar, R.; Kumar, P.; Shubham; Das, S.; et al. Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. Sustainability 2021, 13, 9963. [Google Scholar] [CrossRef]
- Emadian, S.M.; Onay, T.T.; Demirel, B. Biodegradation of bioplastics in natural environments. Waste Manag. 2017, 59, 526–536. [Google Scholar] [CrossRef]
- Sadeghizadeh-Yazdi, J.; Habibi, M.; Kamali, A.A.; Banaei, M. Application of edible and biodegradable starch-based films in food packaging: A systematic review and meta-analysis. Curr. Res. Nutr. Food Sci. 2019, 7, 624–637. [Google Scholar] [CrossRef]
- Estevez-Areco, S.; Guz, L.; Famá, L.; Candal, R.; Goyanes, S. Bioactive starch nanocomposite films with antioxidant activity and enhanced mechanical properties obtained by extrusion followed by thermo-compression. Food Hydrocoll. 2019, 96, 518–528. [Google Scholar] [CrossRef]
- Krueger, M.C.; Harms, H.; Schlosser, D. Prospects for microbiological solutions to environmental pollution with plastics. Appl. Microbiol. Biotechnol. 2015, 99, 8857–8874. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, P.; Manna, C.; Jain, M. Abundance, interaction, ingestion, ecological concerns, and mitigation policies of microplastic pollution in riverine ecosystem: A review. Sci. Total Environ. 2021, 782, 146695. [Google Scholar] [CrossRef]
- Pérez, S.E.E.; Dufour, D. Native and Modified Starches as Matrix for Edible Films and Covers. Nutr. Food Sci. Int. J. 2017, 3, 555615. [Google Scholar] [CrossRef]
- Okcu, Z.; Yavuz, Y.; Kerse, S. Edible Film and Coating Applications in Fruits and Vegetables. Alınteri ZBD 2018, 33, 221–226. [Google Scholar] [CrossRef]
- Niazi, M.B.K.; Broekhuis, A.A. Surface photo-crosslinking of plasticized thermoplastic starch films. Eur. Polym. J. 2015, 64, 229–243. [Google Scholar] [CrossRef]
- Shah, U.; Naqash, F.; Gani, A.; Masoodi, F.A. Art and Science behind Modified Starch Edible Films and Coatings: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 568–580. [Google Scholar] [CrossRef]
- Melo, P.E.F. Elaboração de Filmes Ativos a Partir de Compostos de Amêndoa de Manga. Master’s Thesis, Universidade Federal do Ceará, Fortaleza, Brazil, 2018. [Google Scholar]
- Silva, R.R.A.; Marques, C.S.; Arruda, T.R.; Teixeira, S.C.; de Oliveira, T.V. Biodegradation of Polymers: Stages, Measurement, Standards and Prospects. Macromol 2023, 3, 371–399. [Google Scholar] [CrossRef]
- Nanda, S.; Patra, B.R.; Patel, R.; Bakos, J.; Dalai, A.K. Innovations in applications and prospects of bioplastics and biopolymers: A review. Environ. Chem. Lett. 2022, 20, 379–395. [Google Scholar] [CrossRef]
- Boey, J.Y.; Lee, C.K.; Tay, G.S. Factors Affecting Mechanical Properties of Reinforced Bioplastics: A Review. Polymers 2022, 14, 3737. [Google Scholar] [CrossRef] [PubMed]
- Babaremu, K.; Oladijo, O.P.; Akinlabi, E. Biopolymers: A suitable replacement for plastics in product packaging. Adv. Ind. Eng. Polym. Res. 2023, 6, 333–340. [Google Scholar] [CrossRef]
- Zhao, G.; Lyu, X.; Lee, J.; Cui, X.; Chen, W.-N. Biodegradable and transparent cellulose film prepared eco-friendly from durian rind for packaging application. Food Packag. Shelf Life 2019, 21, 100345. [Google Scholar] [CrossRef]
- Yun, D.; Wang, Z.; Li, C.; Chen, D.; Liu, J. Antioxidant and antimicrobial packaging films developed based on the peel powder of different citrus fruits: A comparative study. Food Biosci. 2023, 51, 102319. [Google Scholar] [CrossRef]
- Cristofoli, N.L.; Lima, A.R.; Tchonkouang, R.D.N.; Quintino, A.C.; Vieira, M.C. Advances in the Food Packaging Production from Agri-Food Waste and By-Products: Market Trends for a Sustainable Development. Sustainability 2023, 15, 6153. [Google Scholar] [CrossRef]
- Pająk, P.; Przetaczek-Rożnowska, I.; Juszczak, L. Development and physicochemical, thermal and mechanical properties of edible films based on pumpkin, lentil and quinoa starches. Int. J. Biol. Macromol. 2019, 138, 441–449. [Google Scholar] [CrossRef]
- Weligama Thuppahige, V.T.; Moghaddam, L.; Welsh, Z.G.; Wang, T.; Karim, A. Investigation of critical properties of Cassava (Manihot esculenta) peel and bagasse as starch-rich fibrous agro-industrial wastes for biodegradable food packaging. Food Chem. 2023, 422, 136200. [Google Scholar] [CrossRef]
- Onyeaka, H.; Obileke, K.; Makaka, G.; Nwokolo, N. Current Research and Applications of Starch-Based Biodegrada-ble Films for Food Packaging. Polymers 2022, 14, 1126. [Google Scholar] [CrossRef]
- Dufresne, A.; Castaño, J. Polysaccharide nanomaterial reinforced starch nanocomposites: A review. Starch/Staerke 2017, 69, 1500307. [Google Scholar] [CrossRef]
- Muñoz-Gimena, P.F.; Oliver-Cuenca, V.; Peponi, L.; López, D. A Review on Reinforcements and Additives in Starch-Based Composites for Food Packaging. Polymers 2023, 15, 2972. [Google Scholar] [CrossRef]
- Nešić, A.; Cabrera-Barjas, G.; Dimitrijević-Branković, S.; Davidović, S.; Radovanović, N.; Delattre, C. Prospect of Polysaccharide-Based Materials as Advanced Food Packaging. Molecules 2020, 25, 135. [Google Scholar] [CrossRef] [PubMed]
- Marichelvam, M.K.; Jawaid, M.; Asim, M. Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers 2019, 7, 32. [Google Scholar] [CrossRef]
- Alcázar-Alay, S.C.; Meireles, M.A.A. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci. Technol. 2015, 35, 215–236. [Google Scholar] [CrossRef]
- Cazón, P.; Velazquez, G.; Ramírez, J.A.; Vázquez, M. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocoll. 2017, 68, 136–148. [Google Scholar] [CrossRef]
- Pelissari, F.M.; Ferreira, D.C.; Louzada, L.B.; dos Santos, F.; Corrêa, A.C.; Moreira, F.K.V.; Mattoso, L.H. Starch-Based Edible Films and Coatings: An Eco-Friendly Alternative for Food Packaging. In Starches for Food Application: Chemical, Technological and Health Properties; Clerici, M.T.P.S., Schmiele, M., Eds.; Elsevier: New York, NY, USA, 2018; pp. 359–420. [Google Scholar] [CrossRef]
- Singla, D.; Singh, A.; Dhull, S.B.; Kumar, P.; Malik, T.; Kumar, P. Taro starch: Isolation, morphology, modification and novel applications concern—A review. Int. J. Biol. Macromol. 2020, 163, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Ojogbo, E.; Ogunsona, E.O.; Mekonnen, T.H. Chemical and physical modifications of starch for renewable polymeric materials. Mater. Today Sustain. 2020, 7–8, 100028. [Google Scholar] [CrossRef]
- Farshi, P.; Mirmohammadali, S.N.; Rajpurohit, B.; Smith, J.S.; Li, Y. Pea protein and starch: Functional properties and applications in edible films. J. Agric. Food Res. 2024, 15, 100927. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, N.; Khatkar, B.S. Effects of A- and B-type starch granules on composition, structural, thermal, morphological, and pasting properties of starches from diverse wheat varieties. Food Bioeng. 2023, 2, 373–383. [Google Scholar] [CrossRef]
- Wani, I.A.; Sogi, D.S.; Hamdani, A.M.; Gani, A.; Bhat, N.A.; Shah, A. Isolation, composition, and physicochemical properties of starch from legumes: A review. Starch/Staerke 2016, 68, 834–845. [Google Scholar] [CrossRef]
- Bernardo, C.O.; Ascheri, J.L.R.; de Carvalho, C.W.P. Efeito do ultrassom na extração e modificação de amidos. Cienc. Rural 2016, 46, 739–746. [Google Scholar] [CrossRef]
- Maniglia, B.C.; Tessaro, L.; Lucas, A.A.; Tapia-Blácido, D.R. Bioactive films based on babassu mesocarp flour and starch. Food Hydrocoll. 2017, 70, 383–391. [Google Scholar] [CrossRef]
- Pelissari, F.M.; Andrade-Mahecha, M.M.; Sobral, P.J.d.A.; Menegalli, F.C. Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. J. Colloid Interface Sci. 2017, 505, 154–167. [Google Scholar] [CrossRef] [PubMed]
- Campos, C.A.; Gerschenson, L.N.; Flores, S.K. Development of Edible Films and Coatings with Antimicrobial Activity. Food Bioprocess Technol. 2011, 4, 849–875. [Google Scholar] [CrossRef]
- Perera, K.Y.; Jaiswal, A.K.; Jaiswal, S. Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods 2023, 12, 2422. [Google Scholar] [CrossRef]
- Versino, F.; Lopez, O.V.; Garcia, M.A.; Zaritzky, N.E. Starch-based films and food coatings: An overview. Starch/Staerke 2016, 68, 1026–1037. [Google Scholar] [CrossRef]
- Zhao, Y.; Saldaña, M.D.A. Use of potato by-products and gallic acid for development of bioactive film packaging by subcritical water technology. J. Supercrit. Fluids 2019, 143, 97–106. [Google Scholar] [CrossRef]
- Otoni, C.G.; Avena-Bustillos, R.J.; Azeredo, H.M.C.; Lorevice, M.V.; Moura, M.R.; Mattoso, L.H.C.; McHugh, T.H. Recent Advances on Edible Films Based on Fruits and Vegetables—A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1151–1169. [Google Scholar] [CrossRef]
- Vasile, C. Polymeric nanocomposites and nanocoatings for food packaging: A review. Materials 2018, 11, 1834. [Google Scholar] [CrossRef]
- Ochoa-Yepes, O.; Di Giogio, L.; Goyanes, S.; Mauri, A.; Famá, L. Influence of process (extrusion/thermo-compression, casting) and lentil protein content on physicochemical properties of starch films. Carbohydr. Polym. 2019, 208, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Val Siqueira, L.; Arias, C.I.L.F.; Maniglia, B.C.; Tadini, C.C. Starch-based biodegradable plastics: Methods of production, challenges and future perspectives. Curr. Opin. Food Sci. 2021, 38, 122–130. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Z.; Liu, J.; Dai, B.; Hu, S.; Hong, R.; Xie, H.; Zhihan, L.; Chen, Y.; Zeng, G. Preparation, reinforcement and properties of thermoplastic starch film by film blowing. Food Hydrocoll. 2020, 108, 106006. [Google Scholar] [CrossRef]
- Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.; Virchea, L.-I.; Rexhepi, D.; Mathe, E.; Georgescu, C. Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. Polymers 2021, 13, 1190. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.S.; Trafiałek, J.; Kolanowski, W. Edible Packaging: A Technological Update for the Sustainable Future of the Food Industry. Appl. Sci. 2023, 13, 8234. [Google Scholar] [CrossRef]
- Thakur, R.; Pristijono, P.; Scarlett, C.J.; Bowyer, M.; Singh, S.P.; Vuong, Q.V. Starch-based films: Major factors affecting their properties. Int. J. Biol. Macromol. 2019, 132, 1079–1089. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef]
- Fakhouri, F.M.; Martelli, S.M.; Caon, T.; Velasco, J.I.; Mei, L.H.I. Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biol. Technol. 2015, 109, 57–64. [Google Scholar] [CrossRef]
- Hassan, B.; Chatha, S.A.S.; Hussain, A.I.; Zia, K.M.; Akhtar, N. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. [Google Scholar] [CrossRef]
- Singh, P.; Pandey, V.K.; Singh, R.; Singh, K.; Dash, K.K.; Malik, S. Unveiling the potential of starch-blended biodegradable polymers for substantializing the eco-friendly innovations. J. Agric. Food Res. 2024, 15, 101065. [Google Scholar] [CrossRef]
- Kocira, A.; Kozłowicz, K.; Panasiewicz, K.; Staniak, M.; Szpunar-Krok, E.; Hortyńska, P. Polysaccharides as Edible Films and Coatings: Characteristics and Influence on Fruit and Vegetable Quality—A Review. Agronomy 2021, 11, 813. [Google Scholar] [CrossRef]
- Daudt, R.M.; Avena-Bustillos, R.J.; Williams, T.; Wood, D.F.; Külkamp-Guerreiro, I.C.; Marczak, L.D.F.; McHugh, T.H. Comparative study on properties of edible films based on pinhão (Araucaria angustifolia) starch and flour. Food Hydrocoll. 2016, 60, 279–287. [Google Scholar] [CrossRef]
- Lobato, A.C.N.; Damaceno, J.B.D.; Aguiar, J.P.L.; Saraiva-Bonato, E.C.; Rolim, C.S.S.; Fernandes, N.S.; de Castro, A.P.; Lamarão, C.V.; Souza, F.C.A. Development and characterization of biodegradable films from fermented yam (Dioscorea trifida L. f.). Afr. J. Food Sci. 2019, 13, 235–247. [Google Scholar] [CrossRef]
- Oluwasina, O.O.; Falola, T.; Wahab, O.J.; Idahagbon, N.B. Enhancement of Physical and Mechanical Properties of Dioscorea Dumetorum Starch Films with Dialdehyde Starch Solution. Starch/Staerke 2018, 70, 1700148. [Google Scholar] [CrossRef]
- Nawab, A.; Alam, F.; Hasnain, A. Mango kernel starch as a novel edible coating for enhancing shelf-life of tomato (Solanum lycopersicum) fruit. Int. J. Biol. Macromol. 2017, 103, 581–586. [Google Scholar] [CrossRef]
- Nawab, A.; Alam, F.; Haq, M.A.; Haider, M.S.; Lutfi, Z.; Kamaluddin, S.; Hasnain, A. Innovative edible packaging from mango kernel starch for the shelf-life extension of red chili powder. Int. J. Biol. Macromol. 2018, 114, 626–631. [Google Scholar] [CrossRef]
- Hornung, P.S.; Masisi, K.; Malunga, L.N.; Beta, T.; Ribani, R.H. Natural bioactive starch film from Amazon turmeric (Curcuma longa L.). Polym. Bull. 2018, 75, 4735–4752. [Google Scholar] [CrossRef]
- Nogueira, G.F.; Soares, C.T.; Cavasini, R.; Fakhouri, F.M.; de Oliveira, R.A. Bioactive films of arrowroot starch and blackberry pulp: Physical, mechanical and barrier properties and stability to pH and sterilization. Food Chem. 2019, 275, 417–425. [Google Scholar] [CrossRef]
- Rodrigues, A.A.M.; Silva, S.d.M.; Dantas, A.L.; da Silva, A.F.; da Santos, L.S.; das Moreira, D.N. Physiology and postharvest conservation of ‘Paluma’ guava under coatings using Jack fruit seed-based starch. Rev. Bras. Frutic. 2018, 40, 1–8. [Google Scholar] [CrossRef]
- Cao, T.L.; Song, K.B. Effects of gum karaya addition on the characteristics of loquat seed starch films containing oregano essential oil. Food Hydrocoll. 2019, 97, 105198. [Google Scholar] [CrossRef]
- Galindez, A.; Daza, L.D.; Homez-Jara, A.; Eim, V.S.; Váquiro, H.A. Characterization of ulluco starch and its potential for use in edible films prepared at low drying temperature. Carbohydr. Polym. 2019, 215, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Song, K.B. Characterization of Job’s tears (Coix lachryma-jobi L.) starch films incorporated with clove bud essential oil and their antioxidant effects on pork belly during storage. LWT 2019, 111, 711–718. [Google Scholar] [CrossRef]
- Samir, A.; Ashour, F.H.; Hakim, A.A.A.; Bassyouni, M. Recent advances in biodegradable polymers for sustainable applications. NPJ Mater. Degrad. 2022, 6, 1. [Google Scholar] [CrossRef]
- Galus, S.; Kadzińska, J. Food applications of emulsion-based edible films and coatings. Trends Food Sci. Technol. 2015, 45, 273–283. [Google Scholar] [CrossRef]
- Nguyen Vu, H.P.; Lumdubwong, N. Starch behaviors and mechanical properties of starch blend films with different plasticizers. Carbohydr. Polym. 2016, 154, 112–120. [Google Scholar] [CrossRef]
- Dash, K.K.; Ali, N.A.; Das, D.; Mohanta, D. Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. Int. J. Biol. Macromol. 2019, 139, 449–458. [Google Scholar] [CrossRef]
- Basiak, E.; Lenart, A.; Debeaufort, F. Effect of starch type on the physico-chemical properties of edible films. Int. J. Biol. Macromol. 2017, 98, 348–356. [Google Scholar] [CrossRef]
- Muscat, D.; Adhikari, B.; Adhikari, R.; Chaudhary, D.S. Comparative study of film forming behavior of low and high amylose starches using glycerol and xylitol as plasticizers. J. Food Eng. 2012, 109, 189–201. [Google Scholar] [CrossRef]
- Sadeghi, G.M.M.; Mahsa, S. Compostable Polymers and Nanocomposites—A Big Chance for Planet Earth. In Recycling Materials Based on Environmentally Friendly Techniques; Achilas, D.S., Ed.; InTech: Rijeka, Croatia, 2015. [Google Scholar] [CrossRef]
- Dome, K.; Podgorbunskikh, E.; Bychkov, A.; Lomovsky, O. Changes in the Crystallinity Degree of Starch Having Different Types of Crystal Structure after Mechanical Pretreatment. Polymers 2020, 12, 641. [Google Scholar] [CrossRef]
- Kumar, S.R.; Tangsrianugul, N.; Suphantharika, M. A Review on Isolation, Characterization, Modification, and Applications of Proso Millet Starch. Foods 2023, 12, 2413. [Google Scholar] [CrossRef] [PubMed]
- Guarás, M.P.; Ludueña, L.N.; Alvarez, V.A. Development of Biodegradable Products from Modified Starches. In Starch-Based Materials in Food Packaging: Processing, Characterization and Applications; Marcelo, A., Silvia, E., Garcia, M.A., Castillo, L.A., López, O.V., Eds.; Elsevier Inc.: New York, NY, USA, 2017; pp. 77–124. [Google Scholar] [CrossRef]
- Monroy, Y.; Rivero, S.; García, M.A. Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrason. Sonochem. 2018, 42, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F. Impact of Ultrasound on Structure, Physicochemical Properties, Modifications, and Applications of Starch. Trends Food Sci. Technol. 2015, 43, 1–17. [Google Scholar] [CrossRef]
- Vrabič-Brodnjak, U.; Brodnjak, U.V. Improvement of physical and optical properties of chitosan-rice starch films pre-treated with ultrasound. Bulg. Chem. Commun. 2017, 29, 859–867. Available online: https://www.researchgate.net/publication/321869648 (accessed on 6 January 2023).
- Liu, P.; Wang, R.; Kang, X.; Cui, B.; Yu, B. Effects of ultrasonic treatment on amylose-lipid complex formation and properties of sweet potato starch-based films. Ultrason. Sonochem. 2018, 44, 215–222. [Google Scholar] [CrossRef]
- Hu, A.; Jiao, S.; Li, L.; Fan, Y.; Chen, L.; Zhang, Z. Ultrasonic frequency effect on corn starch and its cavitation. LWT 2015, 60, 941–947. [Google Scholar] [CrossRef]
- Oyeyinka, S.A.; Umaru, E.; Olatunde, S.J.; Joseph, J.K. Effect of short microwave heating time on physicochemical and functional properties of Bambara groundnut starch. Food Biosci. 2019, 28, 36–41. [Google Scholar] [CrossRef]
- Zhong, Y.; Li, X.; Lan, T.; Li, L.; Qu, J.; Zhang, R.; Liang, W.; Xue, J.; Liu, X.; Gui, D. Effects of Different Thermal Treatment Methods on Preparation and Physical Properties of High Amylose Maize Starch Based Films. Int. J. Food Eng. 2018, 14, 20170284. [Google Scholar] [CrossRef]
- Ashwar, B.A.; Shah, A.; Gani, A.; Rather, S.A.; Wani, S.M.; Wani, I.A.; Masoodi, F.A.; Gani, A. Effect of gamma irradiation on the physicochemical properties of alkali-extracted rice starch. Radiat. Phys. Chem. 2014, 99, 37–44. [Google Scholar] [CrossRef]
- Cieśla, K.; Watzeels, N.; Rahier, H. Effect of gamma irradiation on thermophysical properties of plasticized starch and starch surfactant films. Radiat. Phys. Chem. 2014, 99, 18–22. [Google Scholar] [CrossRef]
- Cieśla, K.; Sartowska, B. Modification of the microstructure of the films formed by gamma irradiated starch examined by SEM. Radiat. Phys. Chem. 2014, 118, 87–95. [Google Scholar] [CrossRef]
- Li, L.; Chen, H.; Wang, M.; Lv, X.; Zhao, Y.; Xia, L. Development and characterization of irradiated-corn-starch films. Carbohydr. Polym. 2018, 194, 395–400. [Google Scholar] [CrossRef]
- Akhavan, A.; Khoylou, F.; Ataeivarjovi, E. Preparation and characterization of gamma irradiated Starch/PVA/ZnO nanocomposite films. Radiat. Phys. Chem. 2017, 138, 49–53. [Google Scholar] [CrossRef]
- BeMiller, J.N. Corn starch modification. In Corn: Chemistry and Technology, 3rd ed.; Elsevier: New York, NY, USA, 2018; pp. 537–549. [Google Scholar] [CrossRef]
- Majzoobi, M.; Pesaran, Y.; Mesbahi, G.; Golmakani, M.T.; Farahnaky, A. Physical properties of biodegradable films from heat-moisture-treated rice flour and rice starch. Starch/Staerke 2015, 67, 1053–1060. [Google Scholar] [CrossRef]
- Rafiq, S.I.; Singh, S.; Saxena, D.C. Effect of heat-moisture and acid treatment on physicochemical, pasting, thermal and morphological properties of Horse Chestnut (Aesculus indica) starch. Food Hydrocoll. 2016, 57, 103–113. [Google Scholar] [CrossRef]
- Indrianti, N.; Pranoto, Y.; Abbas, A. Preparation and characterization of edible films made from modified sweet potato starch through heat moisture treatment. Indones. J. Chem. 2018, 18, 679–687. [Google Scholar] [CrossRef]
- BeMiller, J.N. Physical Modification of Starch. In Starch in Food: Structure, Function and Applications; Elsevier: New York, NY, USA, 2017; pp. 223–253. [Google Scholar] [CrossRef]
- Zarski, A.; Kapusniak, K.; Ptak, S.; Rudlicka, M.; Coseri, S.; Kapusniak, J. Functionalization Methods of Starch and Its Derivatives: From Old Limitations to New Possibilities. Polymers 2024, 16, 597. [Google Scholar] [CrossRef]
- Seligra, P.G.; Medina Jaramillo, C.; Famá, L.; Goyanes, S. Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent. Carbohydr. Polym. 2016, 138, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, T.J.; Tapia, M.S.; Pérez, E.; Famá, L. Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch. Food Hydrocoll. 2015, 45, 211–217. [Google Scholar] [CrossRef]
- Yıldırım-Yalçın, M.; Şeker, M.; Sadıkoğlu, H. Development and characterization of edible films based on modified corn starch and grape juice. Food Chem. 2019, 292, 6–13. [Google Scholar] [CrossRef]
- Dai, L.; Zhang, J.; Cheng, F. Effects of starches from different botanical sources and modification methods on physicochemical properties of starch-based edible films. Int. J. Biol. Macromol. 2019, 132, 897–905. [Google Scholar] [CrossRef]
- Shaikh, M.; Haider, S.; Ali, T.M.; Hasnain, A. Physical, thermal, mechanical and barrier properties of pearl millet starch films as affected by levels of acetylation and hydroxypropylation. Int. J. Biol. Macromol. 2019, 124, 209–219. [Google Scholar] [CrossRef]
- Colivet, J.; Carvalho, R.A. Hydrophilicity and physicochemical properties of chemically modified cassava starch films. Ind. Crops Prod. 2017, 95, 599–607. [Google Scholar] [CrossRef]
- Singh, R.; Singh, S.; Saxena, D.C. Systematic Evaluation and Studies on the Effect of Octenyl Succinic Anhydride Treatment on Structural, Functional, Morphological, and Flow Properties of Underutilized Chenopodium album Starch. Starch/Stärke 2022, 74, 2100217. [Google Scholar] [CrossRef]
- Li, J.; Ye, F.; Liu, J.; Zhao, G. Effects of octenylsuccination on physical, mechanical and moisture-proof properties of stretchable sweet potato starch film. Food Hydrocoll. 2015, 46, 226–232. [Google Scholar] [CrossRef]
- Li, J.; Ye, F.; Lei, L.; Zhao, G. Combined effects of octenylsuccination and oregano essential oil on sweet potato starch films with an emphasis on water resistance. Int. J. Biol. Macromol. 2018, 115, 547–553. [Google Scholar] [CrossRef]
- Gao, W.; Wu, W.; Liu, P.; Hou, H.; Li, X.; Cui, B. Preparation and evaluation of hydrophobic biodegradable films made from corn/octenylsuccinated starch incorporated with different concentrations of soybean oil. Int. J. Biol. Macromol. 2020, 142, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Ghozali, M.; Meliana, Y.; Chalid, M. Novel In Situ Modification for Thermoplastic Starch Preparation based on Arenga pinnata Palm Starch. Polymers 2022, 14, 4813. [Google Scholar] [CrossRef] [PubMed]
- El Halal, S.L.M.; Colussi, R.; Pinto, V.Z.; Bartz, J.; Radunz, M.; Carreño, N.L.V.; Fias, A.R.G.; Zavareze, E.R. Structure, morphology and functionality of acetylated and oxidised barley starches. Food Chem. 2015, 168, 247–256. [Google Scholar] [CrossRef]
- Ochoa, T.A.; Almendárez, B.E.G.; Reyes, A.A.; Pastrana, D.M.R.; López, G.F.G.; Belloso, O.M.; González, C.R. Design and Characterization of Corn Starch Edible Films Including Beeswax and Natural Antimicrobials. Food Bioprocess Technol. 2017, 10, 103–114. [Google Scholar] [CrossRef]
- Biduski, B.; Silva, F.; Silva, W.; Halal, S.; Zanella Pinto, V.; Dias, Á.; Zavareze, E. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films. Food Chem. 2016, 214, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, L.; Gonçalves, J.; Halal, S.; Zanella Pinto, V.; Dias, Á.; Jacques, A.; Zavareze, E. Oxidation of potato starch with different sodium hypochlorite concentrations and its effect on biodegradable films. LWT 2015, 60, 714–720. [Google Scholar] [CrossRef]
- Oluwasina, O.O.; Olaleye, F.K.; Olusegun, S.J.; Oluwasina, O.O.; Mohallem, N.D.S. Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film. Int. J. Biol. Macromol. 2019, 135, 282–293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hou, H.; Liu, P.; Wang, W.; Dong, H. Effects of acid hydrolysis on the physicochemical properties of pea starch and its film forming capacity. Food Hydrocoll. 2019, 87, 173–179. [Google Scholar] [CrossRef]
- Hernández-Jaimes, C.; Meraz, M.; Lara, V.H.; González-Blanco, G.; Buendía-González, L. Acid hydrolysis of composites based on corn starch and trimethylene glycol as plasticizer. Rev. Mex. Ing. Quim. 2017, 16, 169–178. [Google Scholar] [CrossRef]
- Restrepo, A.E.; Rojas, J.D.; García, O.R.; Sánchez, L.T.; Pinzón, M.I.; Villa, C.C. Mechanical, barrier, and color properties of banana starch edible films incorporated with nanoemulsions of lemongrass (Cymbopogon citratus) and rosemary (Rosmarinus officinalis) essential oils. Food Sci. Technol. Int. 2018, 24, 705–712. [Google Scholar] [CrossRef]
- Basiak, E.; Debeaufort, F.; Lenart, A. Effect of oil lamination between plasticized starch layers on film properties. Food Chem. 2016, 195, 56–63. [Google Scholar] [CrossRef]
- Ali, A.; Xie, F.; Yu, L.; Liu, H.; Meng, L.; Khalid, S.; Chen, L. Preparation and characterization of starch-based composite films reinfoced by polysaccharide-based crystals. Compos. Part B Eng. 2018, 133, 122–128. [Google Scholar] [CrossRef]
- Ratna; Aprilia, S.; Arahman, N.; Bilad, M.R.; Suhaimi, H.; Munawar, A.A.; Nasution, I.S. Bio-Nanocomposite Based on Edible Gelatin Film as Active Packaging from Clarias gariepinus Fish Skin with the Addition of Cellulose Nanocrystalline and Nanopropolis. Polymers 2022, 14, 3738. [Google Scholar] [CrossRef]
- Tibolla, H.; Pelissari, F.M.; Martins, J.T.; Lanzoni, E.M.; Vicente, A.A.; Menegalli, F.C.; Cunha, R.L. Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment: In vitro cytotoxicity assessment. Carbohydr. Polym. 2019, 207, 169–179. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, L.; Ge, X.; Liu, H.; Ali, A.; Wang, Y.; Chen, L. Preparation and characterization of edible starch film reinforced by laver. Int. J. Biol. Macromol. 2019, 129, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Pellá, M.C.G.; Silva, O.A.; Pellá, M.G.; Beneton, A.G.; Caetano, J.; Simões, M.R.; Dragunski, D.C. Effect of gelatin and casein additions on starch edible biodegradable films for fruit surface coating. Food Chem. 2020, 309, 125764. [Google Scholar] [CrossRef] [PubMed]
- Abreu, A.S.; Oliveira, M.; de Sá, A.; Rodrigues, R.M.; Cerqueira, M.A.; Vicente, A.A.; Machado, A.V. Antimicrobial nanostructured starch-based films for packaging. Carbohydr. Polym. 2015, 129, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Peighambardoust, S.J.; Peighambardoust, S.H.; Mohammadzadeh Pournasir, N.; Pakdel, P. Properties of active starch-based films incorporating a combination of Ag, ZnO, and CuO nanoparticles for potential use in food packaging applications. Food Packag. Shelf Life 2019, 22, 100420. [Google Scholar] [CrossRef]
- Jayakumar, A.; Heera, K.V.; Sumi, T.S.; Joseph, M.; Mathew, S.; Praveen, G.; Nair, I.C.; Radhakrishnan, E.K. Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application. Int. J. Biol. Macromol. 2019, 136, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Zhao, Y.; Warner, R.D.; Johnson, S.K. Active and intelligent packaging in the meat industry. Trends Food Sci. Technol. 2017, 61, 60–71. [Google Scholar] [CrossRef]
- McMillin, K.W. Advancements in meat packaging. Meat Sci. 2017, 132, 153–162. [Google Scholar] [CrossRef]
- Nieto-Suaza, L.; Acevedo-Guevara, L.; Sánchez, L.T.; Pinzón, M.I.; Villa, C.C. Characterization of Aloe vera-banana starch composite films reinforced with curcumin-loaded starch nanoparticles. Food Struct. 2019, 22, 100131. [Google Scholar] [CrossRef]
- Iamareerat, B.; Singh, M.; Sadiq, M.B.; Anal, A.K. Reinforced cassava starch-based edible film incorporated with essential oil and sodium bentonite nanoclay as food packaging material. J. Food Sci. Technol. 2018, 55, 1953–1959. [Google Scholar] [CrossRef]
- Piñeros-Hernandez, D.; Medina-Jaramillo, C.; López-Córdoba, A.; Goyanes, S. Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocoll. 2017, 63, 488–495. [Google Scholar] [CrossRef]
- Thakur, R.; Pristijono, P.; Singh, S.P.; Scarlett, C.J.; Stathopoulos, C.E.; Vuong, Q.V. A starch edible surface coating delays banana fruit ripening. LWT 2019, 100, 341–347. [Google Scholar] [CrossRef]
- Sousa, H.A.F.; Filho, J.G.O.; Egea, M.B.; Silva, E.R.; Macagnan, D.; Pires, M.; Peixoto, J. Active film incorporated with clove essential oil on storage of banana varieties. Nutr. Food Sci. 2019, 49, 911–924. [Google Scholar] [CrossRef]
- Wang, Y.; Li, R.; Lu, R.; Xu, J.; Hu, K.; Liu, Y. Preparation of Chitosan/Corn Starch/Cinnamaldehyde Films for Strawberry Preservation. Foods 2019, 8, 423. [Google Scholar] [CrossRef] [PubMed]
- Romani, V.P.; Hernández, C.P.; Martins, V.G. Pink pepper phenolic compounds incorporation in starch/protein blends and its potential to inhibit apple browning. Food Packag. Shelf Life 2018, 15, 151–158. [Google Scholar] [CrossRef]
- Ortega-Toro, R.; Collazo-Bigliardi, S.; Roselló, J.; Santamarina, P.; Chiralt, A. Antifungal starch-based edible films containing Aloe vera. Food Hydrocoll. 2017, 72, 1–10. [Google Scholar] [CrossRef]
- de Aquino, A.B.; Blank, A.F.; Santana, L.C. Impact of edible chitosan-cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chem. 2015, 171, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Yuan, Y.; Wu, Y.; Li, Y. Characterization of edible starch-chitosan film and its application in the storage of Mongolian cheese. Int. J. Biol. Macromol. 2013, 57, 17–21. [Google Scholar] [CrossRef]
- Yang, S.Y.; Cao, L.; Kim, H.; Beak, S.E.; Song, K.B. Utilization of Foxtail Millet Starch Film Incorporated with Clove Leaf Oil for the Packaging of Queso Blanco Cheese as a Model Food. Starch/Staerke 2018, 70, 1700171. [Google Scholar] [CrossRef]
- Ollé Resa, C.P.; Gerschenson, L.N.; Jagus, R.J. Starch Edible Film Supporting Natamycin and Nisin for Improving Microbiological Stability of Refrigerated Argentinian Port Salut Cheese. Food Control 2016, 59, 737–742. [Google Scholar] [CrossRef]
- Perazzo, K.K.N.C.L.; de Vasconcelos Conceição, A.C.; Santos, J.C.P.D.; De Jesus Assis, D.; Souza, C.O.; Druzian, J.I. Properties and Antioxidant Action of Actives Cassava Starch Films Incorporated with Green Tea and Palm Oil Extracts. PLoS ONE 2014, 9, e105199. [Google Scholar] [CrossRef]
- Umaraw, P.; Munekata, P.E.S.; Verma, A.K.; Barba, F.J.; Singh, V.P.; Kumar, P.; Lorenzo, J.M. Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends Food Sci. Technol. 2020, 98, 10–24. [Google Scholar] [CrossRef]
- Alak, G.; Guler, K.; Ucar, A.; Parlak, V.; Kocaman, E.M.; Yanık, T.; Atamanalp, M. Quinoa as polymer in edible films with essential oil: Effects on rainbow trout fillets shelf life. J. Food Process. Preserv. 2019, 43, e14268. [Google Scholar] [CrossRef]
- U Nisa, I.; Ashwar, B.A.; Shah, A.; Gani, A.; Gani, A.; Masoodi, F.A. Development of potato starch based active packaging films loaded with antioxidants and its effect on shelf life of beef. JFST 2015, 52, 7245–7253. [Google Scholar] [CrossRef]
- Krishnan, K.R.; Babuskin, S.; Rakhavan, K.R.; Tharavin, R.; Babu, P.A.S.; Sivarajan, M.; Sukumar, M. Potential application of corn starch edible films with spice essential oils for the shelf life extension of red meat. J. Appl. Microbiol. 2015, 119, 1613–1623. [Google Scholar] [CrossRef] [PubMed]
- Tosati, J.V.; Messias, V.C.; Carvalho, P.I.N.; Rodrigues Pollonio, M.A.; Meireles, M.A.A.; Monteiro, A.R. Antimicrobial Effect of Edible Coating Blend Based on Turmeric Starch Residue and Gelatin Applied onto Fresh Frankfurter Sausage. Food Bioprocess Technol. 2017, 10, 2165–2175. [Google Scholar] [CrossRef]
- Alotaibi, S.; Tahergorabi, R. Development of a sweet potato starch-based coating and its effect on quality attributes of shrimp during refrigerated storage. LWT 2018, 88, 203–209. [Google Scholar] [CrossRef]
- Singh, G.; Bangar, S.; Yang, T.; Trif, M.; Kumar, V.; Kumar, D. Effect on the Properties of Edible Starch-Based Films by the Incorporation of Additives: A Review. Polymers 2022, 14, 1987. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, P.; Chen, J.; Yan, Y.; Wu, Z. Recent Advances and Applications in Starch for Intelligent Active Food Packaging: A Review. Foods 2022, 11, 2879. [Google Scholar] [CrossRef]
Starch Source | Amylose (%) | Amylopectin (%) |
---|---|---|
Arrowroot | 20.5 | 79.5 |
Banana | 17.0 | 83.0 |
Cassava | 18.6 | 81.4 |
Corn | 28.0 | 72.0 |
Potato | 17.8 | 82.2 |
Rice | 35.0 | 65.0 |
Tapioca | 16.7 | 83.3 |
Wheat | 20.0 | 80.0 |
Starch Source | Plasticizer | Gelatinization Conditions | Processing Conditions | Bioplastic Characteristics | Reference |
---|---|---|---|---|---|
Pine nuts (Araucaria angustifolia) seeds | Glycerol | 80 °C and 30 min | Room temperature and 24 h | Edible film | [55] |
Babassu (Attalea spp.) mesocarp | Glycerol | 81 °C and 30 min | 35 °C and 10 h | Active film 1 | [36] |
Yam (Dioscorea spp.) | Glycerol | 185 °C | 40 °C and 48 h 50 °C, 3 h + 70 °C, and 1 h | Edible film | [56,57] |
Mango (Mangifera indica L.) seeds | Glycerol + sorbitol | NR | Immersion and 30 s | Edible coating | [58] |
Glycerol | 90–95 °C and 30 min | 23 ± 2 °C and 48 h | Active film 1 | [12] | |
Glycerol + sorbitol | 90 °C | 45 °C and overnight | Edible film | [59] | |
Amazon turmeric (Curcuma longa L.) | Glycerol | 95 °C and 15 min | 40 °C and 8 h | Active film 1 | [60] |
Arrowroot (Maranta arundinacea) | Glycerol | 85 ± 2 °C and 5 min | 25 ± 5 °C and 24 h | Active film 1 | [61] |
Jackfruit (Artocarpus heterophyllus L.) | Glycerol | 70 °C | Immersion and 1 min | Edible coating | [62] |
Loquat (Eriobotrya japonica) seeds | Sorbitol | 95 °C | 25 °C and 10 h | Edible film | [63] |
Ulluco (Ullucus tuberosus Caldas) | Glycerol | 95 °C | 8 °C and 168 h | Edible film | [64] |
Job’s tears (Coix lachryma-jobi L.) | Sorbitol | 80 °C and 20 min | 25 °C and 16 h | Active film 1 | [65] |
Pumpkin (Cucurbita máxima) | Glycerol | 95 °C and 30 min | 60 °C and 24 h | Edible film | [20] |
Quinoa (Chenopodium quinoa) seeds | Glycerol | 95 °C and 30 min | 60 °C and 24 h | Edible film |
Food Product | Polymers | Main Additives | Packaging Material | Main Results | Reference |
---|---|---|---|---|---|
Bananas |
|
| Edible coating | Delayed ethylene biosynthesis and chlorophyll degradation; reduced respiration rate and weight loss; retention of fruit firmness for the first 6 days. The shelf life was extended for 12 days. | [127] |
Bananas |
|
| Active coating (antifungal properties) | Reduced mass loss, soluble solids content, and titratable acidity in all varieties studied. | [128] |
Strawberries |
|
| Active film (antibacterial properties) | Reduced soluble solids content, titratable acidity, and weight loss rate. The shelf life was ex-tended for 11 days. | [129] |
Red Crimson grapes |
|
| Edible coating | Reduced weight loss and improved appearance after 21 days of storage under refrigerated conditions. | [51] |
Fresh-cut apples |
|
| Active coating (antioxidant properties) | Reduced enzymatic browning for 12 days of storage. | [130] |
Cherry tomatoes |
|
| Active coating (antifungal properties) | Reduced fungal incidence and weight loss after 14 days of storage. | [131] |
Guavas |
|
| Active coating (antibacterial properties) | Delayed ripening process; reduced browning and titratable acidity; inhibition of bacteria growth and color development after 10 days of storage at room temperature. | [132] |
Food Product | Polymers | Main Additives | Packaging Material | Main Results | Reference |
---|---|---|---|---|---|
Rainbow trout fillets |
|
| Active film (antimicrobial and antioxidant properties) | Reduced microbial load and lipid oxidation after 15 days of storage. | [138] |
Beef |
|
| Active film (antioxidant properties) | Decreased metmyoglobin formation and lipid oxidation. | [139] |
Pork meatballs |
|
| Active film (antimicrobial properties) | Inhibition of microbial growth until 96 h of storage below FDA limits. | [125] |
Raw beef fillets |
|
| Active film (antimicrobial and antioxidant properties) | Reduced microbial load; improved meat color stability after 15 days of refrigerated storage. | [140] |
Fresh Frankfurt sausage |
|
| Active film (antimicrobial properties) | Maintenance of physicochemical attributes (pH, texture profile, moisture, and color); reduced microbial growth during a 30-day storage period at 5 °C and 10 °C. | [141] |
Shrimp |
|
| Active coating (antimicrobial and antioxidant properties) | Reduced microbial growth, melanosis, oxidation, and loss of firmness of shrimp samples during 8 days of storage at 4 °C. | [142] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, E.M.; Silva, M.; Andrade, L.; Pinheiro, J. From Fields to Films: Exploring Starch from Agriculture Raw Materials for Biopolymers in Sustainable Food Packaging. Agriculture 2024, 14, 453. https://doi.org/10.3390/agriculture14030453
Gonçalves EM, Silva M, Andrade L, Pinheiro J. From Fields to Films: Exploring Starch from Agriculture Raw Materials for Biopolymers in Sustainable Food Packaging. Agriculture. 2024; 14(3):453. https://doi.org/10.3390/agriculture14030453
Chicago/Turabian StyleGonçalves, Elsa M., Mafalda Silva, Luiza Andrade, and Joaquina Pinheiro. 2024. "From Fields to Films: Exploring Starch from Agriculture Raw Materials for Biopolymers in Sustainable Food Packaging" Agriculture 14, no. 3: 453. https://doi.org/10.3390/agriculture14030453