Lightweight Small-Tailed Han Sheep Facial Recognition Based on Improved SSD Algorithm
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sheep Face Data Set Acquisition
2.2. SSD Model
2.3. SSD Model Improvements
2.3.1. Backbone Network Replacement
2.3.2. Introduction of Attention Mechanisms
2.3.3. BalancedL1 Loss Function
2.4. Experimental Platform
2.5. Metrics
3. Results
3.1. Comparison of Experimental Results after Improvement of SSD
3.2. Improved Module Performance Comparison
3.3. Comparison of Results from Different Network Models
3.4. Comparison with State-of-the-Art Models
4. Discussion
- Enhanced intellectualize: The improved FPS allows for real-time analysis of video feeds, enabling quicker detection and response to potential issues on the farm. This can help reducing manual labor and increasing overall operational efficiency [34].
- Early disease detection: With faster and more accurate analysis of video data, our technology can assist in the early detection of diseases or abnormalities in crops or livestock. This can help farmers take timely preventive measures, minimizing losses and improving yield [35].
- Precision farming: The application of deep learning technology can enable precise monitoring of individual plants or animals, allowing for targeted interventions. This can optimize resource utilization, such as resulting in improved sustainability and cost-effectiveness. Therefore, it is important to make the model as small as possible to facilitate the deployment of the embedded device. Our future research direction is to provide an accurate and efficient video stream recognition device for herders [36].
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, G.; Ma, C. Problems and countermeasures of grassland resources in China. Shanxi Agric. Econ. 2020, 84+86. [Google Scholar] [CrossRef]
- Li, W.; Ali, S.; Zhang, Q. Property rights and grassland degradation: A study of the Xilingol pasture, Inner Mongolia, China. J. Environ. Manag. 2007, 85, 461–470. [Google Scholar]
- La, M.; Tsaijang, Y. Research on animal image recognition in animal husbandry based on convolutional neural network. Software 2020, 41, 43–45. [Google Scholar]
- Alam, N.; Zhao, Y.; Koubâa, A.; Wu, L.; Khan, R.; Abdalla, F. Automated sheep facial expression classification using deep transfer learning. Comput. Electron. Agric. 2020, 175, 105528. [Google Scholar]
- Drolma, N. Strict grassland law enforcement supervision and protection of grassland resources in Yushu. China Anim. Husb. Vet. Dig. 2017, 33, 12. [Google Scholar]
- Yu, L.; Chen, Y.; Sun, W.; Huang, Y. Effects of grazing exclusion on soil carbon dynamics in alpine grasslands of the Tibetan Plateau. Geoderma 2019, 353, 133–143. [Google Scholar] [CrossRef]
- Zhang, X.; Xuan, C.; Ma, Y.; Su, H.; Zhang, M. Biometric facial identification using attention module optimized YOLOv4 for sheep. Comput. Electron. Agric. 2022, 203, 107452. [Google Scholar] [CrossRef]
- Benke, K.K.; Sheth, F.; Betteridge, K.; Pettit, C.J.; Aurambout, J.P. Application of geovisual analytics to modelling the movements of ruminants in the rural landscape using satellite tracking data. Int. J. Digit. Earth 2015, 8, 579–593. [Google Scholar] [CrossRef]
- Han, D. Research on Identification Method for Detecting Grazing Behavior of Grassland Grazing Sheep; Inner Mongolia Agricultural University: Hohhot, China, 2018. [Google Scholar]
- Wei, B. Sheep Face Detection and Recognition Based on Deep Learning; Northwest Agriculture and Forestry University: Xianyang, China, 2020. [Google Scholar] [CrossRef]
- Tian, F.; Li, J.; Li, F.; Han, Y.; Wang, Q. Progress in the determination of feed intake in ruminants. Chin. J. Anim. Husb. 2006, 62. [Google Scholar]
- Zhang, X.; Xuan, C.; Xue, J.; Chen, B.; Ma, Y. LSR-YOLO: A High-Precision, Lightweight Model for Sheep Face Recognition on the Mobile End. Animals 2023, 13, 1824. [Google Scholar] [CrossRef]
- Tian, F.; Li, F.; Li, J.; Han, Y. Design and technological research on feed intake tester for dairy cows. J. Instrum. 2007, 28, 293–297. [Google Scholar]
- Sun, Z.; Zhou, D.; Lou, Y. Grazing behavior of velvet goats in artificial goat grassland in Songnen Plain. China Grassl. J. 2011, 33, 72–76. [Google Scholar]
- Zhang, X.; Xuan, C.; Ma, Y.; Su, H. A high-precision facial recognition method for small-tailed Han sheep based on an optimised Vision Transformer. Animal 2023, 17, 100886. [Google Scholar] [CrossRef]
- Nan, Y.; Ju, J.; Hua, Q.; Zhang, H.; Wang, B. A-MobileNet: An approach of facial expression recognition. Alex. Eng. J. 2022, 61, 4435–4444. [Google Scholar] [CrossRef]
- Prayogo, R.B.R.; Suciati, N.; Hidayati, S.C. Masked face recognition on mobile devices using deep learning. AIP Conf. Proc. 2023, 2508, 020017. [Google Scholar]
- Ma, C.; Deng, M.; Yin, Y. Pig face recognition based on improved YOLOv4 lightweight neural network. Inf. Process. Agric. 2023; in press. [Google Scholar] [CrossRef]
- Li, X.; Du, J.; Yang, J.; Li, S. When Mobilenetv2 Meets Transformer: A Balanced Sheep Face Recognition Model. Agriculture 2022, 12, 1126. [Google Scholar] [CrossRef]
- Gonzales Barron, U.; Corkery, G.; Barry, B.; Butler, F.; McDonnell, K.; Ward, S. Assessment of retinal recognition technology as a biometric method for sheep identification. Comput. Electron. Agric. 2008, 60, 156–166. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, Z.; Hou, Z.; Zhang, W.; Qi, G. Sheep face image dataset and DT-YOLOv5s for sheep breed recognition. Comput. Electron. Agric. 2023, 211, 108027. [Google Scholar] [CrossRef]
- Pahl, C.; Hartung, E.; Grothmann, A.; Mahlkow-Nerge, K.; Haeussermann, A. Suitability of feeding and chewing time for estimation of feed intake in dairy cows. Animal 2015, 10, 1507–1512. [Google Scholar] [CrossRef] [PubMed]
- Braun, U.; Tschoner, T.; Hässig, M. Evaluation of eating and rumination behaviour using a noseband pressure sensor in cows during the peripartum period. BMC Vet. Res. 2014, 10, 195. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, H.; Tian, F.; Zhou, Y.; Zhao, S.; Du, X. Research on sheep face recognition algorithm based on improved AlexNet model. J. Neural Comput. Appl. 2023, 35, 24971–24979. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector; Springer International Publishing: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for MobileNetV3. arXiv 2019, arXiv:1905.02244. [Google Scholar]
- Yu, Z.; Fang, H.; Zhangjin, Q.; Mi, C.; Feng, X.; He, Y. Hyperspectral imaging technology combined with deep learning for hybrid okra seed identification. Biosyst. Eng. 2021, 212, 46–61. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional netural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; IEEE Press: Piscataway, NJ, USA, 2020; pp. 11531–11539. [Google Scholar]
- Lu, H.; Lei, Y.; Wang, J.; Xing, X.; Yang, J. Transmission line insulator identification based on improved Libra-RCNN. Hunan Electr. Power 2022, 42, 44–49. [Google Scholar]
- Yang, S.; Liu, Y.; Wang, Z.; Han, Y.; Wang, Y.; Lan, X. Improved YOLO V4 model based on fused coordinate information to recognize cow face. J. Agric. Eng. 2021, 37, 129–135. [Google Scholar]
- Song, S.; Liu, T.; Wang, H.; Hasi, B.; Yuan, C.; Gao, F.; Shi, H. Using Pruning-Based YOLOv3 Deep Learning Algorithm for Accurate Detection of Sheep Face. Animals 2022, 12, 1465. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Jiao, J.; Bao, T.; Wang, C.; Du, X. Cow face detection algorithm in complex scenes based on adaptive attention mechanism. J. Agric. Eng. 2023, 39, 173–183. [Google Scholar]
- Pang, Y.; Yu, W.; Zhang, Y.; Xuan, C.; Wu, P. Sheep face recognition and classification based on an improved MobilenetV2 neural network. Int. J. Adv. Robot. Syst. 2023, 20, 17298806231152969. [Google Scholar] [CrossRef]
- Huang, Z.; Xu, A.; Zhou, S.; Ye, J.; Weng, X.; Xiang, Y. A key point detection method for pig face by integrating reparameterization and attention mechanism. J. Agric. Eng. 2023, 39, 141–149. [Google Scholar]
- Wang, H. Research on the Diagnosis Method of Dairy Cattle Disease by Integrating Knowledge Graph and Deep Learning; Northeast Agricultural University: Harbin, China, 2023. [Google Scholar]
- Kong, L. Research on Animal Target Recognition and Tracking Method Based on Deep Learning; University of Electronic Science and Technology: Chengdu, China, 2023. [Google Scholar] [CrossRef]
Algorithm Model | Mean Average Precision mAP/% | Model Size/MB | FPS/(Frames·s−1) |
---|---|---|---|
SSD + MobileNetv2 | 76.60 | 56.4 | 63.24 |
SSD + MobileNetv3 | 78.84 | 22.1 | 65.03 |
SSD + ShuffleNetv1 | 78.53 | 88.1 | 61.58 |
SSD + SqueezeNet | 77.21 | 35.6 | 64.12 |
Configuration | Specification |
---|---|
OS | Ubuntu 20.04 |
CPU | Xeon(R) Platinum 8350C |
GPU | RTX 3090 |
Application Software Package | Python 3.8 and Pytorch 1.10 |
Algorithm Model | Mean Average Precision mAP/% | Model Size/MB | FPS/(Frames·s−1) |
---|---|---|---|
SSD | 80.22 | 132 | 58.98 |
SSD + v3 | 78.84 | 22.1 | 65.03 |
SSD + ECA | 82.13 | 132 | 59.54 |
SSD + B | 81.69 | 132 | 62.13 |
SSD + v3 + CA1 | 79.36 | 22.5 | 56.75 |
SSD + v3 + CA2 | 77.11 | 22.5 | 59.47 |
SSD + v3 + SE1 | 78.59 | 22.4 | 63.12 |
SSD + v3 + SE2 | 78.41 | 22.4 | 62.62 |
SSD + v3 + CBAM1 | 79.24 | 22.6 | 61.95 |
SSD + v3 + CBAM2 | 78.46 | 22.6 | 65.78 |
SSD + v3 + ECA1 | 80.86 | 22.4 | 65.37 |
SSD + v3 + ECA2 | 81.31 | 22.4 | 66.63 |
v3 | B | ECA2 | mAP/% | Model Size/MB | FPS/(Frames·s−1) |
---|---|---|---|---|---|
80.22 | 132 | 58.98 | |||
√ | 78.84 | 22.1 | 65.03 | ||
√ | 81.69 | 132 | 62.13 | ||
√ | 82.13 | 132 | 59.54 | ||
√ | √ | 82.47 | 132 | 62.16 | |
√ | √ | 81.31 | 22.4 | 66.63 | |
√ | √ | 80.94 | 22.1 | 69.41 | |
√ | √ | √ | 83.47 | 22.4 | 68.53 |
Algorithm Model | mAP/% | Model Size/MB | FPS/(Frames·s−1) |
---|---|---|---|
SSD | 80.22 | 132 | 58.98 |
Faster R-CNN | 78.76 | 108 | 9.98 |
Retinanet | 81.09 | 145 | 15.43 |
CenterNet | 75.34 | 124 | 56.16 |
SSD-v3-ECA2-B | 83.47 | 22.4 | 68.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, M.; Sun, Q.; Xuan, C.; Zhang, X.; Zhao, M.; Song, S. Lightweight Small-Tailed Han Sheep Facial Recognition Based on Improved SSD Algorithm. Agriculture 2024, 14, 468. https://doi.org/10.3390/agriculture14030468
Hao M, Sun Q, Xuan C, Zhang X, Zhao M, Song S. Lightweight Small-Tailed Han Sheep Facial Recognition Based on Improved SSD Algorithm. Agriculture. 2024; 14(3):468. https://doi.org/10.3390/agriculture14030468
Chicago/Turabian StyleHao, Min, Quan Sun, Chuanzhong Xuan, Xiwen Zhang, Minghui Zhao, and Shuo Song. 2024. "Lightweight Small-Tailed Han Sheep Facial Recognition Based on Improved SSD Algorithm" Agriculture 14, no. 3: 468. https://doi.org/10.3390/agriculture14030468