Hourly Feeding Regime of Modern Genetics Lactating Sows: Enhancing Productive Performance, Welfare, and Piglet Growth in Smart Farm-Based Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Housing
2.2. Feeding Management
2.3. Productive Performance, Milk Yield, and Determination of Weaning-to-Estrus Interval
2.4. Determination of Sow Backfat Thickness (mm) and Body Condition Score
2.5. Determination of Average Frequency of Standing and Shoulder Skin Lesions
2.6. Statistical Analysis
3. Results
3.1. Backfat Thickness (BFT) and Body Condition Score (BCS)
3.2. Sows’ Productive Performance, Milk Yield, and Weaning-to-Estrus Interval
3.3. Frequency of Standing and Skin Lesions
3.4. Correlations between Ambient Temperature, Frequency of Standing, and Feed Intake
3.5. Piglets Growth Performance during the Lactation Period
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoder, C.L.; Schwab, C.R.; Fix, J.S.; Duttlinger, V.M.; Baas, T.J. Lactation Feed Intake in Purebred and F1 Sows and Its Relationship with Reproductive Performance. Livest. Sci. 2012, 150, 187–199. [Google Scholar] [CrossRef]
- Auldist, D.E.; Morrish, L.; Eason, P.; King, R.H. The Influence of Litter Size on Milk Production of Sows. Anim. Sci. 1998, 67, 333–337. [Google Scholar] [CrossRef]
- Costermans, N.G.J.; Teerds, K.J.; Kemp, B.; Keijer, J.; Soede, N.M. Physiological and Metabolic Aspects of Follicular Developmental Competence as Affected by Lactational Body Condition Loss. Mol. Reprod. Dev. 2023, 90, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Thongkhuy, S.; Chuaychu, S.B.; Burarnrak, P.; Ruangjoy, P.; Juthamanee, P.; Nuntapaitoon, M.; Tummaruk, P. Effect of Backfat Thickness during Late Gestation on Farrowing Duration, Piglet Birth Weight, Colostrum Yield, Milk Yield and Reproductive Performance of Sows. Livest. Sci. 2020, 234, 103983. [Google Scholar] [CrossRef]
- Bergsma, R.; Kanis, E.; Verstegen, M.W.A.; van der Peet–Schwering, C.M.C.; Knol, E.F. Lactation Efficiency as a Result of Body Composition Dynamics and Feed Intake in Sows. Livest. Sci. 2009, 125, 208–222. [Google Scholar] [CrossRef]
- Noblet, J.; Dourmad, J.Y.; Etienne, M. Energy Utilization in Pregnant and Lactating Sows: Modeling of Energy Requirements. J. Anim. Sci. 1990, 68, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhang, H.; Xu, K.; Zhou, X. Effects of Feeding Frequency during Lactation in Primiparous Sows on Reproduction Performance and Diurnal Rhythm of Endocrine Profiles at the Weaning-to-Ovulation Interval. Biol. Rhythm Res. 2020, 51, 535–542. [Google Scholar] [CrossRef]
- Eissen, J.J.; Kanis, E.; Kemp, B. Sow Factors Affecting Voluntary Feed Intake during Lactation. Livest. Prod. Sci. 2000, 64, 147–165. [Google Scholar] [CrossRef]
- NRC. Predicting Feed Intake of Food Producing Animals; National Academy Press: Washington, DC, USA, 1987. [Google Scholar]
- Kauffold, J.; Gottschalk, J.; Schneider, F.; Beynon, N.; Wähner, M. Effects of Feeding Level During Lactation on FSH and LH Secretion Patterns, and Follicular Development in Primiparous Sows. Reprod. Domest. Anim. 2008, 43, 234–238. [Google Scholar] [CrossRef]
- Mun, H.-S.; Ampode, K.M.; Lagua, E.; Chem, V.; Park, H.-R.; Kim, Y.-H.; Sharifuzzaman, M.; Hasan, M.; Yang, C.-J. Backfat Thickness at Pre-Farrowing: Indicators of Sow Reproductive Performance, Milk Yield, and Piglet Birth Weight in Smart Farm-Based Systems. Agriculture 2023, 14, 24. [Google Scholar] [CrossRef]
- Theil, P.K.; Lauridsen, C.; Quesnel, H. Neonatal Piglet Survival: Impact of Sow Nutrition around Parturition on Fetal Glycogen Deposition and Production and Composition of Colostrum and Transient Milk. Animal 2014, 8, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Balnikov, A.; Kazutova, Y.; Kostomakhin, N.; Gridyushko, I.; Gridyushko, E. Comprehensive Evaluation of the Productive and Reproductive Traits of Sows of Yorkshire and Landrace Breeds and Their Offspring. 2021, pp. 36–46. Available online: https://panor.ru/articles/kompleksnaya-otsenka-produktivnykh-i-reproduktivnykh-kachestv-svinomatok-porod-yorkshir-i-landras-i-ikh-potomstva/59943.html# (accessed on 17 March 2024). [CrossRef]
- Strathe, A.V.; Bruun, T.S.; Hansen, C.F. Sows with High Milk Production Had Both a High Feed Intake and High Body Mobilization. Animal 2017, 11, 1913–1921. [Google Scholar] [CrossRef] [PubMed]
- Poulopoulou, I.; Eggemann, A.; Moors, E.; Lambertz, C.; Gauly, M. Does Feeding Frequency during Lactation Affect Sows’ Body Condition, Reproduction and Production Performance? Anim. Sci. J. 2018, 89, 1591–1598. [Google Scholar] [CrossRef] [PubMed]
- Junior, S.R.S. Evaluating Nutritional Strategies in the Late Gestation and Lactation Period to Improve Sow and Litter Performance, Behavior and Piglet Survivability. 2023. Retrieved from the University of Minnesota Digital Conservancy. Available online: https://hdl.handle.net/11299/258847 (accessed on 17 March 2024).
- Choi, Y.; Hosseindoust, A.; Kim, J.; Lee, S.; Kim, M.; Kumar, A.; Kim, K.; Kim, Y.H.; Chae, B.J. An Overview of Hourly Rhythm of Demand-Feeding Pattern by a Controlled Feeding System on Productive Performance of Lactating Sows during Summer. Ital. J. Anim. Sci. 2018, 17, 1001–1009. [Google Scholar] [CrossRef]
- Gorr, S.C.; Leeb, C.; Zollitsch, W.; Winckler, C.; Parsons, T.D. Ad Libitum Feeding Systems for Lactating Sows: Effects on Productivity and Welfare of Sows and Piglets. Animal 2024, 18, 101093. [Google Scholar] [CrossRef] [PubMed]
- Sulabo, R.C.; Jacela, J.Y.; Tokach, M.D.; Dritz, S.S.; Goodband, R.D.; DeRouchey, J.M.; Nelssen, J.L. Effects of Lactation Feed Intake and Creep Feeding on Sow and Piglet Performance1. J. Anim. Sci. 2010, 88, 3145–3153. [Google Scholar] [CrossRef] [PubMed]
- Thingnes, S.L.; Ekker, A.S.; Gaustad, A.H.; Framstad, T. Ad Libitum versus Step-up Feeding during Late Lactation: The Effect on Feed Consumption, Body Composition and Production Performance in Dry Fed Loose Housed Sows. Livest. Sci. 2012, 149, 250–259. [Google Scholar] [CrossRef]
- Cools, A.; Maes, D.; Decaluwé, R.; Buyse, J.; van Kempen, T.A.T.G.; Liesegang, A.; Janssens, G.P.J. Ad Libitum Feeding during the Peripartal Period Affects Body Condition, Reproduction Results and Metabolism of Sows. Anim. Reprod. Sci. 2014, 145, 130–140. [Google Scholar] [CrossRef]
- Scipioni, R.; Martelli, G.; Paganelli, R.; Sardi, L. The Behaviour of the Lactating Sow as Affected by Two Different Feeding Techniques. Vet. Res. Commun. 2005, 29, 383–385. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, G.A.; Vanderhaeghe, C.; Janssens, G.P.J.; Dewulf, J.; Maes, D.G.D. Risk Factors Associated with Postpartum Dysgalactia Syndrome in Sows. Vet. J. 2010, 184, 167–171. [Google Scholar] [CrossRef]
- Britt, J.H.; Almond, G.W.; Flowers, W.L. Diseases of the Reproductive System. Dis. Swine 1999, 8, 905. [Google Scholar]
- Chem, V.; Mun, H.S.; Ampode, K.M.B.; Mahfuz, S.; Chung, I.B.; Dilawar, M.A.; Yang, C.J. Heat detection of gilts using digital infrared thermal imaging camera. Adv. Anim. Vet. Sci. 2022, 10, 2142–2147. [Google Scholar] [CrossRef]
- Ampode, K.M.B.; Mun, H.-S.; Lagua, E.B.; Park, H.-R.; Kim, Y.-H.; Yang, C.-J. Bump Feeding Improves Sow Reproductive Performance, Milk Yield, Piglet Birth Weight, and Farrowing Behavior. Animals 2023, 13, 3148. [Google Scholar] [CrossRef] [PubMed]
- Mallmann, A.L.; Camilotti, E.; Fagundes, D.P.; Vier, C.E.; Mellagi, A.P.G.; Ulguim, R.R.; Bernardi, M.L.; Orlando, U.A.D.; Gonçalves, M.A.D.; Kummer, R.; et al. Impact of Feed Intake during Late Gestation on Piglet Birth Weight and Reproductive Performance: A Dose-Response Study Performed in Gilts. J. Anim. Sci. 2019, 97, 1262–1272. [Google Scholar] [CrossRef] [PubMed]
- Van der Peet-Schwering, C.M.C.; Swinkels, J.W.; den Hartog, L.A. The Lactating Sow; Wageningen Academy: Wageningen, The Netherlands, 1998. [Google Scholar]
- Hawe, S.J.; Scollan, N.; Gordon, A.; Magowan, E. Impact of Sow Lactation Feed Intake on the Growth and Suckling Behavior of Low and Average Birthweight Pigs to 10 Weeks of Age. Transl. Anim. Sci. 2020, 4, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Vande Pol, K.D.; Bautista, R.O.; Harper, H.; Shull, C.M.; Brown, C.B.; Ellis, M. Effect of Within-Litter Birth Weight Variation after Cross-Fostering on Piglet Preweaning Growth and Mortality. Transl. Anim. Sci. 2021, 5, txab039. [Google Scholar] [CrossRef] [PubMed]
- Che, L.; Hu, L.; Wu, C.; Xu, Q.; Zhou, Q.; Peng, X.; Fang, Z.; Lin, Y.; Xu, S.; Feng, B.; et al. Effects of Increased Energy and Amino Acid Intake in Late Gestation on Reproductive Performance, Milk Composition, Metabolic, and Redox Status of Sows1. J. Anim. Sci. 2019, 97, 2914–2926. [Google Scholar] [CrossRef] [PubMed]
- Chem, V.; Mun, H.-S.; Ampode, K.M.B.; Lagua, E.B.; Dilawar, M.A.; Kim, Y.-H.; Yang, C.-J. Milk Supplementation: Effect on Piglets Performance, Feeding Behavior and Sows Physiological Condition during the Lactation Period. J. Anim. Behav. Biometeorol. 2023, 11, 2023007. [Google Scholar] [CrossRef]
- Renaudeau, D.; Noblet, J. Effects of Exposure to High Ambient Temperature and Dietary Protein Level on Sow Milk Production and Performance of Piglets1. J. Anim. Sci. 2001, 79, 1540–1548. [Google Scholar] [CrossRef]
- Roongsitthichai, A.; Koonjaenak, S.; Tummaruk, P. Backfat Thickness at First Insemination Affects Litter Size at Birth of the First Parity Sows. Agric. Nat. Resour. 2010, 44, 1128–1136. [Google Scholar]
- Pairis-Garcia, M.; Moeller, S.J. Animal behavior and well-being symposium: The Common Swine Industry Audit: Future Steps to Assure Positive on-Farm Animal Welfare Utilizing Validated, Repeatable and Feasible Animal-Based Measures1. J. Anim. Sci. 2017, 95, 1372–1381. [Google Scholar] [CrossRef]
- Coffey, R.D.; Parker, G.R.; Laurent, K.M. Assessing Sow Body Condition; Cooperative Extension Service, College of Agriculture, University of Kentucky: Lexington, Kentucky, 1999. [Google Scholar]
- Decaluwé, R.; Maes, D.; Declerck, I.; Cools, A.; Wuyts, B.; Smet, S.D.; Janssens, G.P.J. Changes in Back Fat Thickness during Late Gestation Predict Colostrum Yield in Sows. Animal 2013, 7, 1999–2007. [Google Scholar] [CrossRef]
- Parratt, C.A.; Chapman, K.J.; Turner, C.; Jones, P.H.; Mendl, M.T.; Miller, B.G. The Fighting Behaviour of Piglets Mixed before and after Weaning in the Presence or Absence of a Sow. Appl. Anim. Behav. Sci. 2006, 101, 54–67. [Google Scholar] [CrossRef]
- Pluske, J.R.; Williams, I.H. Reducing Stress in Piglets as a Means of Increasing Production after Weaning: Administration of Amperozide or Co-Mingling of Piglets during Lactation? Anim. Sci. 1996, 62, 121–130. [Google Scholar] [CrossRef]
- Rundgren, M.; Löfquist, I. Effects on Performance and Behaviour of Mixing 20-Kg Pigs Fed Individually. Anim. Sci. 1989, 49, 311–315. [Google Scholar] [CrossRef]
- Maes, D.G.D.; Janssens, G.P.J.; Delputte, P.; Lammertyn, A.; de Kruif, A. Back Fat Measurements in Sows from Three Commercial Pig Herds: Relationship with Reproductive Efficiency and Correlation with Visual Body Condition Scores. Livest. Prod. Sci. 2004, 91, 57–67. [Google Scholar] [CrossRef]
- Schneider, J.D.; Tokach, M.D.; Dritz, S.S.; Nelssen, J.L.; DeRouchey, J.M.; Goodband, R.D. Effects of Feeding Schedule on Body Condition, Aggressiveness, and Reproductive Failure in Group-Housed Sows1,2. J. Anim. Sci. 2007, 85, 3462–3469. [Google Scholar] [CrossRef]
- Neil, M.; Ogle, B.; Anner, K. A Two-Diet System and Ad Libitum Lactation Feeding of the Sow 1. Sow Performance. Anim. Sci. 1996, 62, 337–347. [Google Scholar] [CrossRef]
- Whittemore, C.T.; Morgan, C.A. Model Components for the Determination of Energy and Protein Requirements for Breeding Sows: A Review. Livest. Prod. Sci. 1990, 26, 1–37. [Google Scholar] [CrossRef]
- Clowes, E.J.; Aherne, F.X.; Foxcroft, G.R.; Baracos, V.E. Selective Protein Loss in Lactating Sows Is Associated with Reduced Litter Growth and Ovarian Function1. J. Anim. Sci. 2003, 81, 753–764. [Google Scholar] [CrossRef]
- De Rensis, F.; Gherpelli, M.; Superchi, P.; Kirkwood, R.N. Relationships between Backfat Depth and Plasma Leptin during Lactation and Sow Reproductive Performance after Weaning. Anim. Reprod. Sci. 2005, 90, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Serenius, T.; Stalder, K.J.; Baas, T.J.; Mabry, J.W.; Goodwin, R.N.; Johnson, R.K.; Robison, O.W.; Tokach, M.; Miller, R.K. National Pork Producers Council Maternal Line National Genetic Evaluation Program: A Comparison of Sow Longevity and Trait Associations with Sow Longevity. J. Anim. Sci. 2006, 84, 2590–2595. [Google Scholar] [CrossRef] [PubMed]
- Koketsu, Y.; Tani, S.; Iida, R. Factors for Improving Reproductive Performance of Sows and Herd Productivity in Commercial Breeding Herds. Porc. Health Manag. 2017, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Kim JinSoo, K.J.; Yang XiaoJian, Y.X.; Baidoo, S.K. Relationship between Body Weight of Primiparous Sows during Late Gestation and Subsequent Reproductive Efficiency over Six Parities. Asian-Australas. J. Anim. Sci. 2016, 29, 768. [Google Scholar]
- Stolba, A.; Wood-Gush, D.G.M. The Behaviour of Pigs in a Semi-Natural Environment. Anim. Sci. 1989, 48, 419–425. [Google Scholar] [CrossRef]
- Ren, P.; Yang, X.J.; Kim, J.S.; Menon, D.; Baidoo, S.K. Effect of Different Feeding Levels during Three Short Periods of Gestation on Sow and Litter Performance over Two Reproductive Cycles. Anim. Reprod. Sci. 2017, 177, 42–55. [Google Scholar] [CrossRef]
- Amdi, C.; Giblin, L.; Hennessy, A.A.; Ryan, T.; Stanton, C.; Stickland, N.C.; Lawlor, P.G. Feed Allowance and Maternal Backfat Levels during Gestation Influence Maternal Cortisol Levels, Milk Fat Composition and Offspring Growth. J. Nutr. Sci. 2013, 2, e1. [Google Scholar] [CrossRef]
- King, R.H.; Eason, P.J.; Smits, R.J.; Morley, W.C.; Henman, D.J. The Response of Sows to Increased Nutrient Intake during Mid to Late Gestation. Aust. J. Agric. Res. 2006, 57, 33–39. [Google Scholar] [CrossRef]
- Goodband, R.D.; Tokach, M.D.; Goncalves, M.A.D.; Woodworth, J.C.; Dritz, S.S.; DeRouchey, J.M. Nutritional Enhancement during Pregnancy and Its Effects on Reproduction in Swine. Anim. Front. 2013, 3, 68–75. [Google Scholar] [CrossRef]
- Zurbrigg, K. Sow Shoulder Lesions: Risk Factors and Treatment Effects on an Ontario Farm. J. Anim. Sci. 2006, 84, 2509–2514. [Google Scholar] [CrossRef]
- Bery, S.; Brown-Brandl, T.M.; Jones, B.T.; Rohrer, G.A.; Sharma, S.R. Determining the Presence and Size of Shoulder Lesions in Sows Using Computer Vision. Animals 2023, 14, 131. [Google Scholar] [CrossRef] [PubMed]
- Herskin, M.S.; Bonde, M.K.; Jørgensen, E.; Jensen, K.H. Decubital Shoulder Ulcers in Sows: A Review of Classification, Pain and Welfare Consequences. Animal 2011, 5, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Nola, G.T.; Vistnes, L.M. Differential Response of Skin and Muscle in the Experimental Production of Pressure Sores. Plast. Reconstr. Surg. 1980, 66, 728–733. [Google Scholar] [CrossRef] [PubMed]
Item | 6-1 Days before Farrowing | 1 Day after Farrowing | 2–6 Days after Farrowing | 7–13 Days after Farrowing | 14–15 Days after Farrowing | 16–28 Days after Farrowing |
---|---|---|---|---|---|---|
Feeding Amount (kg) | 2.50 | 2.90 | 3.70 | 6.00 | 8.50 | 9.00 |
Lesion Score | Definition |
---|---|
0 | No lesion |
1 | <5 superficial lesions (skin unbroken) |
2 | 5–10 superficial lesions or <5 deep lesions (skin broken and evidence of hemorrhage) |
3 | >10 superficial lesion or >5 deep lesion |
Parameters | Group 1 (n = 14) | Group 2 (n = 14) | SEM | p-Value |
---|---|---|---|---|
BFT (mm) and BCS at 107 gestation days | ||||
Digital | 17.07 | 17.04 | 0.19 | 0.910 |
Vernier Caliper | 17.00 | 17.07 | 0.16 | 0.603 |
BCS | 3.09 | 3.16 | 0.05 | 0.511 |
BFT (mm) and BCS at weaning, 28 days | ||||
Digital | 13.29 | 15.00 | 0.21 | <0.001 |
Vernier Caliper | 13.18 | 15.25 | 0.30 | <0.001 |
BCS | 2.57 | 3.00 | 0.07 | 0.002 |
BFT and BSC Difference (mm) | ||||
Digital | 3.79 | 2.04 | 0.25 | <0.001 |
Vernier Caliper | 3.86 | 1.82 | 0.30 | <0.001 |
BCS | 0.52 | 0.16 | 0.07 | 0.012 |
Parameters | Group 1 (n = 14) | Group 2 (n = 14) | SEM | p-Value |
---|---|---|---|---|
Initial weight 1 | 224.45 | 224.36 | 2.51 | 0.285 |
Final weight 2 | 210.21 | 215.92 | 4.36 | 0.482 |
Body weight loss (kg) | 14.24 | 8.44 | 0.38 | 0.001 |
Total feed intake (kg) 3 | 189.61 | 261.40 | 7.19 | <0.001 |
Daily feed intake (kg) 4 | 6.77 | 9.34 | 0.36 | <0.001 |
Total number of piglets born 5 | 14.00 | 13.57 | 0.38 | 0.578 |
Total live births (head) | 13.07 | 13.29 | 0.36 | 0.772 |
Mummified piglets (head) | 0.79 | 0.14 | 0.14 | 0.770 |
Stillbirths (head) | 0.14 | 0.14 | 0.08 | 0.804 |
Mortality (Piglet; head) | 1.29 | 0.50 | 0.92 | 0.560 |
Litter size weaned (head) | 11.79 | 12.79 | 0.35 | 0.329 |
Livability, farrowing (%) | 93.51 | 97.95 | 1.05 | 0.077 |
Livability, weaning (%) | 90.28 | 96.29 | 1.26 | 0.012 |
Mortality rate (%) | 9.72 | 3.71 | 1.26 | 0.012 |
WEI, day | 6.36 | 5.43 | 0.14 | 0.001 |
Sow Index 6 | 2.46 | 2.48 | 0.01 | 0.001 |
PSY 7 | 29.01 | 31.65 | 0.88 | 0.194 |
FCR, Sow 8 | 2.66 | 2.95 | 0.13 | 0.178 |
Calculated Milk Yield | ||||
Milk Yield (kg) 9 | 314.86 | 377.75 | 13.11 | 0.013 |
Milk Yield, kg/day | 11.25 | 13.49 | 0.47 | 0.021 |
Parameters | Group 1 (n = 14) | Group 2 (n = 14) | SEM | p-Value |
---|---|---|---|---|
Frequency of Standing | 14.76 | 19.18 | 0.79 | 0.001 |
Skin Lesions | 0.35 | 0.14 | 0.08 | 0.204 |
Sows with Skin Lesions (%) | 35.70 | 14.30 | - | 0.190 |
Parameters | Group 1 (n = 14) | Group 2 (n = 14) | SEM | p-Value |
---|---|---|---|---|
Birth weight, kg. | 1.33 | 1.40 | 0.04 | 0.306 |
Weaning weight, kg. | 7.67 | 8.42 | 0.11 | 0.001 |
Feed Intake/head, kg. | 0.45 | 0.44 | 0.04 | 0.003 |
Body weight gain, kg. | 6.34 | 7.02 | 0.11 | 0.001 |
Average daily weight gain, kg. | 0.23 | 0.25 | 0.01 | 0.001 |
Litter size weight gain, kg. | 74.97 | 89.94 | 3.13 | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ampode, K.M.B.; Mun, H.-S.; Lagua, E.B.; Chem, V.; Park, H.-R.; Kim, Y.-H.; Sharifuzzaman, M.; Hasan, M.K.; Yang, C.-J. Hourly Feeding Regime of Modern Genetics Lactating Sows: Enhancing Productive Performance, Welfare, and Piglet Growth in Smart Farm-Based Systems. Agriculture 2024, 14, 740. https://doi.org/10.3390/agriculture14050740
Ampode KMB, Mun H-S, Lagua EB, Chem V, Park H-R, Kim Y-H, Sharifuzzaman M, Hasan MK, Yang C-J. Hourly Feeding Regime of Modern Genetics Lactating Sows: Enhancing Productive Performance, Welfare, and Piglet Growth in Smart Farm-Based Systems. Agriculture. 2024; 14(5):740. https://doi.org/10.3390/agriculture14050740
Chicago/Turabian StyleAmpode, Keiven Mark B., Hong-Seok Mun, Eddiemar B. Lagua, Veasna Chem, Hae-Rang Park, Young-Hwa Kim, Md Sharifuzzaman, Md Kamrul Hasan, and Chul-Ju Yang. 2024. "Hourly Feeding Regime of Modern Genetics Lactating Sows: Enhancing Productive Performance, Welfare, and Piglet Growth in Smart Farm-Based Systems" Agriculture 14, no. 5: 740. https://doi.org/10.3390/agriculture14050740
APA StyleAmpode, K. M. B., Mun, H.-S., Lagua, E. B., Chem, V., Park, H.-R., Kim, Y.-H., Sharifuzzaman, M., Hasan, M. K., & Yang, C.-J. (2024). Hourly Feeding Regime of Modern Genetics Lactating Sows: Enhancing Productive Performance, Welfare, and Piglet Growth in Smart Farm-Based Systems. Agriculture, 14(5), 740. https://doi.org/10.3390/agriculture14050740