Oilseed Radish: Nitrogen and Sulfur Management Strategies for Seed Yield and Quality—A Case Study in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Weather Conditions
2.3. Parameters Determined in the Field
- Md—dry sample weight, after drying (g).
- Mw—wet sample weight, before drying (g),
2.4. Seed Quality
2.5. Statistical Analysis
3. Results
3.1. Stand Architecture
3.2. Seed Yield Components
3.3. Biomass Yield and the Harvest Index
3.4. Quality of Seeds and Oil
4. Discussion
4.1. Biomass Yield
4.2. Quality of Seeds and Oil
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADF | acid detergent fiber |
AES | Agricultural Experiment Station |
BBCH | Biologische Bundesanstalt, Bundessortenamt und Chemische, Industrie |
C16 | palmitic acid |
C18 | stearic acid |
C18:1 | oleic acid |
C18:2 | linoleic acid |
C18:3 | linolenic acid |
C20:1 | eicosanoic acid |
C22:1 | erucic acid |
CF | crude fat |
CFR | crude fiber |
DM | dry matter |
FA | fatty acid profile |
GSLs | glucosinolates |
HI | harvest index |
MUFAs | monounsaturated fatty acids |
NDF | neutral detergent fiber |
NFUE | nitrogen fertilizer use efficiency |
OSR | oilseed radish |
PUFAs | polyunsaturated fatty acids |
SFAs | saturated fatty acids |
TP | total protein |
TSW | thousand seed weight |
α-T | alpha-tocopherol |
β-T | beta-tocopherol |
γ-T | gamma-tocopherol |
δ-T | delta-tocopherol |
Ts | tocopherols |
References
- Jankowski, K.; Bielski, S.; Szempliński, W. Industrial Crops. In Agricultural Crops; Szempliński, W., Ed.; Publishing House of the University of Warmia and Mazury in Olsztyn: Olsztyn, Poland, 2012; pp. 306–446. (In Polish) [Google Scholar]
- Yamane, K.; Lü, N.L.; Ohnishi, O. Multiple origins and high genetic diversity of cultivated radish inferred from polymorphism in chloroplast simple sequence repeats. Breed. Sci. 2009, 59, 55–65. [Google Scholar] [CrossRef]
- Warwick, S. Brassicaceae in Agriculture. In Genetics and Genomics of the Brassicaceae; Schmidt, R., Bancroft, I., Eds.; Springer: Gatersleben, Germany, 2011; pp. 33–66. [Google Scholar]
- Kim, N.; Jeong, Y.M.; Jeong, S.; Kim, G.B.; Baek, S.; Kwon, Y.E.; Cho, A.; Choi, S.B.; Kim, J.; Lim, W.J.; et al. Identification of candidate domestication regions in the radish genome based on high depth resequencing analysis of 17 genotypes. Theor. Appl. Genet. 2016, 29, 1797–1814. [Google Scholar] [CrossRef]
- Krist, S. Oilseed Radish Oil. In Vegetable Fats and Oils; Krist, S., Ed.; Springer: Cham, Switzerland, 2000; pp. 489–492. [Google Scholar]
- Tsytsiura, Y. The influence of agroecological and agrotechnological factors on the generative development of oilseed radish (Raphanus sativus var. oleifera Metzg.). Agron. Res. 2022, 4, 842–880. [Google Scholar]
- Kołodziejczyk, M.; Kulig, B. Oilseed Radish. In Plant Cultivation–III; Kotecki, A., Ed.; Publishing House of the Wrocław University of Environmental and Life Sciences: Wrocław, Poland, 2020; pp. 393–399. (In Polish) [Google Scholar]
- Toboła, P.; Muśnicki, C. Yielding variability of spring sown oilseed crops of cruciferous family. Rośliny Oleiste-Oilseed Crops 1999, 20, 93–100. (In Polish) [Google Scholar]
- Ražukas, A.; Nedzinskienė, T.L. Pašarinių ridikų (Raphanus sativus L. var. oleiformis Pers) ‛VB Gausiai’ auginimas sėklai ir žaliai masei. Žemdirbzstė–Agric. 2008, 95, 86–92. (In Lithuanian) [Google Scholar]
- Faria, D.; Santos, F.; Machado, G.; Lourega, R.; Eichler, P.; de Souza, G.; Lima, J. Extraction of radish seed oil (Raphanus sativus L.) and evaluation of its potential in biodiesel production. AIMS Energy 2018, 6, 551–565. [Google Scholar] [CrossRef]
- Prakhova, T.Y.; Prakhov, V.A.; Brazhnikov, V.N.; Brazhnikova, O.F. Oil seed crops-biodiversity, value and productivity. Vol. Reg. Farm. 2019, 3, 18–23. [Google Scholar]
- Stevanato, N.; da Silva, C. Radish seed oil: Ultrasound-assisted extraction using ethanol as solvent and assessment of its potential for ester production. Ind. Crops Prod. 2019, 132, 283–291. [Google Scholar] [CrossRef]
- Valle, P.W.P.A.; Rezende, T.F.; Souza, R.A.; Fortes, I.C.P.; Pasa, V.M.D. Combination of fractional factorial and Doehlert experimental designs in biodiesel production: Ethanolysis of Raphanus sativus L. var. oleiferus stokes oil catalyzed by sodium ethoxide. Energ. Fuel. 2009, 23, 5219–5227. [Google Scholar] [CrossRef]
- Chammoun, N.; Geller, D.P.; Das, K.C. Fuel properties, performance testing and economic feasibility of Raphanus sativus (oilseed radish) biodiesel. Ind. Crop. Prod. 2013, 45, 155–159. [Google Scholar] [CrossRef]
- Polaczek, K.; Kurańska, M. Hemp seed oil and oilseed radish oil as new sources of raw materials for the synthesis of bio-polyols for open-cell polyurethane foams. Materials 2022, 24, 8891. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.N.; Iha, O.K.; Alves, F.C.S.V.; Sharma, B.K.; Erhan, S.Z.; Suarez, P.A.Z. Potential application of turnip oil (Raphanus sativus L.) for biodiesel production: Physical–chemical properties of neat oil, biofuels and their blends with ultra-low sulphur diesel (ULSD). Bio Energ. Res. 2013, 6, 841–850. [Google Scholar] [CrossRef]
- Pegg, R.B.; Amarowicz, R. Content of tocopherol isomers in oilseed radish cultivars-a short report. Pol. J. Food Nutr. Sci. 2009, 59, 129–133. [Google Scholar]
- Budahn, H.; Peterka, H.; Schütze, W. Glucosinolate profiles of disomic rapeseed-radish chromosome addition lines. J. Kulturpflanzen 2011, 63, 104–110. [Google Scholar]
- Gu, Z.; Guo, Q.; Gu, Y. Factors influencing glucoraphanin and sulforaphane formation in Brassica plants: A Review. J. Integr. Agric. 2012, 11, 1804–1816. [Google Scholar] [CrossRef]
- Talalay, P. Chemoprotection against cancer by induction of phase 2 enzymes. BioFactors 2000, 12, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; Hogstrand, C.; et al. Erucic acid in feed and food. EFSA J. 2016, 14, 173. [Google Scholar]
- Verkerk, R.; Schreiner, M.; Krumbein, A.; Ciska, E.; Holst, B.; Rowland, I.; de Schrijver, R.; Hansen, M.; Gerhäuser, C.; Mithen, R.; et al. Glucosinolates in Brassica vegetables: The influence of the food supply chain on intake, bioavailability and human health. Mol. Nutr. Food Res. 2009, 53, 219–265. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.M.; Itavo, L.C.V.; Dias, A.M.; Arruda, E.J.; Delben, A.A.S.T.; Oliveira, S.L. Forage turnip, sunflower, and soybean biodiesel obtained by ethanol synthesis: Production protocols and thermal behavior. Fuel 2010, 89, 3725–3729. [Google Scholar] [CrossRef]
- Silveira Junior, E.G.; Barcelos, L.F.T.; Perez, V.H.; Justo, O.R.; Ramirez, L.C.; Filho, L.d.M.R.; de Castro, M.P.P. Biodiesel production from non-edible forage turnip oil by extruded catalyst. Ind. Crops Prod. 2019, 139, 111503. [Google Scholar] [CrossRef]
- Chorol, S.; Angchok, D.; Stobdan, T. Irrigation timing as a glucosinolate alteration factor in radish (Raphanus sativus L.) in the Indian Trans-Himalayan region of Ladakh. J. Food Comp. Anal. 2021, 100, 103904. [Google Scholar] [CrossRef]
- Bouchet, A.S.; Laperche, A.; Bissuel-Belaygue, C.; Snowdon, R.; Nesi, N.; Stahl, A. Nitrogen use efficiency in rapeseed. A review. Agron. Sustain. Dev. 2016, 36, 38. [Google Scholar] [CrossRef]
- Blake-Kalff, M.M.; Harrison, K.R.; Hawkesford, M.J.; Zhao, F.J.; McGrath, S.P. Distribution of sulfur within oilseed rape leaves in response to sulfur deficiency during vegetative growth. Plant Physiol. 1998, 118, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Zukalová, H.; Vasak, J. The role and effects of glucosinolates of Brassica species—A review. Rostlinná Výroba 2022, 48, 175–180. [Google Scholar] [CrossRef]
- Girondé, A.; Etienne, P.; Trouverie, J.; Bouchereau, A.; Le Cahérec, F.; Leport, L.; Niogret, M.F.; Nesi, N.; Carole, D.; Soulay, F.; et al. The contrasting N management of two oilseed rape genotypes reveals the mechanisms of proteolysis associated with leaf N remobilization and the respective contributions of leaves and stems to N storage and remobilization during seed filling. BMC Plant Biol. 2015, 15, 59. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.C.; Hussain, M.; Anarjan, M.B.; Lee, S. Examination of glucoraphanin content in broccoli seedlings over growth and the impact of hormones and sulfur containing compounds. Plant Biotech. Rep. 2022, 14, 491–496. [Google Scholar] [CrossRef]
- Groth, D.A.; Sokólski, M.M.; Jankowski, K.J. A multi-criteria evaluation of the effectiveness of nitrogen and sulfur fertilization in different cultivars of winter rapeseed—Productivity, economic and energy balance. Energies 2020, 13, 4654. [Google Scholar] [CrossRef]
- Johnson, E.N.; Malhi, S.S.; Hall, L.M.; Phelps, S. Effects of nitrogen fertilizer application on seed yield, N uptake, N use efficiency, and seed quality of Brassica carinata. Can. J. Plant Sci. 2013, 93, 1073–1081. [Google Scholar] [CrossRef]
- Berti, M.; Gesch, R.; Eynck, C.; Anderson, J.; Cermak, S. Camelina uses, genetics, genomics, production, and management. Ind. Crops Prod. 2016, 94, 690–710. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Sokólski, M.; Kordan, B. Camelina: Yield and quality response to nitrogen and sulfur fertilization in Poland. Ind. Crops Prod. 2019, 141, 111776. [Google Scholar] [CrossRef]
- Gan, Y.; Malhi, S.S.; Brandt, S.; Katepa-Mupondwa, F.; Stevenson, C. Nitrogen use efficiency and nitrogen uptake of juncea canola under diverse environments. Agron. J. 2008, 100, 285–295. [Google Scholar] [CrossRef]
- Cocco, D.; Deligios, P.A.; Ledda, L.; Sulas, L.; Virdis, A.; Carboni, G. LCA study of oleaginous bioenergy chains in a Mediterranean environment. Energies 2014, 7, 6258–6281. [Google Scholar] [CrossRef]
- Janzen, H.H.; Bettany, J.R. Sulfur nutrition of rapeseed: I. Influence of fertilizer nitrogen and sulfur rates. Soil. Sci. Soc. Am. J. 1984, 48, 100–107. [Google Scholar] [CrossRef]
- Fismes, J.; Vong, P.C.; Guckert, A. Frossard, EInfluence of sulfur on apparent N-use efficiency, yield and quality of oilseed rape (Brassica napus L.) grown on a calcareous soil. Eur. J. Agron. 2000, 12, 127–141. [Google Scholar] [CrossRef]
- Malhi, S.S.; Gill, K.S. Interactive effects of N and S fertilizers on canola yield and seed quality on S-deficient Gray Luvisol soils in northeastern Saskatchewan. Can. J. Plant Sci. 2007, 87, 211–222. [Google Scholar] [CrossRef]
- Poisson, E.; Trouverie, J.; Brunel-Muguet, S.; Akmouche, Y.; Pontet, C.; Pinochet, X.; Avice, J.C. Seed yield components and seed quality of oilseed rape are impacted by sulfur fertilization and its interactions with nitrogen fertilization. Front. Plant Sci. 2019, 10, 458. [Google Scholar] [CrossRef] [PubMed]
- Jamal, A.; Moon, Y.; Abdin, M. Sulphur—A general overview and interaction with nitrogen. Austr. J. Crop Sci. 2010, 4, 523–529. [Google Scholar]
- Salvagiotti, F.; Castellarín, J.M.; Miralles, D.J.; Pedrol, H.M. Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crops Res. 2009, 113, 170–177. [Google Scholar] [CrossRef]
- Wielebski, F.; Wójtowicz, M.; Liersch, A. Response of new forms of winter oilseed rape with modified fatty acid composition to nitrogen and sulfur fertilization. J. Plant Nutr. 2022, 45, 2360–2379. [Google Scholar] [CrossRef]
- Sokólski, M.M.; Załuski, D.; Jankowski, K. Crambe: Seed yield and quality in response to nitrogen and sulfur—A case study in northeastern Poland. Agronomy 2020, 10, 1436. [Google Scholar] [CrossRef]
- Ahmad, A.; Abraham, G.; Gandotra, N.; Abrol, Y.P.; Abdin, M.Z. Interactive effect of nitrogen and sulphur on growth and yield of rape-seed-mustard (Brassica juncea L. Czern. and Coss. and Brassica campestris L.) genotypes. J. Agron. Crop Sci. 1998, 181, 193–199. [Google Scholar] [CrossRef]
- Kovács, A.B.; Kincses, I.; Vágó, I.; Loch, J.; Filep, T. Effect of application of nitrogen and different nitrogen-sulfur ratios on the quality and quantity of mustard seed. Commun. Soil Sci. Plan. 2009, 40, 453–461. [Google Scholar] [CrossRef]
- Lošák, T.; Hlušek, J.; Martinec, J.; Vollmann, J.; Peterka, J.; Filipčík, R.; Varga, L.; Ducsay, L.; Martensson, A. Effect of combined nitrogen and sulphur fertilization on yield and qualitative parameters of Camelina sativa [L.] Crtz. (false flax). Acta Agric. Scand. Sect. B–Soil Plant Sci. 2011, 4, 313–321. [Google Scholar]
- Jiang, Y.; Caldwell, C.D.; Falk, K.C.; Lada, R.R.; MacDonald, D. Camelina yield and quality response to combined nitrogen and sulfur. Agron. J. 2013, 105, 1847–1852. [Google Scholar] [CrossRef]
- Wysocki, D.J.; Chastain, T.G.; Schillinger, W.F.; Guy, S.O.; Karow, R.S. Camelina: Seed yield response to applied nitrogen and sulfur. Field Crops Res. 2013, 145, 60–66. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Sokólski, M.; Szatkowski, A.; Kozak, M. Crambe–Energy efficiency of biomass production and mineral fertilization. A case study in Poland. Ind. Crops Prod. 2022, 182, 114918. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Sokólski, M. Spring camelina: Effect of mineral fertilization on the energy efficiency of biomass production. Energy 2021, 220, 119731. [Google Scholar] [CrossRef]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants: BBCH Monograph; Julius Kühn-Institut: Quedlinburg, Germany, 2018; Available online: https://www.julius-kuehn.de/media/Veroeffentlichungen/bbch%20epaper%20en/page.pdf (accessed on 14 January 2024).
- IUSS Working Group WRB. World Reference Base for Soil Resources 2022, World Soil Resources Reports; FAO: Rome, Italy, 2022; Available online: https://www.isric.org/sites/default/files/WRB_fourth_edition_2022-12-18.pdf (accessed on 10 January 2024).
- PN–EN ISO 6867:2002; Feedstuffs. Determination of Vitamin E by High-performance Liquid Chromatography. Polish Committee for Standardization: Warszawa, Poland, 2002.
- Bogucka, B.; Jankowski, K. Jerusalem artichoke: Quality response to potassium fertilization and irrigation in Poland. Agronomy 2020, 10, 1518. [Google Scholar] [CrossRef]
- Statistica (Data Analysis Software System), version 13; TIBCO Software Inc.: Palo Alto, CA, USA, 2017.
- Ukhanova, V.; Voskresensky, A.A.; Ukhanov, A.P. Comparative evaluation of the properties of vegetable oils used as bioadditives to petroleum diesel fuel. Niva Povolzhia 2017, 43, 98–105. (In Russian) [Google Scholar]
- Lima, J.D.; Aldrighi, M.; Sakai, R.K.; Soliman, E.P.; da Silva Moraes, W. Behavior of forage turnip (Raphanus sativus L.) and turnip greens (Raphanus raphanistrum L.) as green manure. Pesqui. Agropecu. Trop. 2007, 37, 60–63. (In Portuguese) [Google Scholar]
- Pegoraro, T.; Sampaio, S.C.; Tavares, M.H.F.; Coelho, S.R.M.; Carneiro, L.J.; Palma, D.; de Souza, C.H.W.; Guerra, J.B. Use of swine wastewater in oilseed radish crop: Agronomic and environmental aspects. Semina Ciênci Agrár 2014, 35, 2931–2943. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Budzyński, W.S.; Kijewski, Ł. An analysis of energy efficiency in the production of oilseed crops of the family Brassicaceae in Poland. Energy 2015, 81, 674–681. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Budzyński, W.S.; Kijewski, Ł.; Zając, T. Biomass quality of Brassica oilseed crops in response to sulfur fertilization. Agron. J. 2015, 107, 1377–1391. [Google Scholar] [CrossRef]
- Malhi, S.S.; Johnson, E.N.; Hall, L.M.; May, W.E.; Phelps, S.; Nybo, B. Effect of nitrogen fertilizer application on seed yield, N uptake, and seed quality of Camelina sativa. Can. J. Soil Sc. 2014, 94, 35–47. [Google Scholar] [CrossRef]
- Rasmussen, I.S.; Dresbøll, D.B.; Thorup-Kristensen, K. Winter wheat cultivars and nitrogen (N) fertilization-effects on root growth, N uptake efficiency and N use efficiency. Eur. J. Agron. 2015, 68, 38–49. [Google Scholar] [CrossRef]
- Savin, R.; Sadras, V.O.; Slafer, G.A. Benchmarking nitrogen utilisation efficiency in wheat for Mediterranean and non-Mediterranean European regions. Field Crops Res. 2019, 241, 107573. [Google Scholar] [CrossRef]
- Panak, H. (Ed.) Agricultural Chemistry; Publishing House of the University of Agriculture and Technology in Olsztyn: Olsztyn, Poland, 1997; pp. 1–258. (In Polish) [Google Scholar]
- Zhao, F.; Evans, E.J.; Bilsborrow, P.E.; Syers, J.K. Influence of sulphur and nitrogen on seed yield and quality of low glucosinolate oilseed rape (Brassica napus L). J. Sci. Food Agric. 1993, 63, 29–37. [Google Scholar] [CrossRef]
- Zanetti, F.; Vameral, T. Yield and oil variability in modern varieties of high-erucic winter oilseed rape (Brassica napus L. var. oleifera) and Ethiopian mustard (Brassica carinata A. Braun) under reduced agricultural inputs. Ind. Crops Prod. 2009, 30, 265–270. [Google Scholar] [CrossRef]
- Ciubota-Rosie, C.; Macoveanu, M.; Fernández, C.M.; Ramos, M.J.; Pérez, A.; Moreno, A. Sinapis alba seed as a prospective biodiesel source. Biomass Bioenerg. 2013, 51, 83–90. [Google Scholar] [CrossRef]
- Shyam, C.; Tripathi, M.K. Biochemical studies in Indian mustard (Brassica juncea L.) Czern and Coss for fatty acid profiling. Int. J. Chem. Stud. 2019, 7, 338–343. [Google Scholar]
- Sokólski, M.; Załuski, D.; Szatkowski, A.; Jankowski, K.J. Winter oilseed rape: Agronomic management in different tillage systems and seed quality. Agronomy 2023, 13, 524. [Google Scholar] [CrossRef]
- Narits, L. Effect of nitrogen rate and application time to yield and quality of winter oilseed rape (Brassica napus L. var. oleifera subvar. biennis). Agron. Res. 2010, 8, 671–686. [Google Scholar]
- Joshi, N.L.; Mali, P.C.; Saxena, A. Effect of nitrogen and sulphur application on yield and fatty acid composition of mustard (Brassica junceae L.) oil. J. Agron. Crop Sci. 1998, 180, 59–63. [Google Scholar] [CrossRef]
- Šípalová, M.; Lošák, T.; Hlušek, J.; Vollmann, J.; Hudec, J.; Filipčík, R.; Macek, M.; Kráčmar, S. Fatty acid composition of Camelina sativa as affected by combined nitrogen and sulphur fertilisation. Afr. J. Agric. Res. 2011, 6, 3919–3923. [Google Scholar]
- Jankowski, K.J.; Budzyński, W.S.; Szymanowski, A. Effect of sulfur on the quality of winter rape seeds. J. Elem. 2008, 13, 521–534. [Google Scholar]
- Šiaudinis, G. The effect of nitrogen and sulphur fertilisation on the elemental composition and seed quality of spring oilseed rape. Žemdirbzstė–Agric. 2010, 97, 47–56. [Google Scholar]
- Šiaudinis, G.; Butkutė, B. Responses of spring oilseed rape seed yield and quality to nitrogen and sulfur fertilization. Commun. Soil Sci. Plan. 2013, 44, 145–157. [Google Scholar] [CrossRef]
- Egesel, C.Ö.; Gü, M.K.; Kahrıman, F. Changes in yield and seed quality traits in rapeseed genotypes by sulphur fertilization. Eur. Food Res. Technol. 2009, 229, 505–513. [Google Scholar] [CrossRef]
- Ahmad, A.; Jan, A.; Arif, M.; Jan, M.T.; Khattak, R.A. Influence of nitrogen and sulfur fertilization on quality of canola (Brassica napus L.) under rainfed conditions. J. Zhejiang Univ. Sci. B 2007, 8, 731–737. [Google Scholar] [CrossRef]
- Sattar, A.; Cheema, M.A.; Wahid, M.A.; Hassan, M. Interactive effect of sulphur and nitrogen on growth, yield and quality of canola. Crop Environ. 2011, 1, 32–37. [Google Scholar]
- Govahi, M.; Saffari, M. Effect of potassium and sulphur fertilizers and yield, yield components and seed quality of spring canola (Brassica napus L.) seed. J. Agron. 2006, 5, 577–582. [Google Scholar]
- Ahmad, A.; Abdin, M.Z. Interactive effect of sulphur and nitrogen on the oil and protein contents and on the fatty acid profiles of oil in the seeds of rapeseed (Brassica campestris L.) and mustard (Brassica juncea L. Czern. and Coss.). J. Agron. Crop Sci. 2002, 185, 49–54. [Google Scholar] [CrossRef]
- Nowak-Polakowska, H.; Czaplicki, S.; Tańska, M.; Jankowski, K. Chemical composition of white and sarepta mustard seeds as affected by differentiated conditions of nitrogen top-dressing at sowing-preceding fertilization with sulphur and magnesium. Pol. J. Natur. Sci. 2005, 18, 25–39. [Google Scholar]
- Malhi, S.S.; Gan, Y.; Raney, J.P. Yield, seed quality, and sulfur uptake of Brassica oilseed crops in response to sulfur fertilization. Agron. J. 2007, 99, 570–577. [Google Scholar] [CrossRef]
- Flakelar, C.L.; Adjonu, R.; Doran, G.; Howitt, J.A.; Luckett, D.J.; Prenzler, P.D. Phytosterol, tocopherol and carotenoid retention during commercial processing of Brassica napus (canola) oil. Processes 2022, 10, 580. [Google Scholar] [CrossRef]
- Górnaś, P.; Baškirovs, G.; Siger, A. Free and esterified tocopherols, tocotrienols and other extractable and non-extractable tocochromanol-related molecules: Compendium of knowledge, future perspectives and recommendations for chromatographic techniques, tools, and approaches used for tocochromanol determination. Molecules 2022, 27, 6560. [Google Scholar] [CrossRef]
- Siger, A.; Górnaś, P. Free tocopherols and tocotrienols in 82 plant species’ oil: Chemotaxonomic relation as demonstrated by PCA and HCA. Food Res. Int. 2023, 164, 112386. [Google Scholar] [CrossRef] [PubMed]
- Goffman, F.D.; Becker, H.C. Genetic variation of tocopherol content in a germplasm collection of Brassica napus. L. Euphytica 2002, 125, 189–196. [Google Scholar] [CrossRef]
- Petersom, D.M.; Qureshi, A.A. Genotype and environment effects on tocols of barley and oats. Cereal Chem. 1993, 70, 157–162. [Google Scholar]
- Petersom, D. Oat tocols: Concentration, and stability in oat products and distribution within the kernel. Cereal Chem. 1995, 72, 21–24. [Google Scholar]
- Bustamante-Rangel, M.; Belgado-Zamarreño, M.M.; Sánchez Pérez, A.; Carabias-Martínez, R. Determination of tocopherols and tocotrienols in cereals by pressurized liquid extraction-liquid chromatography-mass spectrometry. Anal. Chim. Acta 2007, 58, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.H.; Kamal-Eldin, A.; Elmadfa, I. γ-Tocopherol—An underestimated vitamin? Ann. Nutr. Metabol. 2004, 48, 169–188. [Google Scholar] [CrossRef] [PubMed]
- Barrera-Arellano, D.; Ruiz-Méndez, V.; Velasco, J.; Márquez-Ruiz, G.; Dobarganes, C. Loss of tocopherols and formation of degradation compounds at frying temperatures in oils differing in degree of unsaturation and natural antioxidant content. J. Sci. Food Agric. 2002, 82, 1699–1702. [Google Scholar] [CrossRef]
- Stevenson, D.G.; Eller, F.J.; Wang, L.; Jane, J.L.; Wang, T.; Inglett, G.E. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. J. Agric. Food Chem. 2007, 55, 4005–4013. [Google Scholar] [CrossRef] [PubMed]
- Egesel, C.Ö.; Gül, M.K.; Kahrıman, F.; Özer, I.; Türk, F. The effect of nitrogen fertilization on tocopherols in rapeseed genotypes. Eur. Food Res. Technol. 2008, 227, 871–880. [Google Scholar] [CrossRef]
- Hussain, N.; Li, H.; Jiang, Y.; Jabeen, Z.; Shamsi, I.H.; Ali, E.; Jiang, L. Response of seed tocopherols in oilseed rape to nitrogen fertilizer sources and application rates. J. Zhejiang Univ. Sci. B 2014, 15, 181–193. [Google Scholar] [CrossRef]
- Filipek-Mazur, B.; Tabak, M.; Gorczyca, O.; Lisowska, A.A. Effect of sulfur-containing fertilizers on the quantity and quality of spring oilseed rape and winter wheat yield. J. Elem. 2019, 24, 1383–1394. [Google Scholar]
Parameter | Plant Height (cm) | Stem-Base Diameter (mm) | Branches per Plant |
---|---|---|---|
Year | |||
2020 | 150.7 ± 8.6 a | 9.9 ± 2.0 a | 8.2 ± 1.8 a |
2021 | 92.3 ± 7.8 c | 8.7 ± 1.5 b | 7.0 ± 0.7 b |
2022 | 102.8 ± 6.8 b | 8.4 ± 1.6 b | 5.3 ± 0.5 c |
Nitrogen rate (kg ha−1), average for 2020–2022 | |||
0 | 110.1 ± 17.5 b | 8.7 ± 2.1 | 6.4 ± 1.5 b |
30 | 115.2 ± 17.7 ab | 9.1 ± 1.6 | 7.5 ± 2.1 a |
60 | 117.1 ± 17.7 a | 9.4 ± 1.3 | 6.9 ± 1.7 ab |
90 | 117.1 ± 17.0 a | 8.8 ± 2.1 | 6.8 ± 1.4 ab |
120 | 116.8 ± 16.4 a | 8.8 ± 1.9 | 6.6 ± 1.6 b |
Sulfur rate (kg ha−1), average for 2020–2022 | |||
0 | 115.6 ± 15.9 | 8.9 ± 1.4 | 7.0 ± 1.4 |
15 | 114.2 ± 17.7 | 9.0 ± 1.8 | 7.0 ± 1.8 |
30 | 115.3 ± 16.8 | 9.0 ± 2.2 | 6.8 ± 1.8 |
Parameter | Plants m−2 | Siliques Plant−1 | Seeds Silique−1 | TSW (g) | Seed Yield (Mg ha−1) | NFUE (kg of Seeds per 1 kg N) | Straw Yield (Mg ha−1) | Harvest Index (%) |
---|---|---|---|---|---|---|---|---|
Year | ||||||||
2020 | 59.6 ± 3.9 a | 22.2 ± 3.6 b | 6.03 ± 0.40 a | 17.3 ± 0.7 b | 1.25 ± 0.17 a | 2.04 ± 0.80 b | 8.23 ± 1.48 b | 13.8 ± 2.7 a |
2021 | 46.9 ± 7.8 c | 34.8 ± 8.5 a | 5.70 ± 0.33 b | 14.2 ± 1.0 c | 1.16 ± 0.20 b | 6.15 ± 1.27 a | 12.03 ± 1.92 a | 10.3 ± 2.9 b |
2022 | 50.2 ± 4.4 b | 12.9 ± 3.3 c | 5.54 ± 0.34 b | 18.4 ± 0.6 a | 0.59 ± 0.13 c | 1.26 ± 0.38 b | 8.48 ± 1.67 b | 7.1 ± 2.0 c |
Nitrogen rate (kg ha−1), average for 2020–2022 | ||||||||
0 | 51.3 ± 7.9 | 19.1 ± 8.3 c | 5.78 ± 0.40 | 16.9 ± 2.0 | 0.83 ± 0.29 c | - | 9.33 ± 1.45 a | 9.9 ± 2.5 b |
30 | 52.3 ± 8.7 | 22.3 ± 8.8 bc | 5.75 ± 0.36 | 16.8 ± 2.0 | 0.96 ± 0.36 b | 4.22 ± 0.85 a | 9.79 ± 1.33 b | 9.6 ± 2.2 b |
60 | 54.4 ± 6.9 | 23.3 ± 8.9 ab | 5.75 ± 0.43 | 16.4 ± 2.2 | 1.04 ± 0.29 ab | 3.43 ± 0.65 ab | 9.69 ± 1.24 b | 11.9 ± 1.4 a |
90 | 52.1 ± 7.6 | 25.0 ± 9.1 ab | 5.82 ± 0.48 | 16.6 ± 1.9 | 1.08 ± 0.36 a | 2.77 ± 0.69 ab | 9.39 ± 1.71a | 10.3 ± 2.9 ab |
120 | 51.0 ± 7.8 | 26.7 ± 9.8 a | 5.68 ± 0.40 | 16.5 ± 1.6 | 1.09 ± 0.33 a | 2.19 ± 1.06 b | 9.69 ± 1.51b | 10.2 ± 2.4 ab |
Sulfur rate (kg ha−1), average for 2020–2022 | ||||||||
0 | 53.0 ± 7.5 | 22.7 ± 9.1 b | 5.78 ± 0.41 | 16.7 ± 2.0 | 0.96 ± 0.31 b | 4.19 ± 1.49 a | 9.50 ± 1.42 | 10.7 ± 3.3 |
15 | 52.5 ± 7.8 | 23.9 ± 9.4 a | 5.75 ± 0.45 | 16.6 ± 2.0 | 1.03 ± 0.35 a | 3.09 ± 1.12 ab | 9.59 ± 1.45 | 10.2 ± 3.1 |
30 | 52.2 ± 8.1 | 23.2 ± 9.5 ab | 5.74 ± 0.39 | 16.5 ± 1.9 | 1.00 ± 0.35 ab | 2.17 ± 0.98 b | 9.64 ± 1.46 | 10.3 ± 3.2 |
Parameter | Crude Fat (g kg−1 DM) | Total Protein (g kg−1 DM) | Crude Fiber (g kg−1 DM) | Acid Detergent Fiber (%) | Neutral Detergent Fiber (%) |
---|---|---|---|---|---|
Year | |||||
2020 | 383.5 ± 15.9 | 249.0 ± 8.7 a | 97.4 ± 7.5 b | 16.8 ± 0.8 a | 20.9 ± 1.5 a |
2021 | 383.3 ± 11.7 | 248.5 ± 7.7 a | 102.6 ± 7.2 a | 16.9 ± 0.9 a | 20.4 ± 0.7 b |
2022 | 383.4 ± 10.5 | 244.2 ± 6.8 b | 97.6 ± 8.4 b | 16.0 ± 0.9 b | 19.7 ± 0.6 c |
Nitrogen rate (kg ha−1), average for 2020–2022 | |||||
0 | 393.3 ± 9.2 a | 240.6 ± 6.7 d | 89.1 ± 7.8 c | 16.6 ± 1.0 | 20.2 ± 0.9 ab |
30 | 389.8 ± 9.4 a | 244.5 ± 4.9 cd | 101.8 ± 8.4 ab | 16.4 ± 0.8 | 20.8 ± 1.7 a |
60 | 381.8 ± 12.3 b | 247.7 ± 8.0 bc | 106.5 ± 8.5 a | 16.6 ± 0.9 | 20.6 ± 0.9 ab |
90 | 380.0 ± 9.5 b | 249.8 ± 4.7 ab | 100.6 ± 6.0 ab | 16.5 ± 0.9 | 20.3 ± 0.9 ab |
120 | 372.2 ± 12.0 c | 253.7 ± 8.5 a | 98.0 ± 7.4 b | 16.7 ± 0.9 | 19.9 ± 0.8 b |
Sulfur rate (kg ha−1), average for 2020–2022 | |||||
0 | 385.8 ± 10.6 a | 246.5 ± 8.3 | 100.7 ± 8.9 | 16.5 ± 1.0 | 20.2 ± 0.8 |
15 | 386.1 ± 12.3 a | 246.6 ± 6.8 | 99.6 ± 8.4 | 16.7 ± 0.9 | 20.5 ± 1.5 |
30 | 378.4 ± 14.1 b | 248.6 ± 9.3 | 97.3 ± 9.0 | 16.6 ± 0.8 | 20.4 ± 0.9 |
Parameter | C16 | C18 | C18:1 | C18:2 | C18:3 | C20:1 | C22:1 | SFAs | MUFAs | PUFAs |
---|---|---|---|---|---|---|---|---|---|---|
Year | ||||||||||
2020 | 5.03 ± 0.23 a | 2.09 ± 0.57 b | 21.52 ± 1.87 a | 12.78 ± 0.97 a | 11.82 ± 0.93 a | 0.87 ± 0.17 b | 45.88 ± 2.05 a | 7.11 ± 0.91 b | 68.29 ± 1.20 b | 24.60 ± 1.35 a |
2021 | 5.01 ± 0.22 a | 2.99 ± 0.58 a | 22.02 ± 1.85 a | 12.99 ± 0.59 a | 11.01 ± 1.01 b | 0.65 ± 0.12 c | 45.33 ± 2.17 a | 7.99 ± 1.24 a | 68.01 ± 1.34 b | 24.00 ± 0.95 b |
2022 | 4.45 ± 0.20 b | 2.01 ± 0.79 b | 18.99 ± 1.42 b | 12.09 ± 0.52 b | 11.79 ± 1.03 a | 8.41 ± 0.28 a | 42.28 ± 1.59 b | 6.44 ± 1.06 c | 69.66 ± 1.80 a | 23.88 ± 1.18 b |
Nitrogen rate (kg ha−1), average for 2020–2022 | ||||||||||
0 | 4.81 ± 0.37 ab | 2.10 ± 0.85 bc | 19.99 ± 1.92 b | 12.64 ± 0.89 | 11.74 ± 0.95 ab | 3.20 ± 0.61 b | 45.51 ± 2.55 a | 6.91 ± 1.15 b | 68.70 ± 2.09 | 24.39 ± 1.08 ab |
30 | 4.88 ± 0.25 ab | 1.92 ± 0.64 c | 20.96 ± 1.97 ab | 12.70 ± 0.88 | 12.10 ± 1.26 a | 3.41 ± 0.75 a | 44.03 ± 2.45 b | 6.80 ± 0.86 a | 68.40 ± 1.23 | 24.80 ± 1.26 a |
60 | 4.82 ± 0.38 ab | 2.38 ± 0.92 abc | 20.48 ± 1.79 ab | 12.63 ± 0.65 | 11.46 ± 0.96 bc | 3.33 ± 0.71 a | 44.90 ± 2.72 ab | 7.20 ± 1.34 ab | 68.71 ± 1.25 | 24.09 ± 1.08 abc |
90 | 4.90 ± 0.35 a | 2.79 ± 0.97 a | 21.23 ± 1.81a | 12.60 ± 0.66 | 11.38 ± 0.64 bc | 3.29 ± 0.64 ab | 43.74 ± 2.21 b | 7.65 ± 1.53 a | 68.33 ± 1.29 | 23.98 ± 1.05 bc |
120 | 4.73 ± 0.34 b | 2.61 ± 0.84 ab | 21.56 ± 1.73 a | 12.52 ± 0.98 | 11.02 ± 1.10 c | 3.32 ± 0.71 ab | 44.31 ± 2.35 ab | 7.34 ± 1.16 ab | 69.11 ± 2.04 | 23.54 ± 1.24 c |
Sulfur rate (kg ha−1), average for 2020–2022 | ||||||||||
0 | 4.80 ± 0.33 | 2.20 ± 0.88 | 20.96 ± 1.95 | 12.56 ± 0.84 | 11.29 ± 0.72 b | 3.32 ± 0.67 | 44.86 ± 2.28 | 7.01 ± 1.16 | 69.13 ± 1.85 a | 23.85 ± 1.14 b |
15 | 4.83 ± 0.31 | 2.46 ± 0.90 | 21.02 ± 1.49 | 12.63 ± 0.66 | 11.54 ± 0.97 ab | 3.31 ± 0.69 | 44.26 ± 2.75 | 7.24 ± 1.16 | 68.55 ± 1.27 ab | 24.17 ± 1.23 ab |
30 | 4.85 ± 0.38 | 2.41 ± 0.94 | 20.55 ± 1.04 | 12.67 ± 0.93 | 11.79 ± 1.34 a | 3.30 ± 0.61 | 44.38 ± 2.49 | 7.29 ± 1.42 | 68.27 ± 1.62 b | 24.46 ± 1.19 a |
Parameter | α-Tocopherol | β-Tocopherol | γ-Tocopherol | δ-Tocopherol | Σ Tocopherols |
---|---|---|---|---|---|
Year | |||||
2020 | 1.00 ± 0.28 b | 3.42 ± 0.83 b | 31.06 ± 5.14 | 0.25 ± 0.05 b | 35.72 ± 5.74 ab |
2021 | 1.34 ± 0.35 a | 4.12 ± 0.91 a | 30.85 ± 3.94 | 0.28 ± 0.06 a | 36.59 ± 4.58 a |
2022 | 0.39 ± 0.12 c | 2.38 ± 0.56 c | 31.09 ± 7.07 | 0.20 ± 0.06 c | 34.06 ± 7.12 b |
Nitrogen rate (kg ha−1), average for 2020–2022 | |||||
0 | 0.74 ± 0.30 b | 2.63 ± 0.81 c | 27.37 ± 4.38 c | 0.23 ± 0.07 | 30.98 ± 4.84 c |
30 | 0.86 ± 0.40 ab | 3.04 ± 0.88 bc | 29.18 ± 5.01 bc | 0.24 ± 0.07 | 33.31 ± 5.14 bc |
60 | 0.98 ± 0.49 a | 3.42 ± 1.05 ab | 31.72 ± 3.73 ab | 0.25 ± 0.07 | 36.36 ± 3.79 ab |
90 | 1.05 ± 0.61 a | 3.69 ± 1.06 a | 34.81 ± 6.12 a | 0.27 ± 0.06 | 39.81 ± 6.51 a |
120 | 0.92 ± 0.50 ab | 3.74 ± 1.09 a | 31.93 ± 5.13 ab | 0.24 ± 0.06 | 36.83 ± 5.23 ab |
Sulfur rate (kg ha−1), average for 2020–2022 | |||||
0 | 0.85 ± 0.45 b | 3.29 ± 1.03 | 28.21 ± 5.34 c | 0.25 ± 0.07 | 32.60 ± 6.34 c |
15 | 0.90 ± 0.48 ab | 3.19 ± 1.01 | 31.15 ± 4.72 b | 0.25 ± 0.06 | 35.48 ± 5.06 b |
30 | 0.98 ± 0.49 a | 3.44 ± 1.13 | 33.64 ± 5.10 a | 0.23 ± 0.06 | 38.29 ± 5.07 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szatkowski, A.; Antoszkiewicz, Z.; Purwin, C.; Jankowski, K.J. Oilseed Radish: Nitrogen and Sulfur Management Strategies for Seed Yield and Quality—A Case Study in Poland. Agriculture 2024, 14, 755. https://doi.org/10.3390/agriculture14050755
Szatkowski A, Antoszkiewicz Z, Purwin C, Jankowski KJ. Oilseed Radish: Nitrogen and Sulfur Management Strategies for Seed Yield and Quality—A Case Study in Poland. Agriculture. 2024; 14(5):755. https://doi.org/10.3390/agriculture14050755
Chicago/Turabian StyleSzatkowski, Artur, Zofia Antoszkiewicz, Cezary Purwin, and Krzysztof Józef Jankowski. 2024. "Oilseed Radish: Nitrogen and Sulfur Management Strategies for Seed Yield and Quality—A Case Study in Poland" Agriculture 14, no. 5: 755. https://doi.org/10.3390/agriculture14050755
APA StyleSzatkowski, A., Antoszkiewicz, Z., Purwin, C., & Jankowski, K. J. (2024). Oilseed Radish: Nitrogen and Sulfur Management Strategies for Seed Yield and Quality—A Case Study in Poland. Agriculture, 14(5), 755. https://doi.org/10.3390/agriculture14050755