Perennial Grains and Oilseeds: Current Status and Future Prospects
Abstract
:1. Introduction
2. Background
3. Progress in Perennial Grains and Oilseeds
4. Future of Perennial Grains
Conflicts of Interest
References
- Klitgaard, K. Sustainability as an Economic Issue: A BioPhysical Economic Perspective. Sustainability 2020, 12, 364. [Google Scholar] [CrossRef]
- Dyck, B.; Manchanda, R.V.; Vagianos, S.; Bernardin, M. Sustainable marketing: An exploratory study of a sustain-centric, versus profit-centric, approach. Bus. Soc. Rev. 2023, 128, 195–216. [Google Scholar] [CrossRef]
- Popkin, G. Satellites document rapid expansion of cropland. Science 2022, 375, 12. [Google Scholar] [CrossRef]
- Song, F.; Zhang, G.J.; Ramanathan, V.; Leung, L.R. Trends in surface equivalent potential temperature: A more comprehensive metric for global warming and weather extremes. Proc. Natl. Acad. Sci. USA 2022, 119, e2117832119. [Google Scholar] [CrossRef]
- Merkle, J.A.; Abrahams, B.; Armstrong, J.B.; Sawyer, H.; Costa, D.P.; Chalfoun, A.D. Site fidelity as a maladaptive behavior in the Anthropocene. Front. Ecol. Environ. 2022, 20, 187–194. [Google Scholar] [CrossRef]
- Huang, G.; Qin, S.; Zhang, S.; Cai, X.; Wu, S.; Dao, J.; Zhang, J.; Huang, L.; Harnpichitvitaya, D.; Wade, L.J.; et al. Performance, Economics and Potential Impact of Perennial Rice PR23 Relative to Annual Rice Cultivars at Multiple Locations in Yunnan Province of China. Sustainability 2018, 10, 1086. [Google Scholar] [CrossRef]
- Bajgain, P.; Zhang, X.; Jungers, J.M.; DeHaan, L.R.; Heim, B.; Sheaffer, C.C.; Wyse, D.L.; Anderson, J.A. ‘MN-Clearwater’, the first food-grade intermediate wheatgrass (Kernza perennial grain) cultivar. J. Plant Regist. 2020, 14, 288–297. [Google Scholar] [CrossRef]
- Jungers, J.M.; DeHaan, L.R.; Betts, K.J.; Sheaffer, C.C.; Wyse, D.L. Intermediate Wheatgrass Grain and Forage Yield Responses to Nitrogen Fertilization. Agron. J. 2017, 109, 462–472. [Google Scholar] [CrossRef]
- Olugbenle, O.; Pinto, P.; Picasso, V.D. Optimal Planting Date of Kernza Intermediate Wheatgrass Intercropped with Red Clover. Agronomy 2021, 11, 2227. [Google Scholar] [CrossRef]
- Manès, Y.; Gomez, H.F.; Puhl, L.; Reynolds, M.; Braun, H.J.; Trethowan, R. Genetic Yield Gains of the CIMMYT International Semi-Arid Wheat Yield Trials from 1994 to 2010. Crop. Sci. 2012, 52, 1543–1552. [Google Scholar] [CrossRef]
- Qian, B.; Jing, Q.; Bélanger, G.; Shang, J.; Huffman, T.; Liu, J.; Hoogenboom, G. Simulated Canola Yield Responses to Climate Change and Adaptation in Canada. Agron. J. 2018, 110, 133–146. [Google Scholar] [CrossRef]
- Charmet, G. Wheat domestication: Lessons for the future La domestication des blés: Leçons pour l’avenir. Comptes Rendus Biol. 2011, 334, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Kovach, M.J.; Sweeney, M.T.; McCouch, S.R. New insights into the history of rice domestication Michael. Trends Genet. 2007, 23, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Wagoner, P. Perennial grain new use for intermediate wheatgrass. J. Soil Water Conserv. 1990, 45, 81–82. [Google Scholar]
- Cox, T.S.; Bender, M.; Picone, C.; Van Tassel, D.L.; Holland, J.B.; Brummer, E.C.; Zoeller, B.E.; Paterson, A.H.; Jackson, W. Breeding Perennial Grain Crops. Crit. Rev. Plant Sci. 2002, 21, 59–91. [Google Scholar] [CrossRef]
- DeHaan, L.R.; Van Tassel, D.L.; Cox, T.S. Perennial grain crops: A synthesis of ecology and plant breeding. Renew. Agric. Food Syst. 2005, 20, 5–14. [Google Scholar] [CrossRef]
- Glover, J.D.; Culman, S.W.; Dupont, S.T.; Broussard, W.; Young, L.; Mangan, M.E.; Mai, J.G.; Crews, T.E.; DeHaan, L.R.; Buckley, D.H.; et al. Harvested perennial grasslands provide ecological benchmarks for agricultural sustainability. Agric. Ecosyst. Environ. 2010, 137, 3–12. [Google Scholar] [CrossRef]
- DeHaan, L.R.; Van Tassel, D.L.; Anderson, J.A.; Asselin, S.R.; Barnes, R.; Baute, G.J.; Cattani, D.J.; Culman, S.W.; Dorn, K.M.; Hulke, B.S.; et al. A Pipeline Strategy for Crop Domestication. Crop. Sci. 2016, 56, 917–930. [Google Scholar] [CrossRef]
- Hayes, R.C.; Wang, S.; Newell, M.T.; Turner, K.; Larsen, J.; Gazza, L.; Anderson, J.A.; Bell, L.W.; Cattani, D.J.; Frels, K.; et al. The performance of early-generation perennial winter cereals at 21 sites across four continents. Sustainability 2018, 10, 1124. [Google Scholar] [CrossRef]
- Duchene, O.; Dumont, B.; Cattani, D.J.; Fagnant, L.; Schlautman, B.; DeHaan, L.R.; Barriball, S.; Jungers, J.M.; Picasso, V.D.; David, C.; et al. Phenological development of Thinopyrum intermedium highlights the importance of dual induction for reproductive growth and agronomic performance. Agric. For. Meteorol. 2021, 301–302, 108341. [Google Scholar] [CrossRef]
- DeHaan, L.R.; Weisberg, S.; Tilman, D.; Fornara, D. Agricultural and biofuel implications of a species diversity experiment with native perennial grassland plants. Agric. Ecosyst. Environ. 2010, 137, 33–38. [Google Scholar] [CrossRef]
- Tilman, D.; Reich, P.B.; Knops, J.; Wedin, D.; Mielke, T.; Lehman, C. Diversity and productivity in a long-term grassland experiment. Science 2001, 294, 843–845. [Google Scholar] [CrossRef]
- Cattani, D.J. Chapter 24: Perennial Polycultures: How Do We Assemble a Truly Sustainable Agricultural System. In Proceedings from the FAO Expert Workshop on Perennial Crops for Food Security; Batello, C., Cox, S., Wade, L., Pogna, N., Bozzini, A., Choptiany, J., Eds.; FAO: Rome, Italy, 2014; pp. 324–338. [Google Scholar]
- Wright, A.J. Selection for improved yield in inter-specific mixtures or intercrops. Theor. Appl. Genet. 1985, 69, 399–407. [Google Scholar] [CrossRef]
- Liu, Z.-Y.; Baoyin, T.; Li, X.-L.; Wang, Z.-L. How fall dormancy benefits winter-survival? Physiologic and transcriptomic analyses of dormancy process. BMC Plant Biol. 2019, 19, 205. [Google Scholar] [CrossRef]
- Ivancic, K.; Locatelli, A.; Tracy, W.F.; Picasso, V. Kernza intermediate wheatgrass (Thinopyrum intermedium) response to a range of vernalization conditions. Can. J. Plant Sci. 2021, 101, 770–773. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Cui, S.; Chang, S.X.; Jia, C.; Zhang, Q. A global synthesis of the effect of water and nitrogen input on maize (Zea mays) yield, water productivity and nitrogen use efficiency. Agric. For. Meteorol. 2019, 268, 136–145. [Google Scholar] [CrossRef]
- Ashraf, U.; Salim, M.N.; Sher, A.; Sabir, S.-U.; Khan, A.; Pan, S.; Tang, X. Maize growth, yield formation and water-nitrogen usage in response to varies irrigation and nitrogen supply under semi-arid climate. Turk. J. Field Crop. 2016, 21, 88–96. [Google Scholar]
- Cattani, D.J.; Asselin, S.R. Early Plant Development in Intermediate Wheatgrass. Agriculture 2022, 12, 915. [Google Scholar] [CrossRef]
- Dobbratz, M.; Jungers, J.M.; Gutknecht, J.L.M. Seasonal Plant Nitrogen Use and Soil N pools in Intermediate Wheatgrass (Thinopyrum intermedium). Agriculture 2023, 13, 468. [Google Scholar] [CrossRef]
- Bergquist, G.; Gutknecht, J.; Sheaffer, C.; Jungers, J.M. Plant Suppression and Termination Methods to Maintain Intermediate Wheatgrass (Thinopyrum intermedium) Grain Yield. Agriculture 2022, 12, 1638. [Google Scholar] [CrossRef]
- LeHeiget, P.M.; McGeough, E.J.; Biligetu, B.; Cattani, D.J. Grain yield potential of intermediate wheatgrass in western Canada. Agriculture 2023, 13, 1924. [Google Scholar] [CrossRef]
- Craine, E.B.; DeHaan, L.R. Nutritional Quality of Early-Generation Kernza Perennial Grain. Agriculture 2024, 14, 919. [Google Scholar] [CrossRef]
- Ewel, J.J.; Schreeg, L.A.; Sinclair, T.R. Resources for crop production: Accessing the unavailable. Trends Plant Sci. 2019, 24, 121–129. [Google Scholar] [CrossRef]
- Bruns, H.A. Southern corn leaf blight: A story worth retelling. Agron. J. 2017, 109, 1218–1224. [Google Scholar] [CrossRef]
- Khoury, C.K.; Amariles, D.; Soto, J.S.; Diaz, M.V.; Sotelo, S.; Sosa, C.C.; Ramírez-Villegas, J.; Achicanoy, H.A.; Velásquez-Tibatá, J.; Guarino, L.; et al. Comprehensiveness of conservation of useful wild plants: An operational indicator for biodiversity and sustainable development targets. Ecol. Indic. 2019, 98, 420–429. [Google Scholar] [CrossRef]
- Berger, J.C.; Ellstrand, N.C. Rapid evolutionary divergence of an invasive weed from its crop ancestor and evidence for local diversification. J. Syst. Evol. 2014, 52, 750–764. [Google Scholar] [CrossRef]
- DeHaan, L.R.; Anderson, J.A.; Bajgain, P.; Basche, A.; Cattani, D.J.; Crain, J.; Crews, T.E.; David, C.; Duchene, O.; Gutknecht, J.; et al. Discussion: Prioritize Perennial Grain Development for Sustainable Food Production and Environmental Benefits. Sci. Total Environ. 2023, 895, 164975. [Google Scholar] [CrossRef] [PubMed]
- Annabelle Liang, A.; Peter Hoskins, P. Elon Musk Buys Twitter: How Will the Platform Change? BBC News Website. 2022. Available online: https://www.bbc.com/news/business-61225355 (accessed on 26 April 2022).
- Mier, T. Elon Musk’s X Worth 71.5% Less than When He Bought It. Rolling Stone. 2024. Available online: https://www.rollingstone.com/culture/culture-news/elon-musk-x-twitter-valuation-fidelity-1234939310/ (accessed on 2 January 2024).
- Brewin, D.G.; Malla, S. The Consequences of Biotechnology: A Broad View of the Changes in the Canadian Canola Sector, 1969 to 2012. AgBioForum 2014, 15, 257–275. [Google Scholar]
- Crews, T.E.; Cattani, D.J. Strategies, advances, and challenges in breeding perennial grain crops. Sustainability 2018, 10, 2192. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cattani, D.J. Perennial Grains and Oilseeds: Current Status and Future Prospects. Agriculture 2024, 14, 1035. https://doi.org/10.3390/agriculture14071035
Cattani DJ. Perennial Grains and Oilseeds: Current Status and Future Prospects. Agriculture. 2024; 14(7):1035. https://doi.org/10.3390/agriculture14071035
Chicago/Turabian StyleCattani, Douglas J. 2024. "Perennial Grains and Oilseeds: Current Status and Future Prospects" Agriculture 14, no. 7: 1035. https://doi.org/10.3390/agriculture14071035
APA StyleCattani, D. J. (2024). Perennial Grains and Oilseeds: Current Status and Future Prospects. Agriculture, 14(7), 1035. https://doi.org/10.3390/agriculture14071035