Regeneration of Sesuvium portulacastrum through Indirect Shoot Organogenesis and Influence of an Endophytic Fungus on Rooting of Microshoots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material Preparation
2.2. Callus Induction
2.3. Induction of Adventitious Shoots
2.4. Roots Induction
2.5. qRT-PCR and Gene Expression Analysis
2.6. Plantlet Acclimatization and Their Growth in the Greenhouse
2.7. Statistical Analysis
3. Results
3.1. Callus Induction
3.2. Induction of Adventitious Shoots
3.3. In Vitro Rooting of Microshoots with an Endophytic Fungal Strain ‘BF-F’
3.4. Acclimatization and Establishment in a Shaded Greenhouse
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bohley, K.; Winter, P.J.; Kadereit, G. A revision of Sesuvium (Aizoaceae, Sesuvioideae). Syst. Bot. 2017, 42, 124–147. [Google Scholar] [CrossRef]
- Lokhande, V.H.; Gor, B.K.; Desai, N.S.; Nikam, T.D.; Suprasanna, P. Sesuvium portulacastrum, a plant for drought, salt stress, sand fixation, food and phytoremediation. A review. Agron. Sustain. Develop. 2013, 33, 329–348. [Google Scholar] [CrossRef]
- Ramani, B.; Reeck, T.; Debez, A.; Stelzer, R.; Huchzermeyer, B.; Schmidt, A.; Papenbrock, J. Aster tripolium L. and Sesuvium portulacastrum L.: Two halophytes, two strategies to survive in saline habitats. Plant Physiol. Biochem. 2006, 44, 395–408. [Google Scholar] [CrossRef]
- Al-Azzawi, A.; Alguboori, A.; Hachim, M.Y.; Najat, M.; Al Shaimaa, A.; Sad, M. Preliminary phytochemical and antibacterial screening of Sesuvium portulacastrum in the United Arab Emirates. Pharmacog. Res. 2012, 4, 219–224. [Google Scholar] [CrossRef]
- Gilman, E.F. Sesuvium portulacastrum Sea Purslane. University of Florida Fact Sheet FPS-548. 1999. Available online: https://hort.ifas.ufl.edu/database/documents/pdf/shrub_fact_sheets/sespora.pdf (accessed on 4 March 2024).
- FAO. Global Map of Salt Affected Soils Version 1.0. 2021. Available online: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/global-map-of-salt-affected-soils/en/ (accessed on 12 February 2024).
- Benjamin, J.J.; Lucini, L.; Jothiramshekar, S.; Parida, A. Metabolomic insights into the mechanisms underlying tolerance to salinity in different halophytes. Plant Physiol. Biochem. 2019, 135, 528–545. [Google Scholar] [CrossRef]
- Fan, W.; Chang, W.; Liu, X.; Xiao, C.; Yang, J.; Zhang, Z. Identification of up-regulated genes provides integrated insight into salt-induced tolerance mechanisms in Sesuvium portulacastrum roots. Acta Physiol Plant. 2017, 39, 86. [Google Scholar] [CrossRef]
- Messedi, D.; Labidi, N.; Grignon, C.; Abdelly, C. Limits imposed by salt to the growth of the halophyte Sesuvium portulacastrum. J. Plant Nutr. Soil Sci. 2004, 167, 720–725. [Google Scholar] [CrossRef]
- Kannan, P.R.; Deepa, S.; Kanth, S.V.; Rengasamy, R. Growth, osmolyte concentration and antioxidant enzymes in the leaves of Sesuvium portulacastrum L. under salinity stress. Appl. Biochem. Biotechnol. 2013, 171, 1925–1932. [Google Scholar] [CrossRef]
- Wang, D.; Wang, H.; Han, B.; Wang, B.; Guo, A.; Zheng, D.; Liu, C.; Chang, L.; Peng, M.; Wang, X. Sodium instead of potassium and chloride is an important macronutrient to improve leaf succulence and shoot development for halophyte Sesuvium portulacastrum. Plant Physiol. Biochem. 2012, 51, 53–62. [Google Scholar] [CrossRef]
- Rabhi, M.; Ferchichi, S.; Jouini, J.; Hamrouni, M.H.; Koyro, H.W.; Ranieri, A.; Abdelly, C.; Smaoui, A. Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresour. Technol. 2010, 101, 6822–6828. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, D.; He, W.; Liu, H.; Chen, J.; Wei, X.; Mu, J. Sesuvium portulacastrum-mediated removal of nitrogen and phosphorus affected by sulfadiazine in aquaculture wastewater. Antibiotics 2022, 11, 68. [Google Scholar] [CrossRef]
- Liu, X.; Pu, X.; Luo, D.; Lu, J.; Liu, Z. Model assessment of nutrient removal via planting Sesuvium portulacastrum in floating beds in eutrophic marine waters: The case of aquaculture areas of Dongshan Bay. Acta Oceanologica Sinica 2019, 38, 91–100. [Google Scholar] [CrossRef]
- Uddin, M.M.; Chen, Z.; Huang, L. Cadmium accumulation, subcellular distribution and chemical fractionation in hydroponically grown Sesuvium portulacastrum [Aizoaceae]. PLoS ONE 2020, 15, e0244085. [Google Scholar] [CrossRef]
- Wali, M.; Gunse, B.; Llugany, M.; Corrales, I.; Abdelly, C.; Poschenrieder, C.; Ghnaya, T. High salinity helps the halophyte Sesuvium portulacastrum in defense against Cd toxicity by maintaining redox balance and photosynthesis. Planta 2016, 244, 333–346. [Google Scholar] [CrossRef]
- Fourati, E.; Vogel, M.K.; Wali, M.; Kavcic, A.; Gomilsek, J.P.; Kodre, A.; Kelemen, M.; Vavpetic, P.; Pelicon, P.; Abdelly, C.; et al. Nickel tolerance and toxicity mechanisms in the halophyte Sesuvium portulacastrum L. as revealed by Ni localization and ligand environment studies. Environ. Sci. Pollut. Res. Intl. 2020, 27, 23402–23410. [Google Scholar] [CrossRef]
- Lin, Y.; Gao, S.; Chen, J.; Zhai, Z.; Yuan, X.; Huang, J.; Liu, W.; Li, Z. Tolerance and its zinc bioaccumulation characteristic of Sesuvium portulacastrum to zinc. Wetl. Sci. 2016, 14, 561–567. [Google Scholar]
- Zaier, H.; Ghnaya, T.; Lakhdar, A.; Baioui, R.; Ghabriche, R.; Mnasri, M.; Sghair, S.; Lutts, S.; Abdelly, C. Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: Tolerance and accumulation. J. Hazard. Mat. 2010, 183, 609–615. [Google Scholar] [CrossRef]
- John, J.E.; Maheswari, M.; Kalaiselvi, T.; Prasanthrajan, M.; Poornachandhra, C.; Rakesh, S.S.; Gopalakrishnan, B.; Davamani, V.; Kokiladevi, E.; Ranjith, S. Biomining Sesuvium portulacastrum for halotolerant PGPR and endophytes for promotion of salt tolerance in Vigna mungo L. Front. Microl. 2023, 14, 1085787. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, W.; Wang, D.; Cao, D.; Cao, Y.; He, W.; Lin, Z.; Chen, X.; Ye, G.; Chen, Z.; et al. A novel endophytic fungus strain of Cladosporium: Its identification, genomic analysis, and effects on plant growth. Front. Microbiol. 2023, 14, 1287582. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, D.; Cao, D.; Chen, J.; Wei, X. Exploring the potentials of Seauvium protulacastrum L. for edibility and bioremediation of saline soils. Fronts Plant Sci. 2024, 15, 1387102. [Google Scholar] [CrossRef]
- Zeng, B.J.; Dou, B.X.; Li, Z.F.; Hung, J.R. Salt tolerance of environmental salinity stress and comprehensive evaluation of nutritional value of Seauvium protulacastrum, an important halophyte. Oceanologia Limnologia Sinica. 2017, 48, 568–575. [Google Scholar]
- Galoustian, G. Could These ‘Salt-Loving; Edible Sea Vegetables Be the New Kale? Florida Atlantic University News Desk. 2020. Available online: https://www.fau.edu/newsdesk/articles/sea-vegetables.php (accessed on 10 February 2024).
- Qiu, J. Large-Scale Production of Sea Purslane Using Sea Water in Hainan. People’s Republic of China. 2022. Available online: http://hi.people.com.cn/n2/2022/0507/c231190-35256942.html (accessed on 6 February 2024).
- Omanakuttan, A.; Bose, C.; Pandurangan, N.; Kumar, G.B.; Banerji, A.; Nair, B.G. Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone. Expt. Cell Res. 2016, 346, 167–175. [Google Scholar] [CrossRef]
- Chen, X.F.; Su, J.Y.; He, W.H.; Guo, J.Y.; Huang, J.Q.; Wang, D.; Yang, N.; Hu, H.L.; Wang, Z.H.; Wei, X.Y. First Report of Leaf Spot Disease Caused by Gibbago trianthemae on Sesuvium portulacastrum in China. Plant Dis. 2022, 106, 2261. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Li, M.J. A new species of Bipolaris from the halophyte Sesuvium portulacastrum in Guangdong Province, China. Mycotaxon 2009, 109, 289–300. [Google Scholar] [CrossRef]
- Chen, J.; Henny, R.J. Role of micropropagation in the development of the foliage plant industry. In Floriculture, Ornamental and Plant Biotechnology, Vol. V.; Teixeira da Silva, J.A., Ed.; Global Science Books: London, UK, 2008; pp. 206–218. [Google Scholar]
- Lokhande, V.H.; Nikam, T.D.; Ghane, S.G.; Suprasanna, P. In vitro culture, plant regeneration and clonal behaviour of Sesuvium portulacastrum (L.) L.: A prospective halophyte. Physiol. Mol. Biol. Plants 2010, 16, 187–193. [Google Scholar] [CrossRef]
- He, W.; Wang, D.; Yang, N.; Cao, D.; Chen, X.; Chen, J.; Wei, X. In vitro shoot culture of Sesuvium portulacastrum: An important plant for phytoremediation. Agriculture 2022, 12, 47. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant. 1962, 15, 473–495. [Google Scholar] [CrossRef]
- Duclercq, J.; Sangwan-Norreel, B.; Catterou, M.; Sangwan, R.S. De novo shoot organogenesis: From art to science. Trend. Plant Sci. 2011, 16, 597–606. [Google Scholar] [CrossRef]
- Kane, M.E. Propagation from preexisting meristems. In Plant Tissue Culture Concepts and Laboratory Exercises; Trigiano, R.N., Gray, D.J., Eds.; CRC Press: New York, NY, USA, 1996; pp. 61–71. [Google Scholar]
- Aggarwal, S.; Kanwar, K. Comparison of genetic transformation in Morus alba L. via different regeneration systems. Plant Cell Rep. 2007, 26, 177–185. [Google Scholar] [CrossRef]
- Lian, Z.; Nguyen, C.D.; Wilson, S.; Chen, J.; Gong, H.; Huo, H. An efficient protocol for Agrobacterium-mediated genetic transformation of Antirrhinum majus. Plant Cell Tiss. Org. Cult. 2020, 142, 527–536. [Google Scholar] [CrossRef]
- Linderman, R.; Call, C.A. Enhanced rooting of woody plant cuttings by mycorrhizal fungi. J. Am. Soc. Hortic. Sci. 1977, 102, 629–632. [Google Scholar] [CrossRef]
- Oliveira, P.; Barriga, J.; Cavaleiro, C.; Peixe, A.; Potes, A.Z. Sustained in vitro root development obtained in Pinus pinea L. inoculated with ectomycorrhizal fungi. Forestry 2003, 76, 579–587. [Google Scholar] [CrossRef]
- Souza, J.A.; Bettoni, J.C.; Costa, M.D.; Baldissera, T.C.; Passos, J.F.M.D.; Primieri, S. In vitro rooting and acclimatization of ‘Marubakaido’ apple rootstock using indole-3-acetic acid from rhizobacteria. Commun. Plant Sci. 2022, 12, 16–23. [Google Scholar] [CrossRef]
- Sukumar, P.; Legué, V.; Vayssières, A.; Martin, F.; Tuskan, G.A.; Kalluri, U.C. Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. Plant Cell Environ. 2013, 36, 909–919. [Google Scholar] [CrossRef]
- Wei, X.; Chen, J.; Zhang, C.; Liu, H.; Zheng, X.; Mu, J. Ericoid mycorrhizal fungus enhances microcutting rooting of Rhododendron fortunei and subsequent growth. Hortic Res. 2020, 7, 140. [Google Scholar] [CrossRef]
- Li, Y.X.; Zhang, T.T.; Kang, Y.; Wang, P.; Yu, W.; Wang, J.; Li, W.; Jiang, X.Y.; Zhou, Y. Integrated metabolome, transcriptome analysis, and multi-flux full-length sequencing offer novel insights into the function of lignin biosynthesis as a Sesuvium portulacastrum response to salt stress. Int. J. Biol. Macromol. 2023, 237, 124222. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Synder, W.C. Nutrition of strawberry plants under controlled conditions. Proc. Am. Soc. Hortic. Sci. 1933, 30, 288–294. [Google Scholar]
- Gajdošová, S.; Spíchal, L.; Kamínek, M.; Hoyerová, K.; Novák, O.; Dobrev, P.I.; Galuszka, P.; Klíma, P.; Gaudinová, A.; Žižková, E.; et al. Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 2011, 62, 2827–2840. [Google Scholar] [CrossRef]
- Gaspar, T.; Kevers, C.; Penel, C.; Greppin, H.; Reid, D.M.; Thorpe, T.A. Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cell. Dev. Biol.-Plant 1996, 32, 272–289. [Google Scholar] [CrossRef]
- Wen, S.; Miao, D.; Cui, H.; Li, S.; Gu, Y.; Jia, R.; Leng, Y. Physiology and transcriptomic analysis of endogenous hormones regulating in vitro adventitious root formation in tree peony. Sci. Hortic. 2023, 318, 112122. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, X.; Shen, H.; Gao, M.; Zhao, Y.; Bai, X. Morphological and endogenous phytohormone changes during long-term embryogenic cultures in Korean pine. Plant. Cell. Tiss. Organ. Cult. 2022, 151, 253–264. [Google Scholar] [CrossRef]
- Fan, S.; Jian, D.; Wei, X.; Chen, J.; Beeson, R.C.; Zhou, Z.; Wang, X. Micropropagation of blueberry ‘Bluejay’ and ‘Pink Lemonade’ through in vitro shoot culture. Sci. Hortic. 2017, 226, 277–284. [Google Scholar] [CrossRef]
- Qiu, D.; Wei, X.; Fan, S.; Jian, D.; Chen, J. Regeneration of blueberry cultivars through indirect shoot organogenesis. HortScience 2018, 53, 1045–1049. [Google Scholar] [CrossRef]
- García-Fortea, E.; Lluch-Ruiz, A.; Pineda-Chaza, B.; García-Pérez, A.; Bracho-Gil, J.; Plazas, M.; Gramazio, P.; Vilanova, S.; Moreno, V.; Prohens, J. A highly efficient organogenesis protocol based on zeatin riboside for in vitro regeneration of eggplant. BMC Plant. Biol. 2020, 20, 6. [Google Scholar] [CrossRef]
- Jameson, P.E. Zeatin: The 60th anniversary of its identification. Plant Physiol. 2023, 192, 34–55. [Google Scholar] [CrossRef]
- De Klerk, G.J. Rooting of microcuttings: Theory and practice. In Vitro Cell. Devel. Biol.-Plant. 2002, 38, 415–422. [Google Scholar] [CrossRef]
- Bannoud, F.; Bellini, C. Adventitious rooting in Populus species: Update and perspectives. Front. Plant Sci. 2021, 12, 918. [Google Scholar] [CrossRef]
- Blythe, E.K.; Sibley, J.L.; Tilt, K.M.; Ruter, J.M. Methods of auxin application in cutting propagation: A review of 70 years of scientific discovery and commercial practice. J. Environ. Hortic. 2007, 25, 166–185. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Li, Y.; Wang, X.; Nan, W.; Hu, Y.; Zhang, H.; Zhao, C.; Wang, F.; Li, P.; et al. Endophytic microbes Bacillus sp. LZR216-regulated root development is dependent on polar auxin transport in Arabidopsis seedlings. Plant Cell Rep. 2015, 34, 1075–1087. [Google Scholar] [CrossRef]
- Hasan, N.; Khan, I.U.; Farzand, A.; Heng, Z.; Moosa, A.; Saleem, M.; Canming, T. Bacillus altitudinis HNH7 and Bacillus velezensis HNH9 promote plant growth through upregulation of growth-promoting genes in upland cotton. J. Appl. Microbio. 2022, 132, 3812–3824. [Google Scholar] [CrossRef]
- Xu, H.; Gao, J.; Portieles, R.; Du, L.; Gao, X.; Borras-Hidalgo, O. Endophytic bacterium Bacillus aryabhattai induces novel transcriptomic changes to stimulate plant growth. PLoS ONE 2022, 17, e0272500. [Google Scholar] [CrossRef]
- Elnahal, A.S.M.; El-Saadony, M.T.; Saad, A.M.; Desoky, E.S.M.; El-Tahan, A.M.; Rady, M.M.; AbuQamar, S.F.; El-Tarabily, K.A. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. Eur. J. Plant Pathol. 2022, 162, 759–792. [Google Scholar] [CrossRef]
- Etesami, H.; Glick, B.R. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol. Res. 2024, 281, 127602. [Google Scholar] [CrossRef] [PubMed]
- Kenneth, O.C.; Nwadibe, E.C.; Kalu, A.U.; Unah, U.V. Plant growth promoting rhizobacteria (PGPR): A novel agent for sustainable food production. J. Agric. Biol. Sci. 2019, 14, 35–54. [Google Scholar] [CrossRef]
- Yadav, A.N.; Verma, P.; Singh, B.; Chauhan, V.; Suman, A.; Saxena, A.K. Plant growth promoting bacteria: Biodiversity and multifunctional attributes for sustainable agriculture. Adv. Biotechnol. Microbiol. 2017, 5, 1–16. [Google Scholar]
- Pires, A.; Agreira, S.; Ressurreição, S.; Marques, J.; Guiné, R.; Barroca, M.J.; Moreira da Silva, A. Sea purslane as an emerging food crop: Nutritional and Biological studies. Appl. Sci. 2021, 11, 7860. [Google Scholar] [CrossRef]
- Mann, A.; Lata, C.; Kumar, N.; Kumar, A.; Kumar, A.; Sheoran, P. Halophytes as new model plant species for salt tolerance strategies. Front. Plant Sci. 2023, 14, 1137211. [Google Scholar] [CrossRef]
- Wang, W.; Sheng, Y. Enhanced nitrogen removal in low-carbon saline wastewater by adding functional bacteria into Sesuvium portulacastrum constructed wetlands. Ecotoxicol. Environ. Safety 2023, 263, 115234. [Google Scholar] [CrossRef]
- Wang, D.; Yang, N.; Zhang, C.; He, W.; Ye, G.; Chen, J.; Wei, X. Transcriptome analysis reveals molecular mechanisms underlying salt tolerance in halophyte Sesuvium portulacastrum. Front. Plant Sci. 2022, 13, 973419. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, J.; Sahoo, S.A.; Herzyk, P.; Barvkar, V.T.; Kumar, S.A.; Ravichandran, J.; Samal, A.; Amtmann, A.; Borde, M.; Suprasanna, P.; et al. Early-responsive molecular signatures associated with halophytic adaptation in Sesuvium portulacastrum (L.). Plant Cell Environ. 2023, 47, 961–975. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhu, Y.; Li, W.; Zhang, T.; Li, Y.; Kang, Y.; Wang, J.; Guo, J.; Jiang, X. Heterologous expression of Sesuvium portulacastrum SOS-related genes confer salt tolerance in yeast. Acta Physiol. Plant. 2023, 45, 58. [Google Scholar] [CrossRef]
- Cao, D.; Zhang, W.; Yang, N.; Li, Z.; Zhang, C.; Wang, D.; Ye, G.; Chen, J.; Wei, X. Proteomic and metabolomic analyses uncover integrative mechanisms in Sesuvium portulacastrum tolerance to salt stress. Front. Plant Sci. 2023, 14, 1277762. [Google Scholar] [CrossRef]
Medium No. | Zeatin (mg/L) | IAA (mg/L) | Medium No. | Zeatin (mg/L) | IAA (mg/L) |
---|---|---|---|---|---|
1 | 1.5 | 0.00 | 9 | 2.5 | 0.00 |
2 | 1.5 | 0.25 | 10 | 2.5 | 0.25 |
3 | 1.5 | 0.50 | 11 | 2.5 | 0.50 |
4 | 1.5 | 0.75 | 12 | 2.5 | 0.75 |
5 | 2.0 | 0.00 | 13 | 3.0 | 0.00 |
6 | 2.0 | 0.25 | 14 | 3.0 | 0.25 |
7 | 2.0 | 0.50 | 15 | 3.0 | 0.50 |
8 | 2.0 | 0.75 | 16 | 3.0 | 0.75 |
Medium No. | Callus Occurrence (%) | Bud Occurrence (%) |
---|---|---|
1 | 100 a z | 73.66 ± 4.42 a y |
2 | 96.30 ± 3.70 ab | 0.00 |
3 | 100 a | 16.93 ± 2.68 c |
4 | 96.30 ± 3.70 ab | 7.12 ± 2.41 d |
5 | 70.37 ± 9.80 c | 16.98 ± 1.52 c |
6 | 81.48 ± 3.70 bc | 3.61 ± 0.07 d |
7 | 96.30 ± 3.70 ab | 26.76 ± 2.32 b |
8 | 88.89 ± 6.42 b | 5.27 ± 0.27 d |
9 | 96.30 ± 3.70 ab | 27.68 ± 1.31 b |
10 | 92.59 ± 3.70 ab | 9.06 ± 3.05 d |
11 | 74.07 ± 9.80 bc | 0.00 |
12 | 88.89 ± 6.42 b | 5.08 ± 0.15 d |
13 | 85.18 ± 3.70 b | 22.96 ± 1.39 b |
14 | 92.59 ± 3.70 ab | 0.00 |
15 | 96.29 ± 3.70 ab | 0.00 |
16 | 66.67 ± 6.42 c | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Wang, D.; Chen, J.; He, W.; Zhou, B.; Li, Z.; Chen, L.; Peng, D.; Chen, Q.; Wei, X. Regeneration of Sesuvium portulacastrum through Indirect Shoot Organogenesis and Influence of an Endophytic Fungus on Rooting of Microshoots. Agriculture 2024, 14, 1221. https://doi.org/10.3390/agriculture14081221
Jiang X, Wang D, Chen J, He W, Zhou B, Li Z, Chen L, Peng D, Chen Q, Wei X. Regeneration of Sesuvium portulacastrum through Indirect Shoot Organogenesis and Influence of an Endophytic Fungus on Rooting of Microshoots. Agriculture. 2024; 14(8):1221. https://doi.org/10.3390/agriculture14081221
Chicago/Turabian StyleJiang, Xiuli, Dan Wang, Jianjun Chen, Weihong He, Boya Zhou, Ziling Li, Lingyan Chen, Donghui Peng, Qiang Chen, and Xiangying Wei. 2024. "Regeneration of Sesuvium portulacastrum through Indirect Shoot Organogenesis and Influence of an Endophytic Fungus on Rooting of Microshoots" Agriculture 14, no. 8: 1221. https://doi.org/10.3390/agriculture14081221
APA StyleJiang, X., Wang, D., Chen, J., He, W., Zhou, B., Li, Z., Chen, L., Peng, D., Chen, Q., & Wei, X. (2024). Regeneration of Sesuvium portulacastrum through Indirect Shoot Organogenesis and Influence of an Endophytic Fungus on Rooting of Microshoots. Agriculture, 14(8), 1221. https://doi.org/10.3390/agriculture14081221