Exploiting the Yield Potential of Spring Barley in Poland: The Roles of Crop Rotation, Cultivar, and Plant Protection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Experiment Description
2.3. Data Collection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akanmu, A.O.; Akol, A.M.; Ndolo, D.O.; Kutu, F.R.; Babalola, O.O. Agroecological techniques: Adoption of safe and sustainable agricultural practices among the smallholder farmers in Africa. Front. Sustain. Food Syst. 2023, 7, 1143061. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y. More unequal food distribution in low-income countries exacerbates global hunger risk. Sustain. Prod. Consum. 2024, 46, 108–118. [Google Scholar] [CrossRef]
- Zhang, Y.; Runting, R.K.; Webb, E.L.; Edwards, D.P.; Carrasco, L.R. Coordinated intensification to reconcile the ‘zero hunger’ and ‘life on land’ Sustainable Development Goals. J. Environ. Manag. 2021, 284, 112032. [Google Scholar] [CrossRef]
- Gerten, D.; Heck, V.; Jägermeyr, J.; Bodirsky, B.L.; Fetzer, I.; Jalava, M.; Kummu, M.; Lucht, W.; Rockström, J.; Schaphoff, S.; et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 2020, 3, 200–208. [Google Scholar] [CrossRef]
- FAO. FAOSTAT Database; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021; Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 12 June 2024).
- Senapati, N.; Semenov, M.A. Large genetic yield potential and genetic yield gap estimated for wheat in Europe. Glob. Food Sec. 2020, 24, 100340. [Google Scholar] [CrossRef] [PubMed]
- Begna, T.; Gichile, H.; Yali, W. Genetic diversity and its impact in enhancement. Glob. J. Agric. Res. 2022, 10, 13–25. [Google Scholar] [CrossRef]
- Rattalino Edreira, J.I.; Andrade, J.F.; Cassman, K.G.; van Ittersum, M.K.; van Loon, M.P.; Grassini, P. Spatial frameworks for robust estimation of yield gaps. Nat. Food 2021, 2, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Tariq, M.; Ali, H.; Hussain, N.; Nasim, W.; Mubeen, M.; Ahmad, S.; Hasanuzzaman, M. Fundamentals of crop rotation in agronomic management. In Agronomic Crops: Volume 1: Production Technologies; Hasanuzzaman, M., Ed.; Springer: Singapore, 2019; pp. 545–559. [Google Scholar]
- Shah, K.K.; Modi, B.; Pandey, H.P.; Subedi, A.; Aryal, G.; Pandey, M.; Shrestha, J. Diversified crop rotation: An approach for sustainable agriculture production. Adv. Agric. 2021, 2021, 8924087. [Google Scholar] [CrossRef]
- Liu, C.; Plaza-Bonilla, D.; Coulter, J.A.; Kutcher, H.R.; Beckie, H.J.; Wang, L.; Floc’h, J.-B.; Hamel, C.; Siddique, K.H.M.; Li, L.; et al. Chapter Six—Diversifying crop rotations enhances agroecosystem services and resilience. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2022; Volume 173, pp. 299–335. [Google Scholar]
- Liang, Z.; Xu, Z.; Cheng, J.; Ma, B.; Cong, W.-F.; Zhang, C.; Zhang, F.; van der Werf, W.; Groot, J.C.J. Designing diversified crop rotations to advance sustainability: A method and an application. Sustain. Prod. Consum. 2023, 40, 532–544. [Google Scholar] [CrossRef]
- Smith, M.E.; Vico, G.; Costa, A.; Bowles, T.; Gaudin, A.C.M.; Hallin, S.; Watson, C.A.; Alarcón, R.; Berti, A.; Blecharczyk, A.; et al. Increasing crop rotational diversity can enhance cereal yields. Commun. Earth Environ. 2023, 4, 89. [Google Scholar] [CrossRef]
- Chauhan, B.S. Grand Challenges in Weed Management. Front. Agron. 2020, 1, 3. [Google Scholar] [CrossRef]
- Jastrzębska, M.; Kostrzewska, M.K.; Marks, M. Is diversified crop rotation an effective non-chemical strategy for protecting triticale yield and weed diversity? Agronomy 2023, 13, 1589. [Google Scholar] [CrossRef]
- Fang, Q.; Zhang, H.; He, J.; Li, H.; Wang, H.; Li, D.; Lv, X.; Li, R. Water use strategies and shoot and root traits of high-yielding winter wheat cultivars under different water supply conditions. Agronomy 2024, 14, 826. [Google Scholar] [CrossRef]
- COBORU. Krajowy Rejestr Odmian Roślin Rolniczych; Centralny Ośrodek Badania Odmian Roślin Uprawnych: Słupia Wielka, Poland, 2023. Available online: https://coboru.gov.pl/pl/kr/kr_gat (accessed on 25 June 2024).
- CCA. Common Catalogue of Varieties of Agricultural Plant Species. Consolidated Version 27.01.2023. 2023. Available online: https://food.ec.europa.eu/system/files/2023-02/plant-variety-catalogues_agricultural-plant-species_0.pdf (accessed on 25 June 2024).
- Pergner, I.; Lippert, C. On the effects that motivate pesticide use in perspective of designing a cropping system without pesticides but with mineral fertilizer—A review. Agron. Sustain. Dev. 2023, 43, 24. [Google Scholar] [CrossRef]
- Jastrzębska, M.; Kostrzewska, M.; Saeid, A. Sustainable agriculture: A challenge for the future. In Smart Agrochemicals for Sustainable Agriculture; Chojnacka, K., Saeid, A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 29–56. [Google Scholar] [CrossRef]
- Jastrzębska, M.; Kostrzewska, M.; Saeid, A. Conventional agrochemicals: Pros and cons. In Smart Agrochemicals for Sustainable Agriculture; Chojnacka, K., Saeid, A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 1–28. [Google Scholar] [CrossRef]
- Lykogianni, M.; Bempelou, E.; Karamaouna, F.; Aliferis, K.A. Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. Sci. Total Environ. 2021, 795, 148625. [Google Scholar] [CrossRef]
- Adeux, G.; Vieren, E.; Carlesi, S.; Bàrberi, P.; Munier-Jolain, N.; Cordeau, S. Mitigating crop yield losses through weed diversity. Nat. Sustain. 2019, 2, 1018–1026. [Google Scholar] [CrossRef]
- Bargués-Ribera, M.; Gokhale, C.S. Eco-evolutionary agriculture: Host-pathogen dynamics in crop rotations. PLoS Comput. Biol. 2020, 16, e1007546. [Google Scholar] [CrossRef] [PubMed]
- Wheaton, E.; Kulshreshtha, S. Environmental sustainability of agriculture stressed by changing extremes of drought and excess moisture: A conceptual review. Sustainability 2017, 9, 970. [Google Scholar] [CrossRef]
- Mylonas, I.; Stavrakoudis, D.; Katsantonis, D.; Korpetis, E. Better farming practices to combat climate change. In Climate Change and Food Security with Emphasis on Wheat; Ozturk, M., Gul, A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 1–29. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, D.; Lang, X. Future extreme climate changes linked to global warming intensity. Sci. Bull. 2017, 62, 1673–1680. [Google Scholar] [CrossRef]
- Schmitt, J.; Offermann, F.; Söder, M.; Frühauf, C.; Finger, R. Extreme weather events cause significant crop yield losses at the farm level in German agriculture. Food Policy 2022, 112, 102359. [Google Scholar] [CrossRef]
- FAO. FAOSTAT Database; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022; Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 12 July 2024).
- Pecio, A.; Wach, D. Grain yield and yield components of spring barley genotypes as the indicators of their tolerance to temporal drought stress. Pol. J. Agron. 2015, 21, 19–27. [Google Scholar] [CrossRef]
- Hakala, K.; Jauhiainen, L.; Rajala, A.A.; Jalli, M.; Kujala, M.; Laine, A. Different responses to weather events may change the cultivation balance of spring barley and oats in the future. Field Crops Res. 2020, 259, 107956. [Google Scholar] [CrossRef]
- Bouajila, A.; Ammar, H.; Chahine, M.; Khouja, M.; Hamdi, Z.; Khechini, J.; Salem, A.-F.Z.M.; Ghorbel, A.; López, S. Changes in phytase activity, phosphorus and phytate contents during grain germination of barley (Hordeum vulgare L.) cultivars. Agrofor. Syst. 2020, 94, 1151–1159. [Google Scholar] [CrossRef]
- Adamiak, J.; Adamiak, E.; Stępień, A. Reaction of spring barley to long-term monoculture in diversified conditions of chemical protection. Pol. J. Nat. Sci. 2019, 34, 5–17. [Google Scholar]
- Adamiak, E.; Adamiak, J.; Szałczyńska, D. Reakcja odmian jęczmienia jarego na poziom ochrony w dwóch systemach następstwa roślin. Progr. Plant Prot. 2015, 55, 405–408. [Google Scholar] [CrossRef]
- Bartosiewicz, B.; Jadczyszyn, J. The impact of drought stress on the production of spring barley in Poland. Pol. J. Agron. 2021, 45, 3–11. [Google Scholar] [CrossRef]
- Stetkiewicz, S.; Burnett, F.J.; Ennos, R.A.; Topp, C.F.E. The impact of fungicide treatment and Integrated Pest Management on barley yields: Analysis of a long term field trials database. Eur. J. Agron. 2019, 105, 111–118. [Google Scholar] [CrossRef]
- Rychcik, B.; Adamiak, J.; Wójciak, H. Dynamics of the soil organic matter in crop rotation and long-term monoculture. Plant Soil Environ. 2006, 52, 15–20. [Google Scholar]
- Hutorowicz, H.; Grabowski, J.; Olba-Zięty, E. Frequency of occurrence of dry spells and droughts in two mesoregions of Masurian Lakeland. Acta Agrophys. 2008, 12, 663–673. [Google Scholar]
- COBORU. Lista Opisowa Odmian Roślin Rolniczych 2019. Zbożowe; Centralny Ośrodek Badania Odmian Roślin Uprawnych: Słupia Wielka, Poland, 2019. [Google Scholar]
- COBORU. Post-Registration Variety Testing System and Variety Recommendation; Centralny Ośrodek Badania Odmian Roślin Uprawnych: Słupia Wielka, Poland, 2024. Available online: https://www.coboru.gov.pl/pdo (accessed on 10 July 2024).
- Krzymuski, J. Ocena działania czynników plonowania zbóż. Zesz. Probl. Post. Nauk Rol. 1984, 305, 33–64. [Google Scholar]
- Jastrzębska, M.; Kostrzewska, M.K.; Marks, M.; Jastrzębski, W.P.; Treder, K.; Makowski, P. Crop rotation compared with continuous rye cropping for weed biodiversity and rye yield. A case study of a long-term experiment in Poland. Agronomy 2019, 9, 644. [Google Scholar] [CrossRef]
- Marini, L.; St-Martin, A.; Vico, G.; Baldoni, G.; Berti, A.; Blecharczyk, A.; Malecka-Jankowiak, I.; Morari, F.; Sawinska, Z.; Bommarco, R. Crop rotations sustain cereal yields under a changing climate. Environ. Res. Lett. 2020, 15, 124011. [Google Scholar] [CrossRef]
- Darguza, M.; Gaile, Z. The productivity of crop rotation depending on the included plants and soil tillage. Agriculture 2023, 13, 1751. [Google Scholar] [CrossRef]
- Wożniak, A. Production efficiency of different crop rotations and tillage systems. Span. J. Agric. Res. 2021, 19, e0907. [Google Scholar] [CrossRef]
- Orzech, K.; Wanic, M.; Stępień, A.; Kostrzewska, M.K. Weed infestation of spring barley in crop rotations with its different share. Pol. J. Nat. Sci. 2016, 31, 7–20. [Google Scholar]
- Kurowski, T.P.; Kotlarz, K.; Kwiatkowska, E.; Damszel, M.; Przemieniecki, S.W.; Mastalerz, J.; Preuss, J.; Wodzyński, P. Zdrowotność dwóch odmian jęczmienia jarego uprawianego w wieloletniej monokulturze. Progr. Plant Prot. 2019, 59, 99–105. [Google Scholar] [CrossRef]
- Wozniak, A.; Nowak, A.; Haliniarz, M.; Gaweda, D. Yield and economic results of spring barley grown in crop rotation and in monoculture. Pol. J. Environ. Stud. 2019, 28, 2441–2448. [Google Scholar] [CrossRef] [PubMed]
- Bhullar, M.S.; Kaur, S.; Kaur, T.; Singh, T.; Singh, M.; Jhala, A.J. Control of broadleaf weeds with post-emergence herbicides in four barley (Hordeum spp.) cultivars. Crop Prot. 2013, 43, 216–222. [Google Scholar] [CrossRef]
- Cai, K.F.; Chen, X.H.; Han, Z.G.; Wu, X.J.; Zhang, S.; Li, Q.; Nazir, M.M.; Zhang, G.P.; Zeng, F.R. Screening of worldwide barley collection for drought tolerance: The assessment of various physiological measures as the selection criteria. Front. Plant Sci. 2020, 11, 1159. [Google Scholar] [CrossRef]
- Głowacka, A. Skuteczność chwastobójcza wybranych herbicydów stosowanych w jęczmieniu jarym. Agron. Sci. 2021, 76, 19–28. [Google Scholar] [CrossRef]
- Kauppi, K.; Rajala, A.; Huusela, E.; Kaseva, J.; Ruuttunen, P.; Jalli, H.; Alakukku, L.; Jalli, M. Impact of pests on cereal grain and nutrient yield in boreal growing conditions. Agronomy 2021, 11, 592. [Google Scholar] [CrossRef]
- Al-Khafaji, M.J.; Safi, S.M.A.; Hammood, W.F. Effect of herbicides on growth, grain yield and quality of barley. Iraqi J. Agric. Sci. 2023, 54, 1094–1100. [Google Scholar] [CrossRef]
- Schumacher, M.; Ohnmacht, S.; Rosenstein, R.; Gerhards, R. How management factors influence weed communities of cereals, their diversity and endangered weed species in central Europe. Agriculture 2018, 8, 172. [Google Scholar] [CrossRef]
- Kaniuczak, Z. Ocena ekonomiczna efektywności zwalczania wybranych chorób i szkodników w uprawie jęczmienia jarego. Progr. Plant Prot. 2015, 55, 409–416. [Google Scholar] [CrossRef]
- Lenartowicz, T.; Bujak, H.; Przystalski, M.; Mashevska, I.; Nowosad, K.; Jończyk, K.; Feledyn-Szewczyk, B. Assessment of resistance of barley varieties to diseases in Polish organic field trials. Agriculture 2024, 14, 789. [Google Scholar] [CrossRef]
- Czembor, E.; Kaczmarek, Z.; Pilarczyk, W.; Mańkowski, D.; Czembor, J.H. Simulating spring barley yield under moderate input management system in Poland. Agriculture 2022, 12, 1091. [Google Scholar] [CrossRef]
- Sawinska, Z.; Blecharczyk, A.; Malecka-Jankowiak, I.; Strzelinska, J.; Grzes, S. Porażenie jęczmienia jarego przez choroby w zależności od następstwa roślin i nawożenia w doświadczeniu wieloletnim. Fragm. Agron. 2016, 33, 123–133. [Google Scholar]
- Kieloch, R.; Marczewska-Kolasa, K. Możliwość łącznego stosowania herbicydów z regulatorami wzrostu w uprawie jęczmienia jarego. Progr. Plant Prot. 2021, 61, 290–296. [Google Scholar] [CrossRef]
- Metodyka Integrowanej Ochrony Jęczmienia Ozimego i Jarego dla Doradców; Instytut Ochrony Roślin—Państwowy Instytut Badawczy: Poznań, Poland, 2017; p. 199.
- Duke, S.O.; Wedge, D.E.; Cerdeira, A.L.; Matallo, M.B. Interactions of synthetic herbicides with plant disease and microbial herbicides. In Novel Biotechnologies for Biocontrol Agent Enhancement and Management; Springer: Dordrecht, The Netherlands, 2007; pp. 277–296. [Google Scholar]
- Turenko, V.P.; Bilyk, M.O.; Zhukova, L.V.; Stankevych, S.V.; Zayarna, O.Y.; Lukhanin, I.V.; Oleynikov, Y.S.; Batova, O.M.; Goryainova, V.V.; Poedinceva, A. Dependence of species composition and development of root rots pathogens of spring barley on abiotic factors in the Eastern Forest-Steppe of Ukraine. Ukr. J. Ecol. 2019, 9, 179–188. [Google Scholar]
- Wanic, M.; Jastrzebska, M.; Kostrzewska, M.K. Influence of crop rotation and meteorological conditions on density and biomass of weeds in spring barley (Hordeum vulgare L.). Acta Agrobot. 2010, 63, 213–220. [Google Scholar] [CrossRef]
- Bartosiak, S.F.; Arseniuk, E.; Szechyńska-Hebda, M.; Bartosiak, E. Monitoring of natural occurrence and severity of leaf and glume blotch diseases of winter wheat and winter triticale incited by necrotrophic fungi Parastagonospora spp. and Zymoseptoria tritici. Agronomy 2021, 11, 967. [Google Scholar] [CrossRef]
- Paluszkiewicz, M.; Torzyński, M.; Bielecki, J.; Abdullaieva, S.; Kryszak, Ł. Impact of weather conditions on cereal yields in Poland. Zag. Ekon. Rol. 2024, 379, 1–18. [Google Scholar] [CrossRef]
- Leszczyńska, D.; Kostiw, P. Wpływ czynników agrotechnicznych i siedliskowych na plonowanie i jakość ziarna jęczmienia w warunkach zmieniającego się klimatu. Stud. I Rap. IUNG-PIB 2018, 57, 37–48. [Google Scholar]
- Hakala, K.; Jauhiainen, L.; Himanen, S.J.; Rötter, R.; Salo, T.; Kahiluoto, H. Sensitivity of barley varieties to weather in Finland. J. Agric. Sci. 2012, 150, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Vánová, M.; Palík, S.; Hajslová, J.; Buresová, I. Grain quality and yield of spring barley in field trials under variable growing conditions. Plant Soil Environ. 2006, 52, 211–219. [Google Scholar] [CrossRef]
- Vánová, M.; Jirsa, O.; Hledík, P. Influence of sugar beet as pre-crop, crop rotation and weather on yield and quality of spring barley. Listy Cukrov. Repar. 2019, 135, 353–357. [Google Scholar]
- Svobodová, I.; Misa, P. Effect of drought stress on the formation of yield elements in spring barley and the potential of stress expression reduction by foliar application of fertilizers and growth stimulator. Plant Soil Environ. 2004, 50, 439–446. [Google Scholar] [CrossRef]
- Verstegen, H.; Köneke, O.; Korzun, V.; von Broock, R. The World Importance of Barley and Challenges to Further Improvements. In Biotechnological Approaches to Barley Improvement; Kumlehn, J., Stein, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 3–19. [Google Scholar]
- Highest Barley Yield. Available online: https://www.guinnessworldrecords.com/world-records/68919-highest-barley-yield (accessed on 18 July 2024).
- Zalewski, D.; Liszewski, M. Wysokość plonu ziarna jęczmienia jarego przy zróżnicowanym poziomie agrotechniki na glebie kompleksu pszennego dobrego. Biul. Inst. Hod. Aklim. Rośl. 2016, 279, 19–29. [Google Scholar] [CrossRef]
- Kostrzewska, M.; Zawiślak, K. Plonowanie żyta ozimego w różnych warunkach następstwa i ochrony roślin. Fragm. Agron. 2002, 19, 96–103. [Google Scholar]
- Podleśny, J.; Grabiński, J. Wybrane zagadnienia dotyczące postępu biologicznego i technologicznego w produkcji zbóż i roślin strączkowych. Stud. I Rap. IUNG-PIB 2019, 60, 9–23. [Google Scholar]
Year | Month | Sum/Mean III–VIII | |||||
---|---|---|---|---|---|---|---|
III | IV | V | VI | VII | VIII | ||
Precipitation, mm | |||||||
2017 | 53.0 | 52.1 | 34.0 | 109.9 | 106.1 | 54.8 | 409.9 |
2018 | 25.0 | 28.1 | 41.0 | 64.7 | 140.7 | 31.2 | 330.7 |
2019 | 30.2 | 0.0 | 97.8 | 92.0 | 85.8 | 64.8 | 370.6 |
2020 | 25.4 | 1.1 | 64.0 | 99.3 | 39.7 | 107.2 | 336.7 |
2021 | 23.6 | 36.4 | 109.0 | 31.3 | 128.4 | 147.4 | 476.1 |
2022 | 0.2 | 20.0 | 47.7 | 89.6 | 63.3 | 134.2 | 355.0 |
1991–2020 | 30.9 | 29.0 | 62.4 | 72.5 | 91.9 | 66.1 | 352.8 |
Air temperature, °C | |||||||
2017 | 5.1 | 6.7 | 13.1 | 16.7 | 17.3 | 18.7 | 12.9 |
2018 | −0.5 | 11.9 | 16.5 | 17.9 | 20.0 | 20.4 | 14.4 |
2019 | 4.9 | 8.6 | 12.2 | 21.4 | 17.6 | 19.5 | 14.0 |
2020 | 3.3 | 6.9 | 10.1 | 17.9 | 17.7 | 19.2 | 12.5 |
2021 | 2.4 | 5.7 | 11.6 | 19.4 | 21.1 | 16.7 | 12.8 |
2022 | 1.9 | 6.2 | 12.1 | 17.9 | 18.1 | 20.8 | 12.8 |
1991–2020 | 2.1 | 8.1 | 13.1 | 16.4 | 18.5 | 18.3 | 12.8 |
Characteristics | Unit | Radek | Skald |
---|---|---|---|
Breeder/owner | Hodowla Roślin Strzelce sp. z o.o. Grupa IHAR | Hodowla Roślin Strzelce sp. z o.o. Grupa IHAR | |
Entry into the Polish National List of Agricultural Plant Varieties | year | 2015 | 2009 |
Plant height | cm | 73 | 71 |
From 1.01 to heading | days | 159 | 157 |
From 1.01 to maturation | days | 203 | 202 |
Resistance to lodging | 9-point scale | 6.5 | 7.2 |
Weight of 1000 grains | g | 49.1 | 50.7 |
Yield potential 1 | t ha−1 | 7.105 | 6.815 |
Location | Highest Yield for | ||
---|---|---|---|
Spring Barley | Radek Cultivar | Skald Cultivar | |
In Poland | 10.0 (2022) | 9.29 (2022) | 9.33 (2014) |
In region | 10.0 (2022) | 9.29 (2022) | 8.68 (2014) |
Source of Variation | Yield | Spike Density | Grain Number per Spike | 1000-Grain Weight (TGW) |
---|---|---|---|---|
Cropping system (CS) | 315.49 *** | 34.42 *** | 0.94 | 90.7 *** |
Cultivar (Cv) | 4.05 * | 3.84 | 1.84 | 5.3 * |
Plant protection (PP) | 95.69 *** | 16.88 *** | 2.49 | 27.5 *** |
Year (Yr) | 20.20 *** | 36.97 *** | 20.04 *** | 93.1 *** |
CS × Cv | 1.40 | 0.97 | 0.05 | 8.4 ** |
CS × PP | 18.27 *** | 2.59 | 0.15 | 6.0 ** |
Cv × PP | 2.19 | 3.71 * | 0.11 | 3.4 * |
CS × Yr | 14.91 *** | 0.25 | 1.39 | 2.2 |
Cv × Yr | 7.86 *** | 1.98 | 0.76 | 5.3 *** |
PP × Yr | 4.15 *** | 0.70 | 1.61 | 1.4 |
CS × Cv × PP | 4.07 * | 0.86 | 2.08 | 4.3 * |
CS × Cv × Yr | 2.19 | 1.09 | 0.87 | 3.6 ** |
CS × PP × Yr | 1.85 | 1.50 | 0.55 | 1.5 |
Cv × PP × Yr | 2.05 * | 1.08 | 0.44 | 0.8 |
CS × Cv × PP × Yr | 2.28 * | 0.37 | 1.44 | 1.4 |
Source of Variation | Yield, t ha−1 | Spike Density, No. m−2 | Grain Number per Spike, No. | 1000-Grain Weight (TGW), g |
---|---|---|---|---|
Cropping system (CS) | ||||
Continuous cropping (CC) | 5.85 ± 0.08 b | 569 ± 12 b | 20.5 ± 0.21 a | 46.32 ± 0.29 b |
Crop rotation (CR) | 6.82 ± 0.06 a | 634 ± 11 a | 20.2 ± 0.26 a | 48.24 ± 0.26 a |
Cultivar (Cv) | ||||
Radek | 6.28 ± 0.08 b | 591 ± 12 a | 20.5 ± 0.22 a | 47.04 ± 0.31 b |
Skald | 6.39 ± 0.09 a | 613 ± 11 a | 20.1 ± 0.25 a | 47.51 ± 0.27 a |
Plant protection (PP) | ||||
CT | 5.83 ± 0.12 c | 556 ± 14 b | 19.9 ± 0.27 a | 46.49 ± 0.34 c |
H | 6.42 ± 0.08 b | 628 ± 13 a | 20.6 ± 0.28 a | 47.04 ± 0.34 b |
HF | 6.75 ± 0.08 a | 621 ± 14 a | 20.4 ± 0.32 a | 48.28 ± 0.37 a |
Year (Yr) | ||||
2017 | 5.96 ± 0.09 c | 529 ± 14 c | 18.5 ± 0.30 d | 49.73 ± 0.25 a |
2018 | 6.29 ± 0.13 b | 532 ± 13 c | 19.8 ± 0.22 c | 46.45 ± 0.26 c |
2019 | 6.37 ± 0.14 b | 626 ± 14 b | 19.7 ± 0.32 c | 47.37 ± 0.40 b |
2020 | 6.82 ± 0.12 a | 641 ± 20 b | 21.1 ± 0.40 b | 47.83 ± 0.50 b |
2021 | 6.08 ± 0.19 c | 545 ± 12 c | 23.0 ± 0.40 a | 49.21 ± 0.32 a |
2022 | 6.47 ± 0.15 b | 738 ± 20 a | 19.8 ± 0.47 c | 43.04 ± 0.35 d |
Cropping System (CS) | Cultivar (Cv) | Plant Protection (PP) | ||
---|---|---|---|---|
CT | H | HF | ||
CC | Radek | 4.99 i | 5.99 h | 6.30 fg |
Skald | 5.23 i | 6.12 gh | 6.46 def | |
CR | Radek | 6.72 cd | 6.66 cde | 7.01ab |
Skald | 6.38 efg | 6.93 bc | 7.22 a |
Item | Yield, t ha−1 | Year | Place | Reference |
---|---|---|---|---|
Mean global yield | 3.29 | 2022 | World | [29] |
Mean yield in Poland | 4.35 | 2022 | Poland | [29] |
The highest mean yield in the world | 14.23 | 2022 | Oman | [29] |
The highest mean yield in Europe | 8.15 | 2022 | Ireland | [29] |
The highest yield of barley noted | 16.20 | 2022 | UK | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostrzewska, M.K.; Jastrzębska, M. Exploiting the Yield Potential of Spring Barley in Poland: The Roles of Crop Rotation, Cultivar, and Plant Protection. Agriculture 2024, 14, 1355. https://doi.org/10.3390/agriculture14081355
Kostrzewska MK, Jastrzębska M. Exploiting the Yield Potential of Spring Barley in Poland: The Roles of Crop Rotation, Cultivar, and Plant Protection. Agriculture. 2024; 14(8):1355. https://doi.org/10.3390/agriculture14081355
Chicago/Turabian StyleKostrzewska, Marta K., and Magdalena Jastrzębska. 2024. "Exploiting the Yield Potential of Spring Barley in Poland: The Roles of Crop Rotation, Cultivar, and Plant Protection" Agriculture 14, no. 8: 1355. https://doi.org/10.3390/agriculture14081355
APA StyleKostrzewska, M. K., & Jastrzębska, M. (2024). Exploiting the Yield Potential of Spring Barley in Poland: The Roles of Crop Rotation, Cultivar, and Plant Protection. Agriculture, 14(8), 1355. https://doi.org/10.3390/agriculture14081355