Long-Term Production Performance and Stability of Alfalfa/Grass Mixtures in the Longdong Loess Plateau of China: Subjected to Various Species Combinations and Seeding Ratios
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Experimental Design and Treatments
2.3. Sampling and Measurements
2.4. Calculation
2.5. Statistical Analysis
3. Results
3.1. Forage Yield
3.2. Forage Quality
3.3. Inter-Annual Stability of Forage Yield and Quality
3.4. Comprehensive Assessment
4. Discussion
4.1. Effects of Species Combination and Seeding Ratio on Forage Yield and Quality
4.2. Effects of Species Combination and Seeding Ratio on the Stability of Forage Yield and Quality
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qi, J.G.; Xin, X.P.; John, R.; Groisman, P.; Chen, J.Q. Understanding livestock production and sustainability of grassland ecosystems in the Asian Dryland Belt. Ecol. Process. 2017, 6, 22. [Google Scholar] [CrossRef]
- Vico, G.; Brunsell, N.A. Tradeoffs between water requirements and yield stability in annual vs. perennial crops. Adv. Water Resour. 2018, 112, 189–202. [Google Scholar] [CrossRef]
- Ghimire, R.; Norton, J.B.; Pendall, E. Alfalfa-grass biomass, soil organic carbon, and total nitrogen under different management approaches in an irrigated agroecosystem. Plant Soil 2014, 374, 173–184. [Google Scholar] [CrossRef]
- Li, Z.; Xu, S.T.; Rajan, N.; Nair, S.; Jagadamma, S.; Nave, R.; Kubesch, J.; Bates, G.; McIntosh, D.; Chen, C.; et al. Productivity and nutritive value of no-input minimum tillage organic forage systems. Nutr. Cycl. Agroecosys. 2022, 124, 335–357. [Google Scholar] [CrossRef]
- Kulathunga, D.G.R.S.; Penner, G.B.; Schoenau, J.J.; Damiran, D.; Larson, K.; Lardner, H.A. Effect of perennial forage system on forage characteristics, soil nutrients, cow performance, and system economics. Prof. Anim. Sci. 2016, 32, 784–797. [Google Scholar] [CrossRef]
- Dupont, S.T.; Culman, S.W.; Ferris, H.; Buckley, D.H.; Glover, J.D. No-tillage conversion of harvested perennial grassland to annual cropland reduces root biomass, decreases active carbon stocks, and impacts soil biota. Agric. Ecosyst. Environ. 2010, 137, 25–32. [Google Scholar] [CrossRef]
- Pimentel, D.; Cerasale, D.; Stanley, R.C.; Perlman, R.; Newman, E.M.; Brent, L.C.; Mullan, A.; Chang, D.T.-I. Annual vs. perennial grain production. Agric. Ecosyst. Environ. 2012, 161, 1–9. [Google Scholar] [CrossRef]
- Liu, H.; Struik, P.C.; Zhang, Y.J.; Jing, J.Y.; Stomph, T.J. Forage quality in cereal/legume intercropping: A meta-analysis. Field Crops Res. 2023, 304, 109174. [Google Scholar] [CrossRef]
- Ma, H.M.; Yu, X.Q.; Yu, Q.; Wu, H.H.; Zhang, H.L.; Pang, J.Y.; Ying, Z.; Gao, C. Maize/alfalfa intercropping enhances yield and phosphorus acquisition. Field Crops Res. 2023, 303, 109136. [Google Scholar] [CrossRef]
- Mu, L.; Su, K.Q.; Zhou, T.; Yang, H.M. Yield performance, land and water use, economic profit of irrigated spring wheat/alfalfa intercropping in the inland arid area of northwestern China. Field Crops Res. 2023, 303, 1009116. [Google Scholar] [CrossRef]
- Lorenz, H.; Reinsch, T.; Kluß, C.; Taube, F.; Loges, R. Does the admixture of forage herbs affect the yield performance, yield stability and forage quality of a grass clover ley? Sustainability 2020, 12, 5842. [Google Scholar] [CrossRef]
- Raseduzzaman, M.; Jensen, E.S. Does intercropping enhance yield stability in arable crop production? A meta-analysis. Eur. J. Agron. 2017, 91, 25–33. [Google Scholar] [CrossRef]
- Sanderson, M.A. Stability of production and plant species diversity in managed grasslands: A retrospective study. Basic Appl. Ecol. 2010, 11, 216–224. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Liu, H.Y.; Mi, Z.R.; Zhang, Z.H.; Wang, Y.H.; Xu, W.; Jiang, L.; He, J.S. Climate warming reduces the temporal stability of plant community biomass production. Nat. Commun. 2017, 8, 15378. [Google Scholar] [CrossRef] [PubMed]
- Mccollum, D.W.; Tanaka, J.A.; Morgan, J.A.; Mitchell, J.E.; Fox, W.E.; Maczko, K.A.; Hidinger, L.; Duke, C.S.; Kreuter, U.P. Climate change effects on rangelands and rangeland management: Affirming the need for monitoring. Ecosyst. Health Sustain. 2017, 3, 11879072. [Google Scholar] [CrossRef]
- Van Der Colf, J.; Botha, P.R.; Meeske, R.; Truter, W.F. Seasonal dry matter production, botanical composition and forage quality of kikuyu over-sown with annual or perennial ryegrass. Afr. J. Range For. Sci. 2015, 32, 133–142. [Google Scholar] [CrossRef]
- Testa, G.; Gresta, F.; Cosentino, S.L. Dry matter and qualitative characteristics of alfalfa as affected by harvest times and soil water content. Eur. J. Agron. 2011, 34, 144–152. [Google Scholar] [CrossRef]
- Shang, Q.Y.; Ling, N.; Feng, X.M.; Yang, X.X.; Wu, P.P.; Zou, J.W.; Shen, Q.R.; Guo, S.W. Soil fertility and its significance to crop productivity and sustainability in typical agroecosystem: A summary of long-term fertilizer experiments in China. Plant Soil 2014, 381, 13–23. [Google Scholar] [CrossRef]
- Qiao, C.L.; Wang, X.G.; Shirvan, M.B.; Keitel, C.; Cavagnaro, T.R.; Dijkstra, F.A. Drought and interspecific competition increase belowground carbon allocation for nitrogen acquisition in monocultures and mixtures of Trifolium repens and Lolium perenne. Plant Soil 2022, 481, 269–283. [Google Scholar] [CrossRef]
- Eger, A.; Stevenson, B.A.; Theng, B.; Rhodes, P.; Fraser, S.; Penny, V.; Burge, O.R. Long-term effects of fertilizer application and irrigation on soils under pasture land use. J. Soil Sci. Plant Nutr. 2023, 23, 801–818. [Google Scholar] [CrossRef]
- Song, M.H.; Yu, F.H. Reduced compensatory effects explain the nitrogen-mediated reduction in stability of an alpine meadow on the Tibetan Plateau. New Phytol. 2015, 207, 70–77. [Google Scholar] [CrossRef]
- Grant, K.; Kreyling, J.; Dienstbach, L.F.H.; Beierkuhnlein, C.; Jentsch, A. Water stress due to increased intra-annual precipitation variability reduced forage yield but raised forage quality of a temperate grassland. Agric. Ecosyst. Environ. 2014, 186, 11–22. [Google Scholar] [CrossRef]
- Heshmati, S.; Tonn, B.; Isselstein, J. White clover population effects on the productivity and yield stability of mixtures with perennial ryegrass and chicory. Field Crops Res. 2020, 252, 107802. [Google Scholar] [CrossRef]
- Ye, T.; Wu, X.J.; Lu, L.X.; Liu, S.J.; Jiang, Z.H.; Yang, H.M. Effect of planting ratio on the stability of forage yield and population density in two alfalfa-grass mixtures. Acta Prataculturae Sin. 2023, 32, 127–137. (In Chinese) [Google Scholar]
- Hector, A.; Hautier, Y.; Saner, P.; Wacker, L.; Bagchi, R.; Joshi, J.; Scherer-Lorenzen, M.; Spehn, E.M.; Bazeley-White, E.; Weilenmann, M.; et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 2010, 91, 2213–2220. [Google Scholar] [CrossRef]
- Kunelius, H.T.; Dürr, G.H.; Mcrae, K.B.; Fillmore, S.a.E. Performance of timothy-based grass/legume mixtures in cold winter region. J. Agron. Crop Sci. 2006, 192, 159–167. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Brink, G.; Stout, R.; Ruth, L. Grass–legume proportions in forage seed mixtures and effects on herbage yield and weed abundance. Agron. J. 2013, 105, 1289–1297. [Google Scholar] [CrossRef]
- Isbell, F.I.; Polley, H.W.; Wilsey, B.J. Biodiversity, productivity and the temporal stability of productivity: Patterns and processes. Ecol. Lett. 2009, 12, 443–451. [Google Scholar] [CrossRef]
- Küchenmeister, F.; Küchenmeister, K.; Wrage, N.; Kayser, M.; Isselstein, J. Yield and yield stability in mixtures of productive grassland species: Does species number or functional group composition matter? Grassl. Sci. 2012, 58, 94–100. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Y.L.; Ma, C.Z.; Sun, H.R.; Ren, W.; Wang, X.G. Maximizing the water productivity and economic returns of alfalfa by deficit irrigation in China: A meta-analysis. Agric. Water Manag. 2023, 287, 108454. [Google Scholar] [CrossRef]
- Tahir, M.; Li, C.H.; Zeng, T.R.; Xin, Y.F.; Chen, C.; Javed, H.H.; Yang, W.Y.; Yan, Y.H. Mixture composition influenced the biomass yield and nutritional quality of legume–grass pastures. Agronomy 2022, 12, 1449. [Google Scholar] [CrossRef]
- Bo, P.T.; Bai, Y.; Dong, Y.; Shi, H.; Soe Htet, M.N.; Samoon, H.A.; Zhang, R.; Tanveer, S.K.; Hai, J. Influence of different harvesting stages and cereals–legume mixture on forage biomass yield, nutritional compositions, and quality under Loess Plateau Region. Plants 2022, 11, 2801. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Fang, C.; Yuan, Z.Q.; Li, F.M.; Sardans, J.; Penuelas, J. Long-term alfalfa (Medicago sativa L.) establishment could alleviate phosphorus limitation induced by nitrogen deposition in the carbonate soil. J. Environ. Manag. 2022, 324, 116346. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Maxwell, T.M.R.; Robinson, B.; Dickinson, N. Legume nutrition is improved by neighbouring grasses. Plant Soil 2022, 475, 443–455. [Google Scholar] [CrossRef]
- Ali, G.; Wang, Z.K.; Li, X.R.; Jin, N.X.; Chu, H.Y.; Jing, L.J. Deep soil water deficit and recovery in alfalfa fields of the Loess Plateau of China. Field Crops Res. 2021, 260, 107990. [Google Scholar] [CrossRef]
- Ren, X.L.; Jia, Z.K.; Wan, S.M.; Han, Q.F.; Chen, X.L. The long-term effects of alfalfa on soil water content in the Loess Plateau of northwest China. Afr. J. Biotechnol. 2011, 10, 4420–4427. [Google Scholar]
- Bee, G.A.; Laslett, G. Development of a rainfed lucerne-based farming system in the Mediterranean climatic region of southwestern Australia. Agric. Water Manag. 2002, 53, 111–116. [Google Scholar] [CrossRef]
- Li, Y.S.; Huang, M.B. Pasture yield and soil water depletion of continuous growing alfalfa in the Loess Plateau of China. Agric. Ecosyst. Environ. 2008, 124, 24–32. [Google Scholar] [CrossRef]
- Bi, Y.X.; Zhou, P.; Li, S.J.; Wei, Y.Q.; Xiong, X.; Shi, Y.H.; Liu, N.; Zhang, Y.J. Interspecific interactions contribute to higher forage yield and are affected by phosphorus application in a fully-mixed perennial legume and grass intercropping system. Field Crops Res. 2019, 244, 107636. [Google Scholar] [CrossRef]
- Bélanger, G.; Castonguay, Y.; Lajeunesse, J. Benefits of mixing timothy with alfalfa for forage yield, nutritive value, and weed suppression in northern environments. Can. J. Plant Sci. 2013, 94, 51–60. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Gao, K.; Yu, T.F.; Zhang, L.J.; Cheng, M. Effects of sowing patterns on productivity and interspecific relationship of alfalfa-grass mixture system. Chin. J. Grassl. 2020, 42, 47–57. (In Chinese) [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Nölke, I.; Komainda, M.; Tonn, B.; Feuerstein, U.; Isselstein, J. Including chicory and selecting white clover varieties as strategies to improve temporal stability of forage yield and quality in white-clover-based temporary grassland. Eur. J. Agron. 2021, 130, 126362. [Google Scholar] [CrossRef]
- Tilman, D.; Wedin, D.; Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 1996, 379, 718–720. [Google Scholar] [CrossRef]
- Zhang, J.; Iwaasa, A.D.; Han, G.D.; Gu, C.; Wang, H.; Jefferson, P.G.; Kusler, J. Utilizing a multi-index decision analysis method to overall assess forage yield and quality of C3 grasses in the western Canadian prairies. Field Crops Res. 2018, 222, 12–25. [Google Scholar] [CrossRef]
- Wei, Z.; Maxwell, T.M.R.; Robinson, B.; Dickinson, N. Companion species mitigate nutrient constraints in high country grasslands in New Zealand. Plant Soil 2023, 484, 313–325. [Google Scholar] [CrossRef]
- Mahmoud, R.; Casadebaig, P.; Hilgert, N.; Alletto, L.; Freschet, G.T.; de Mazancourt, C.; Gaudio, N. Species choice and N fertilization influence yield gains through complementarity and selection effects in cereal-legume intercrops. Agron. Sustain. Dev. 2022, 42, 12. [Google Scholar] [CrossRef]
- Ravenek, J.M.; Mommer, L.; Visser, E.J.W.; van Ruijven, J.; van der Paauw, J.W.; Smit-Tiekstra, A.; de Caluwe, H.; de Kroon, H. Linking root traits and competitive success in grassland species. Plant Soil 2016, 407, 39–53. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Yu, T.F.; Hao, F.; Gao, K. Effects of fertilization and legume-grass ratio on forage yield and NPK utilization efficiency. Acta Prataculturae Sin. 2020, 29, 91–101. (In Chinese) [Google Scholar]
- Bork, E.W.; Gabruck, D.T.; Mcleod, E.M.; Hall, L.M. Five-year forage dynamics arising from four legume-grass seed mixes. Agron. J. 2017, 109, 2789–2799. [Google Scholar] [CrossRef]
- Pearen, J.R.; Baron, V.S.; Cowan, I.W. Productivity and composition of bromegrass alfalfa mixtures for hay in the Aspen Parklands of western Canada. Can. J. Plant Sci. 1995, 75, 429–436. [Google Scholar] [CrossRef]
- Chappell, C.N.; Marks, M.L.; Mason, K.M.; da Silva, L.S.; Jacobs, J.L.; Mullenix, M.K.; Dillard, S.L.; Muntifering, R.B.; Zhang, Y.J. Forage production and persistence characteristics of grazed native warm-season grass mixtures with or without nitrogen fertilizer. Grassl. Res. 2022, 1, 157–165. [Google Scholar] [CrossRef]
- Polley, H.W.; Yang, C.H.; Wilsey, B.J.; Fay, P.A. Temporal stability of grassland metacommunities is regulated more by community functional traits than species diversity. Ecosphere 2020, 11, e03178. [Google Scholar] [CrossRef]
- Suter, M.; Connolly, J.; Finn, J.A.; Loges, R.; Kirwan, L.; Sebastia, M.T.; Luscher, A. Nitrogen yield advantage from grass-legume mixtures is robust over a wide range of legume proportions and environmental conditions. Glob. Change Biol. 2015, 21, 2424–2438. [Google Scholar] [CrossRef]
- Mulder, C.P.H.; Bazeley-White, E.; Dimitrakopoulos, P.G.; Hector, A.; Scherer-Lorenzen, M.; Schmid, B. Species evenness and productivity in experimental plant communities. Oikos 2004, 107, 50–63. [Google Scholar] [CrossRef]
- Nyfeler, D.; Huguenin-Elie, O.; Suter, M.; Frossard, E.; Connolly, J.; Lüscher, A. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J. Appl. Ecol. 2009, 46, 683–691. [Google Scholar] [CrossRef]
- Michaud, A.; Plantureux, S.; Pottier, E.; Baumont, R. Links between functional composition, biomass production and forage quality in permanent grasslands over a broad gradient of conditions. J. Agric. Sci. 2014, 153, 891–906. [Google Scholar] [CrossRef]
- Komainda, M.; Isselstein, J. Effects of functional traits of perennial ryegrass cultivars on forage quality in mixtures and pure stands. J. Agric. Sci. 2020, 158, 173–184. [Google Scholar] [CrossRef]
- Perotti, E.; Huguenin-Elie, O.; Meisser, M.; Dubois, S.; Probo, M.; Mariotte, P. Climatic, soil, and vegetation drivers of forage yield and quality differ across the first three growth cycles of intensively managed permanent grasslands. Eur. J. Agron. 2021, 122, 126194. [Google Scholar] [CrossRef]
- Burity, H.A.; Faris, M.A.; Coulman, B.E. Nitrogenase activity and vegetative regrowth of alfalfa grown alone and in mixture with grasss after successive harvests. Pesqui. Agropecu. Bras. 1989, 24, 683–692. [Google Scholar]
- Fan, J.W.; Du, Y.L.; Wang, B.R.; Turner, N.C.; Wang, T.; Abbott, L.K.; Stefanova, K.; Siddique, K.H.M.; Li, F.M. Forage yield, soil water depletion, shoot nitrogen and phosphorus uptake and concentration, of young and old stands of alfalfa in response to nitrogen and phosphorus fertilisation in a semiarid environment. Field Crops Res. 2016, 198, 247–257. [Google Scholar] [CrossRef]
- Ma, W.H.; Liu, Z.L.; Wang, Z.H.; Wang, W.; Liang, C.Z.; Tang, Y.H.; He, J.S.; Fang, J.Y. Climate change alters interannual variation of grassland aboveground productivity: Evidence from a 22-year measurement series in the Inner Mongolian grassland. J. Plant Res. 2010, 123, 509–517. [Google Scholar] [CrossRef]
- Haughey, E.; Suter, M.; Hofer, D.; Hoekstra, N.J.; McElwain, J.C.; Lüscher, A.; Finn, J.A. Higher species richness enhances yield stability in intensively managed grasslands with experimental disturbance. Sci. Rep. 2018, 8, 15047. [Google Scholar] [CrossRef]
- Reiss, E.R.; Drinkwater, L.E. Cultivar mixtures: A meta-analysis of the effect of intraspecific diversity on crop yield. Ecol. Appl. 2018, 28, 62–77. [Google Scholar] [CrossRef]
- Valerio, M.; Ibáñez, R.; Gazol, A.; Götzenberger, L. Long-term and year-to-year stability and its drivers in a Mediterranean grassland. J. Ecol. 2022, 110, 1174–1188. [Google Scholar] [CrossRef]
- Wu, J.P.; Bao, X.G.; Zhang, J.D.; Lu, B.L.; Zhang, W.P.; Callaway, R.M.; Li, L. Temporal stability of productivity is associated with complementarity and competitive intensities in intercropping. Ecol. Appl. 2022, 33, e2731. [Google Scholar] [CrossRef]
- Reckling, M.; Ahrends, H.; Chen, T.W.; Eugster, W.; Hadasch, S.; Knapp, S.; Laidig, F.; Linstädter, A.; Macholdt, J.; Piepho, H.P.; et al. Methods of yield stability analysis in long-term field experiments. A review. Agron. Sustain. Dev. 2021, 41, 27. [Google Scholar] [CrossRef]
- Lardner, H.A.; Wright, S.B.M.; Cohen, R.D.H.; Curry, P.; Macfarlane, L. The effect of rejuvenation of Aspen Parkland ecoregion grass-legume pastures on botanical composition. Can. J. Plant Sci. 2001, 81, 673–683. [Google Scholar] [CrossRef]
- Papadopoulos, Y.A.; Mcelroy, M.S.; Fillmore, S.A.E.; Mcrae, K.B.; Duyinsveld, J.L.; Fredeen, A.H. Sward complexity and grass species composition affect the performance of grass-white clover pasture mixtures. Can. J. Plant Sci. 2012, 92, 1199–1205. [Google Scholar] [CrossRef]
- Lu, Y.X.; Mu, L.; Yang, M.; Yang, H.M. Lucerne proportion regulates competitive uptake for nitrogen and phosphorus in lucerne and grass mixtures on the Loess Plateau of China. Agronomy 2022, 12, 1258. [Google Scholar] [CrossRef]
- Deléglise, C.; Meisser, M.; Mosimann, E.; Spiegelberger, T.; Signarbieux, C.; Jeangros, B.; Buttler, A. Drought-induced shifts in plants traits, yields and nutritive value under realistic grazing and mowing managements in a mountain grassland. Agric. Ecosyst. Environ. 2015, 213, 94–104. [Google Scholar] [CrossRef]
- Gierus, M.; Kleen, J.; Loges, R.; Taube, F. Forage legume species determine the nutritional quality of binary mixtures with perennial ryegrass in the first production year. Anim. Feed. Sci. Technol. 2012, 172, 150–161. [Google Scholar] [CrossRef]
- Lamb, J.F.S.; Sheaffer, C.C.; Samac, D.A. Population density and harvest maturity effects on leaf and stem yield in alfalfa. Agron. J. 2003, 95, 635–641. [Google Scholar] [CrossRef]
- Meisser, M.; Vitra, A.; Stevenin, L.; Mosimann, E.; Mariotte, P.; Buttler, A. Impact of drought on the functioning of grassland systems. Agrarforsch. Schweiz. 2018, 9, 82–91. [Google Scholar]
Cut | Year (Stand Age) | |||||
---|---|---|---|---|---|---|
2018 (2) | 2019 (3) | 2020 (4) | 2021 (5) | 2022 (6) | 2023 (7) | |
1st | 24 June | 27 June | 26 June | 4 June | 1 June | 1 June |
2nd | 24 August | 27 August | 19 August | 12 July | 6 July | 8 July |
3rd | - | - | - | 28 August | 25 August | 25 August |
Effector | DMY (t ha−1) | CP (%) | NDF (%) | ADF (%) |
---|---|---|---|---|
Stand age (SA) | 261.363 *** | 547.679 *** | 372.233 *** | 189.28 *** |
Species combination (SC) | 2.436 NS | 216.923 *** | 2.312 NS | 0.256 NS |
Seeding ratio (SR) | 462.084 *** | 181.157 *** | 60.893 *** | 8.885 *** |
SA × SC | 4.284 ** | 45.851 *** | 2.031 NS | 0.974 NS |
SA × SR | 21.246 *** | 161.493 *** | 18.062 *** | 5.443 *** |
SC × SR | 5.265 ** | 95.222 *** | 1.992 NS | 6.164 ** |
SA × SC × SR | 4.635 *** | 12.813 *** | 2.199 ** | 3.153 *** |
Cropping Treatment | Stand Age | Average | |||||
---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | ||
P | 8.0 ± 1.1 Ad | 7.7 ± 1.2 Af | 5.1 ± 0.4 Bc | 3.3 ± 0.3 Cd | 3.5 ± 0.4 Cd | 3.0 ± 0.2 Cf | 5.1 ± 2.2 f |
M3P7 | 13.2 ± 1.1 Cab | 20.2 ± 2.7 Ad | 11.7 ± 4.4 Cb | 15.4 ± 0.8 BCbc | 18.1 ± 1.2 ABb | 14.2 ± 0.6 BCcd | 15.5 ± 3.5 e |
M5P5 | 11.7 ± 0.8 Bc | 21.0 ± 2.3 Ad | 12.2 ± 4.0 Bb | 15.2 ± 0.4 Bbc | 19.0 ± 0.9 Ab | 15.1 ± 0.5 Bbc | 15.7 ± 3.8 de |
M7P3 | 14.8 ± 0.5 Ca | 28.8 ± 1.0 Ab | 18.5 ± 2.6 Ba | 14.2 ± 0.6 Cc | 18.4 ± 0.4 Bb | 14.1 ± 0.5 Cd | 18.1 ± 5.3 a |
M | 9.8 ± 1.5 Dc | 33.9 ± 2.2 Aa | 11.8 ± 1.6 Db | 15.8 ± 1.2 Cab | 20.6 ± 0.6 Ba | 14.4 ± 0.1 Ccd | 17.7 ± 8.3 ab |
M7B3 | 14.6 ± 1.2 Ca | 23.8 ± 2.3 Acd | 11.2 ± 1.6 Db | 16.8 ± 0.9 BCa | 18.1 ± 1.1 Bb | 15.8 ± 0.4 BCb | 16.7 ± 4.1 bcd |
M5B5 | 13.3 ± 0.7 Bab | 26.1 ± 2.4 Abc | 15.0 ± 3.6 Bab | 15.3 ± 0.7 Bbc | 16.5 ± 0.1 Bc | 15.9 ± 0.9 Bb | 17.0 ± 4.6 bc |
M3B7 | 13.6 ± 0.6 Ca | 23.1 ± 3.1 Acd | 12.8 ± 1.1 Cb | 13.9 ± 1.1 Cc | 18.2 ± 1.4 Bb | 17.1 ± 0.7 Ba | 16.4 ± 3.8 cde |
B | 6.6 ± 0.6 Bd | 14.9 ± 1.0 Ae | 4.8 ± 0.7 Cc | 3.2 ± 0.1 Dd | 1.8 ± 0.1 Ee | 4.2 ± 0.2 CDe | 5.9 ± 4.5 f |
Average for MPs (n = 15) | 11.6 ± 3.2 D | 24.4 ± 6.6 A | 11.1 ± 3.9 D | 13.0 ± 5.2 C | 15.0 ± 7.0 B | 13.5 ± 4.9 C | |
Average for MBs (n = 15) | 11.5 ± 2.7 C | 22.3 ± 9.4 A | 11.9 ± 5.1 C | 12.8 ± 4.9 C | 15.9 ± 6.5 B | 12.2 ± 4.8 C |
Effector | CVinter- | |||
---|---|---|---|---|
DMY | CP | NDF | ADF | |
Species combination (SC) | 8.413 ** | 24.259 *** | 2.533 NS | 1.508 NS |
Seeding ratio (SR) | 45.732 *** | 40.332 *** | 54.012 *** | 11.592 *** |
SC × SR | 9.996 *** | 4.389 * | 6.266 ** | 7.991 ** |
Cropping Treatment | Stand Age | Average | |||||
---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | ||
P | 0.256 | 0.244 | 0.220 | 0.405 | 0.295 | 0.198 | 0.270 |
M3P7 | 0.324 | 0.433 | 0.276 | 0.566 | 0.756 | 0.745 | 0.517 |
M5P5 | 0.276 | 0.289 | 0.269 | 0.524 | 0.750 | 0.813 | 0.487 |
M7P3 | 0.297 | 0.386 | 0.316 | 0.653 | 0.768 | 0.805 | 0.537 |
M | 0.770 | 0.741 | 0.622 | 0.615 | 0.684 | 0.643 | 0.679 |
M7B3 | 0.417 | 0.374 | 0.326 | 0.759 | 0.777 | 0.806 | 0.576 |
M5B5 | 0.373 | 0.392 | 0.324 | 0.776 | 0.720 | 0.875 | 0.577 |
M3B7 | 0.370 | 0.393 | 0.315 | 0.707 | 0.801 | 0.866 | 0.575 |
B | 0.345 | 0.483 | 0.312 | 0.179 | 0.220 | 0.130 | 0.278 |
Average for MPs (n = 15) | 0.385 | 0.419 | 0.341 | 0.553 | 0.650 | 0.641 | 0.498 |
Average for MBs (n = 15) | 0.455 | 0.477 | 0.380 | 0.607 | 0.640 | 0.664 | 0.537 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zhang, J.; Zhang, J.; Lu, Y.; Ye, T.; Yang, H. Long-Term Production Performance and Stability of Alfalfa/Grass Mixtures in the Longdong Loess Plateau of China: Subjected to Various Species Combinations and Seeding Ratios. Agriculture 2025, 15, 1884. https://doi.org/10.3390/agriculture15171884
Wu X, Zhang J, Zhang J, Lu Y, Ye T, Yang H. Long-Term Production Performance and Stability of Alfalfa/Grass Mixtures in the Longdong Loess Plateau of China: Subjected to Various Species Combinations and Seeding Ratios. Agriculture. 2025; 15(17):1884. https://doi.org/10.3390/agriculture15171884
Chicago/Turabian StyleWu, Xiaojuan, Junyu Zhang, Jiaojiao Zhang, Yixiao Lu, Ting Ye, and Huimin Yang. 2025. "Long-Term Production Performance and Stability of Alfalfa/Grass Mixtures in the Longdong Loess Plateau of China: Subjected to Various Species Combinations and Seeding Ratios" Agriculture 15, no. 17: 1884. https://doi.org/10.3390/agriculture15171884
APA StyleWu, X., Zhang, J., Zhang, J., Lu, Y., Ye, T., & Yang, H. (2025). Long-Term Production Performance and Stability of Alfalfa/Grass Mixtures in the Longdong Loess Plateau of China: Subjected to Various Species Combinations and Seeding Ratios. Agriculture, 15(17), 1884. https://doi.org/10.3390/agriculture15171884