Cheese Whey Characterization for Co-Composting with Solid Organic Wastes and the Agronomic Value of the Compost Obtained
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surveys on the Dairy and Agro-Livestock Sectors of the Study Area
2.2. Sampling of the Cheese Whey
2.3. Design of Co-Composting Experiment
2.4. Analytical Methods
2.5. Statistical Methods
3. Results and Discussion
3.1. Situation of the Dairy and Agro-Livestock Sectors Studied and Destinations of the Generated Wastes
3.2. Cheese Whey Characterization
3.3. Relationships Among the Cheese Whey Characteristics
3.4. Co-Composting Cheese Whey with Agro-Livestock Wastes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data (accessed on 8 May 2024).
- Mazorra-Manzano, M.A.; Moreno-Hernández, J.M. Propiedades y opciones para valorizar el lactosuero de la quesería artesanal. Cienc. UAT 2019, 14, 133–144. [Google Scholar] [CrossRef]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Fundamentals of Cheese Science, 2nd ed.; Springer: New York, NY, USA, 2017. [Google Scholar]
- Pires, A.F.; Marnotes, N.G.; Rubio, O.D.; Garcia, A.C.; Pereira, C.D. Dairy by-products: A review on the valorization of whey and second cheese whey. Foods 2021, 10, 1067. [Google Scholar] [CrossRef] [PubMed]
- Panghal, A.; Patidar, R.; Jaglan, S.; Chhikara, N.; Khatkar, S.K.; Gat, Y.; Sindhu, N. Whey valorization: Current options and future scenario—A critical review. Nutr. Food Sci. 2018, 48, 520–535. [Google Scholar] [CrossRef]
- Ostertag, F.; Schmidt, C.M.; Berensmeier, S.; Hinrichs, J. Development and validation of an RP-HPLC DAD method for the simultaneous quantification of minor and major whey proteins. Food Chem. 2021, 342, 128176. [Google Scholar] [CrossRef]
- de Almeida, M.P.G.; Mockaitis, G.; Weissbrodt, D.G. Got whey? Sustainability endpoints for the dairy industry through resource biorecovery. Fermentation 2023, 9, 897. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, J.; Chen, Q.; Wu, H.; Mu, W. Sugar alcohols derived from lactose: Lactitol, galactitol, and sorbitol. Appl. Microbiol. Biotechnol. 2020, 104, 9487–9495. [Google Scholar] [CrossRef]
- Arshad, U.-E.; Hassan, A.; Ahmad, T.; Naeem, M.; Chaudhary, M.T.; Abbas, S.Q.; Randhawa, M.A.; Pimentel, T.C.; da Cruz, A.G.; Aadil, R.M. A recent glance on the valorisation of cheese whey for industrial prerogative: High-value-added products development and integrated reutilising strategies. Int. J. Food Sci. Technol. 2023, 58, 2001–2013. [Google Scholar] [CrossRef]
- Ketterings, Q.; Czymmek, K.; Gami, S.; Godwin, G.; Ganoe, K. Guidelines for Land Application of Acid Whey; Department of Animal Science, College of Agriculture & Life Sciences, Cornell University: Ithaca, NY, USA, 2017. [Google Scholar]
- Chalermthai, B.; Giwa, A.; Schmidt, J.E.; Taher, H. Life cycle assessment of bioplastic production from whey protein obtained from dairy residues. Bioresour. Technol. Rep. 2021, 15, 100695. [Google Scholar] [CrossRef]
- Osorio-González, C.S.; Gómez-Falcon, N.; Brar, S.K.; Ramírez, A.A. Cheese whey as a potential feedstock for producing renewable biofuels: A review. Energies 2022, 15, 6828. [Google Scholar] [CrossRef]
- Estudio de Mercado. Sector Lácteo. 2021. Available online: https://www.sce.gob.ec/sitio/wp-content/uploads/2021/04/estudio_de_mercado_sector_lacteo_SCPM-IGT-INAC-002-2019.pdf (accessed on 23 July 2024).
- Acosta, A.; Galetto, A.; Valdés, A.; Londinsky, A. Más Allá de la Finca Lechera—Enmarcando el Diálogo de Política Lechera en América Latina; FAO and FEPALE: Rome, Italy, 2022. [Google Scholar]
- Poveda, E. Suero lácteo, generalidades y potencial uso como fuente de calcio de alta biodisponibilidad. Rev. Chil. Nutr. 2013, 40, 397–403. [Google Scholar] [CrossRef]
- Prazeres, A.R.; Carvalho, F.; Rivas, J. Cheese whey management: A review. J. Environ. Manag. 2012, 110, 48–68. [Google Scholar] [CrossRef] [PubMed]
- Caballero, P.; Rodríguez-Morgado, B.; Sandra, M.; Manuel, T.; Juan, P. Obtaining plant and soil biostimulants bywaste whey fermentation. Waste Biomass Valoriz. 2020, 11, 3281–3292. [Google Scholar] [CrossRef]
- Ayilara, M.; Olanrewaju, O.; Babalola, O.; Odeyemi, O. Waste management through composting: Challenges and potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Vázquez, M.A.; de la Varga, D.; Plana, R.; Soto, M. Integrating liquid fraction of pig manure in the composting process for nutrient recovery and water re-use. J. Clean. Prod. 2015, 104, 80–89. [Google Scholar] [CrossRef]
- Rastogi, M.; Nandal, M.; Nain, L. Additive effect of cow dung slurry and cellulolytic bacterial inoculation on humic fractions during composting of municipal solid waste. Int. J. Recycl. Org. Waste Agricult. 2019, 8, 325–332. [Google Scholar] [CrossRef]
- Majbar, Z.; Lahlou, K.; Ben Abbou, M.; Ammar, E.; Triki, A.; Abid, W.; Nawdali, M.; Bouka, H.; Taleb, M.; El Haji, M.; et al. Co-composting of olive mill waste and wine-processing waste: An application of compost as soil amendment. J. Chem. 2018, 2018, 7918583. [Google Scholar] [CrossRef]
- Bargougui, L.; Guergueb, Z.; Chaieb, M.; Mekki, A. Co-composting of olive industry wastes with poultry manure and evaluation of the obtained compost maturity. Waste Biomass Valor. 2020, 11, 6235–6247. [Google Scholar] [CrossRef]
- Ghasemzadeh, S.; Sharafi, R.; Salehi Jouzani, G.; Karimi, E.; Ardakani, M.R.; Vazan, S. Efficient lignocellulose degradation during rice straw composting with native effective microorganisms and chicken manure. Org. Agric. 2022, 12, 397–409. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Paredes, C.; Moral, R.; Moreno-Caselles, J.; Pérez-Murcia, M.D.; Pérez-Espinosa, A.; Bernal, M.P. Co-composting of distillery and winery wastes with sewage sludge. Water Sci. Technol. 2007, 56, 187–192. [Google Scholar] [CrossRef]
- Alfonzo, A.; Laudicina, V.A.; Muscarella, S.M.; Badalucco, L.; Moschetti, G.; Spanò, G.M.; Francesca, N. Cellulolytic bacteria joined with deproteinized whey decrease carbon to nitrogen ratio and improve stability of compost from wine production chain by-products. J. Environ. Manag. 2022, 304, 114194. [Google Scholar] [CrossRef]
- Pivato, A.; Malesani, R.; Bocchi, S.; Rafieenia, R.; Schievano, A. Biochar addition to compost heat recovery systems improves heat conversion yields. Front. Energy Res. 2024, 11, 1327136. [Google Scholar] [CrossRef]
- Memoria Técnica Cantón Mocha/Bloque 1.1. Available online: http://metadatos.sigtierras.gob.ec/pdf/Memoria_tecnica_Coberturas_MOCHA_20150306.pdf (accessed on 29 July 2024).
- Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012; Volume 10. [Google Scholar]
- Wehr, H.M.; Frank, J.F. Standard Methods for the Examination of Dairy Products, 17th ed.; American Public Health Association: Washington, DC, USA, 2004. [Google Scholar]
- Idrovo-Novillo, J.; Gavilanes-Terán, I.; Bustamante, M.A.; Paredes, C. Composting as a method to recycle renewable plant resources back to the ornamental plant industry: Agronomic and economic assessment of composts. Process Saf. Environ. Protect. 2018, 116, 388–395. [Google Scholar] [CrossRef]
- Rahman, M.H.; Singh, N.; Kundu, S.; Datta, A. Potential areas of crop residue burning contributing to hazardous air pollution in Delhi during the post-monsoon season. J. Environ. Qual. 2022, 51, 181–192. [Google Scholar] [CrossRef]
- Mgalula, M.E.; Wasonga, O.V.; Hülsebusch, C.; Richter, U.; Hensel, O. Greenhouse gas emissions and carbon sink potential inEastern Africa rangeland ecosystems: A review. Pastoralism 2021, 11, 19. [Google Scholar] [CrossRef]
- Snyman, H.A. Short-term responses of Southern African semi-arid rangelands to fire: A review of impact on soils. Arid Land Res. Manag. 2015, 29, 222–236. [Google Scholar] [CrossRef]
- Medina, J.; Monreal, C.; Barea, J.M.; Arriagada, C.; Borie, F.; Cornejo, P. Crop residue stabilization and application to agricultural and degraded soils: A review. Waste Manag. 2015, 42, 41–54. [Google Scholar] [CrossRef]
- Fu, B.; Chen, L.; Huang, H.; Qu, P.; Wei, Z. Impacts of crop residues on soil health: A review. Environ. Pollut. Bioavailab. 2021, 33, 164–173. [Google Scholar] [CrossRef]
- Mendoza, D.; Marini, P.; Zambrano, J. Los bovinos criollos un recurso zoogenético de seguridad alimentaria para Ecuador y Latinoamérica. Rev. Cient. Arbitr. Multidiscip. PENTACIENCIAS 2022, 4, 175–185. [Google Scholar]
- Urra, J.; Alkorta, I.; Garbisu, C. Potential benefits and risks for soil health derived from the use of organic amendments in agriculture. Agronomy 2019, 9, 542. [Google Scholar] [CrossRef]
- Ghirardini, A.; Grillini, V.; Verlicchi, P. A review of the occurrence of selected micropollutants and microorganisms in different raw and treated manure-Environmental risk due to antibiotics after application to soil. Sci. Total Environ. 2020, 707, 136118. [Google Scholar] [CrossRef]
- van derWeerden, T.J.; Noble, A.; de Klein, C.A.M.; Hutchings, N.; Thorman, R.E.; Alfaro, M.A.; Amon, B.; Beltran, I.; Grace, P.; Hassouna, M.; et al. Ammonia and nitrous oxide emission factors for excreta deposited by livestock and land-applied manure. J. Environ. Qual. 2021, 50, 1005–1023. [Google Scholar] [CrossRef] [PubMed]
- Onwosi, C.O.; Igbokwe, V.C.; Odimba, J.N.; Eke, I.E.; Nwankwoala, M.; Iroh, I.N.; Ezeogu, L.I. Composting technology in waste stabilization: On the methods, challenges and future prospects. J. Environ. Manag. 2017, 190, 140–157. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.; Prazeres, A.R.; Rivas, J. Cheese whey wastewater: Characterization and treatment. Sci. Total Environ. 2013, 445, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Sebastián-Nicolás, J.L.; González-Olivares, L.G.; Vázquez-Rodríguez, G.A.; Lucho-Constatino, C.; Castañeda-Ovando, A.; Cruz-Guerrero, A.E. Valorization of whey using a biorefinery. Biofuels Bioprod. Bioref. 2020, 14, 1010–1027. [Google Scholar] [CrossRef]
- EPA, United States Environment Protection Agency. Environmental Regulations and Technology Control of Pathogens and Vector Attraction in Sewage Sludge; EPA625-/R-92/-103; EPA: Cincinnati, OH, USA, 2003. [Google Scholar]
- Arthurson, V. Proper sanitization of sewage sludge: A critical issue for a sustainable society. Appl. Environ. Microbiol. 2008, 74, 5267–5275. [Google Scholar] [CrossRef]
- Hanajima, D.; Aoyagi, T.; Hori, T. Dead bacterial biomass-assimilating bacterial populations in compost revealed by high-sensitivity stable isotope probing. Environ. Int. 2019, 133, 105235. [Google Scholar] [CrossRef]
- Bernal, M.P.; Sommer, S.G.; Chadwick, D.; Qing, C.; Guoxue, L.; Michel, F.C., Jr. Current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits. Adv. Agron. 2017, 144, 143–233. [Google Scholar]
- Fereidoon, S.; Vamadevan, V.; Won Young, O.; Han, P. Phenolic compounds in agri-food by-products, their bioavailability and health effects. J. Food Bioact. 2019, 5, 57–119. [Google Scholar]
- Hegab, M.M.; Abdelgawad, H.; Abdelhamed, M.S.; Hammouda, O.; Pandey, R.; Kumar, V.; Zinta, G. Effects of tricin isolated from jungle rice (Echinochloa colona L.) on amylase activity and oxidative stress in wild oat (Avena fatua L.). Allelopath. J. 2013, 31, 345–354. [Google Scholar]
- Zucconi, F.; Pera, A.; Forte, M.; de Bertoldi, M. Evaluating toxicity of immature compost. Biocycle 1981, 22, 54–57. [Google Scholar]
- Cáceres, R.; Malińska, K.; Marfà, O. Nitrification within composting: A review. Waste Manag. 2018, 72, 119–137. [Google Scholar] [CrossRef] [PubMed]
- US Composting Council. Field Guide to Compost Use. 2001. Available online: http://www.mncompostingcouncil.org/uploads/1/5/6/0/15602762/fgcu.pdf (accessed on 16 December 2024).
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment: A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef] [PubMed]
Dairy industry | ||||||||
Cheese only | Cheese and yogurt | |||||||
Dairy product produced | 80 | 20 | ||||||
600–100 | 500–300 | 50–200 | ||||||
Milk processing volume (L/day) | 70 | 20 | 10 | |||||
Animal feed | Irrigation for pastures | Sale for other uses | Dumped into the environment | |||||
Use or disposal of CW | 50 | 20 | 10 | 20 | ||||
Agricultural farms | ||||||||
Potato | Corn | Red onion | White onion | Pea | Bean | Carrot | Other crops | |
Type of crop produced | 24.3 | 20.3 | 13.5 | 8.1 | 8.1 | 6.8 | 5.4 | 13.5 |
Animal feed | Incineration | Direct application to soil | ||||||
Destination of harvest residues | 51 | 14 | 35 | |||||
Livestock farms | ||||||||
Native-breed cattle | Improved breed cattle | |||||||
Type of cattle species raised | 56.8 | 43.2 | ||||||
Direct application to soil | Applied to soil after drying | Left where the cattle excrete | ||||||
Destination of cattle manure | 58 | 35 | 7 |
Samples | pH | EC (dS/m) | BOD5 (mg O2/L) | COD (mg O2/L) | TS (mg/L) | SS (mg/L) |
---|---|---|---|---|---|---|
CW-1 | 4.88 | 6.23 | 33,312 | 64,450 | 78,200 | 3719 |
CW-2 | 6.77 | 5.03 | 32,244 | 66,000 | 73,400 | 3518 |
CW-3 | 5.11 | 5.76 | 36,521 | 73,150 | 78,700 | 3733 |
CW-4 | 5.40 | 6.46 | 35,065 | 70,200 | 69,167 | 3175 |
CW-5 | 5.19 | 6.72 | 30,365 | 62,200 | 68,000 | 3306 |
CW-6 | 6.19 | 8.19 | 31,491 | 66,000 | 73,167 | 3526 |
CW-7 | 6.55 | 4.58 | 34,379 | 71,000 | 68,067 | 3198 |
CW-8 | 6.57 | 4.58 | 37,359 | 76,500 | 69,533 | 3401 |
CW-9 | 6.16 | 7.46 | 36,209 | 65,150 | 71,233 | 3431 |
CW-10 | 5.78 | 7.01 | 30,529 | 64,200 | 59,155 | 2851 |
Mean | 5.86 | 6.20 | 33,747 | 67,885 | 70,862 | 3386 |
Range | 4.88–6.77 | 4.58–8.19 | 30,365–37,359 | 62,200–76,500 | 59,155–78,700 | 2851–3733 |
CV (%) | 12 | 20 | 8 | 7 | 8 | 8 |
Samples | Lactose (g/L) | Protein (g/L) | Fat (g/L) | N (g/L) | P (g/L) | Ca (g/L) | K (mg/L) |
---|---|---|---|---|---|---|---|
CW-1 | 42.1 | 4.62 | 1.77 | 0.72 | 0.11 | 0.16 | 2.81 |
CW-2 | 40.1 | 3.93 | 0.74 | 0.62 | 0.10 | 0.13 | 2.94 |
CW-3 | 38.5 | 4.53 | 8.47 | 0.71 | 0.11 | 0.15 | 2.03 |
CW-4 | 38.1 | 4.40 | 0.94 | 0.69 | 0.06 | 0.20 | 2.15 |
CW-5 | 37.1 | 4.72 | 0.79 | 0.74 | 0.10 | 0.27 | 2.92 |
CW-6 | 39.5 | 4.02 | 1.40 | 0.63 | 0.11 | 0.24 | 2.44 |
CW-7 | 36.7 | 4.49 | 1.35 | 0.70 | 0.11 | 0.15 | 2.90 |
CW-8 | 38.3 | 4.36 | 1.47 | 0.68 | 0.11 | 0.11 | 2.18 |
CW-9 | 37.2 | 4.75 | 3.80 | 0.75 | 0.11 | 0.13 | 2.69 |
CW-10 | 34.5 | 4.47 | 1.28 | 0.70 | 0.11 | 0.14 | 2.07 |
Mean | 38.2 | 4.43 | 2.20 | 0.69 | 0.10 | 0.17 | 2.51 |
Range | 34.5–42.1 | 3.93–4.75 | 0.74–8.47 | 0.62–0.75 | 0.06–0.11 | 0.11–0.27 | 2.03–2.94 |
CV (%) | 5 | 6 | 108 | 6 | 14 | 31 | 15 |
Samples | Fe (mg/L) | Cu (mg/L) | Zn (mg/L) | Ni (mg/L) | Cr (mg/L) | Cd (mg/L) | Pb (mg/L) |
---|---|---|---|---|---|---|---|
CW-1 | 0.46 | <0.10 | 0.75 | <0.10 | <0.10 | <0.10 | <0.10 |
CW-2 | 0.36 | <0.10 | 0.71 | <0.10 | <0.10 | <0.10 | <0.10 |
CW-3 | 0.55 | <0.10 | 0.67 | <0.10 | <0.10 | <0.10 | <0.10 |
CW-4 | 0.57 | <0.10 | 0.67 | <0.10 | <0.10 | <0.10 | <0.10 |
CW-5 | 0.70 | <0.10 | 0.68 | <0.10 | <0.10 | <0.10 | <0.10 |
CW-6 | 0.50 | <0.10 | 0.57 | <0.10 | <0.10 | <0.10 | <0.10 |
CW-7 | 0.50 | <0.10 | 0.65 | <0.10 | <0.10 | <0.10 | <0.10 |
CW-8 | 0.53 | <0.10 | 0.55 | <0.10 | <0.10 | <0.10 | <0.10 |
CW-9 | 0.26 | <0.10 | 0.61 | <0.10 | <0.10 | <0.10 | <0.10 |
CW-10 | 0.24 | <0.10 | 0.60 | <0.10 | <0.10 | <0.10 | <0.10 |
Mean | 0.47 | <0.10 | 0.65 | <0.10 | <0.10 | <0.10 | <0.10 |
Range | 0.24–0.70 | <0.10 | 0.55–0.75 | <0.10 | <0.10 | <0.10 | <0.10 |
CV (%) | 31 | - | 10 | - | - | - | - |
Paremeter | Principal Component | ||
---|---|---|---|
1 | 2 | 3 | |
TS | 0.948 | 0.172 | −0.160 |
SS | 0.916 | 0.152 | −0.180 |
Lactose | 0.757 | 0.247 | −0.502 |
Fat | 0.584 | −0.158 | 0.553 |
COD | 0.407 | −0.764 | 0.167 |
Ca | −0.189 | 0.753 | −0.116 |
pH | −0.263 | −0.687 | −0.510 |
Zn | 0.432 | 0.596 | −0.127 |
BOD5 | 0.571 | −0.595 | 0.404 |
EC | −0.337 | 0.507 | 0.113 |
K | 0.061 | 0.448 | −0.429 |
Fe | 0.324 | 0.338 | 0.024 |
P | 0.101 | −0.182 | 0.043 |
Protein | 0.019 | 0.334 | 0.863 |
N | 0.010 | 0.340 | 0.862 |
Composting Time (Days) | pH | EC (dS/m) | OM (%) | Nt (%) | Corg/Nt | Polyphenols (g/kg) | GI (%) |
---|---|---|---|---|---|---|---|
0 | 7.85 ± 0.10 | 4.39 ± 0.01 | 80.9 ± 0.4 | 1.20 ± 0.02 | 35.7 ± 0.8 | 7.62 ± 0.07 | 46.8 ± 2.5 |
39 | 9.16 ± 0 | 4.98 ± 0.01 | 76.2 ± 0.8 | 1.38 ± 0.05 | 28.9 ± 0.2 | 6.71 ± 0.06 | 78.7 ± 7.2 |
65 | 9.08 ± 0 | 6.68 ± 0 | 67.9 ± 0.2 | 1.73 ± 0.07 | 22.4 ± 0.6 | 3.01 ± 0.04 | 88.4 ± 5.0 |
80 | 8.82 ± 0 | 7.50 ± 0 | 64.9 ± 0.8 | 2.26 ± 0.13 | 16.1 ± 0.2 | 4.29 ± 0.06 | 83.4 ± 5.4 |
mature | 8.93 ± 0 | 8.35 ± 0 | 67.6 ± 1.1 | 3.07 ± 0.01 | 10.3 ± 0.5 | 3.69 ± 0.05 | 90.9 ± 4.6 |
LSD | 0.16 | 0.02 | 3.9 | 0.35 | 3.9 | 0.21 | 10.2 |
Composting Time (Days) | Cl− (g kg−1) | SO42− (g kg−1) | NO3− (g kg−1) | PO43− (g kg−1) |
---|---|---|---|---|
0 | 0.53 ± 0 | 5.13 ± 0.11 | 0.86 ± 0.02 | 4.94 ± 0.10 |
39 | 0.59 ± 0 | 3.86 ± 0.12 | 1.42 ± 0.06 | 5.12 ± 0.06 |
65 | 0.61 ± 0 | 3.06 ± 0.11 | 6.61 ± 0.13 | 5.20 ± 0.17 |
80 | 0.78 ± 0 | 3.85 ± 0.23 | 8.84 ± 0.30 | 5.74 ± 0.12 |
mature | 0.89 ± 0 | 4.66 ± 0.23 | 15.99 ± 0.28 | 6.43 ± 0.16 |
LSD | 0.01 | 0.62 | 0.72 | 0.46 |
Parameter | Value | US Composting Council [49] |
---|---|---|
pH | 8.93 ± 0 | 6.0–7.5 |
CE (dS/m) | 8.35 ± 0 | <5 |
OM (%) | 67.6 ± 1.1 | 50–60 |
Corg/Nt | 10.3 ± 0.5 | - |
CEC (meq/100 g OM) | 97.0 ± 1.0 | - |
GI (%) | 90.9 ± 4.6 | - |
Nt (g/kg) | 30.7 ± 0.1 | ≥10 |
P (g/kg) | 10.1 ± 0.1 | ≥10 |
K (g/kg) | 32.0 ± 0.7 | - |
Fe (mg/kg) | 2550 ± 32 | - |
Cu (mg/kg) | 36 ± 5 | 1500 |
Mn (mg/kg) | 148 ± 1 | - |
Zn (mg/kg) | 73 ± 2 | 2800 |
Ni (mg/kg) | 12 ± 0 | 420 |
Cr (mg/kg) | 100 ± 2 | - |
Cd (mg/kg) | 0.54 ± 0.08 | 39 |
Pb (mg/kg) | 2.51 ± 0.11 | 300 |
Se (mg/kg) | 1.74 ± 0.11 | 100 |
Hg (mg/kg) | <0.05 | 17 |
As (mg/kg) | 1.31 ± 0.06 | 41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Romero, S.; Gavilanes-Terán, I.; Idrovo-Novillo, J.; Idrovo-Gavilanes, A.; Valverde-Orozco, V.; Paredes, C. Cheese Whey Characterization for Co-Composting with Solid Organic Wastes and the Agronomic Value of the Compost Obtained. Agriculture 2025, 15, 513. https://doi.org/10.3390/agriculture15050513
Ramos-Romero S, Gavilanes-Terán I, Idrovo-Novillo J, Idrovo-Gavilanes A, Valverde-Orozco V, Paredes C. Cheese Whey Characterization for Co-Composting with Solid Organic Wastes and the Agronomic Value of the Compost Obtained. Agriculture. 2025; 15(5):513. https://doi.org/10.3390/agriculture15050513
Chicago/Turabian StyleRamos-Romero, Steven, Irene Gavilanes-Terán, Julio Idrovo-Novillo, Alessandro Idrovo-Gavilanes, Víctor Valverde-Orozco, and Concepción Paredes. 2025. "Cheese Whey Characterization for Co-Composting with Solid Organic Wastes and the Agronomic Value of the Compost Obtained" Agriculture 15, no. 5: 513. https://doi.org/10.3390/agriculture15050513
APA StyleRamos-Romero, S., Gavilanes-Terán, I., Idrovo-Novillo, J., Idrovo-Gavilanes, A., Valverde-Orozco, V., & Paredes, C. (2025). Cheese Whey Characterization for Co-Composting with Solid Organic Wastes and the Agronomic Value of the Compost Obtained. Agriculture, 15(5), 513. https://doi.org/10.3390/agriculture15050513