Factors Affecting the Ig Content of Sow’s Colostrum: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
- -
- Keywords: sow AND colostrum AND milk AND immunoglobulin
- -
- English language
- -
- Only journal articles
- -
- The period of 1980–2024
3. The Role of Immunoglobulins and Their Presence in Sow Milk and Colostrum
4. Factors Other than Nutrition That Can Affect the Ig Content in Colostrum
5. Changes in Ig Concentrations in Colostrum Between 1980 and 2024
6. Feed Supplements and Their Effects on Colostrum and Milk Composition and Sow and Piglet Performance
6.1. Amino Acids
6.1.1. Mode of Action
6.1.2. Most Pronounced Effects
Changes in Ig Concentration (+/− % Changes Compared to the Control) | ||||||
---|---|---|---|---|---|---|
Treatment in Feed | Feeding Protocol | Colostrum | Milk | Serum/Plasma Sow or Piglet | References | Effects in General |
L-Arg 1% supplementation | From day 30 of gestation until day 90 or day 114 | Sow plasma d −24 IgG, IgM +83; +56 d −4 IgG, IgM +60; +50 | [111] | ↑ Immune system | ||
L-Arg 0.5% and 1% supplementation | From day 85 of gestation until farrowing | IgG 0.5%: −13 1%: +36 | [112] | ↑ Live born piglets and piglets’ birth weight ↑ IgG in colostrum with 1% suppl. | ||
L-Arg 0.08%, 0.16%, 0.24%, and 0.32% supplementation | From day 30 of gestation until farrowing | Sow plasma d −24 IgG, IgA, IgM 0.08%: +29; +64; +6 0.16%: +21; +49; −6 0.24%: +10; +75; +12 0.32%: +9; +32; +27 d −4 IgG, IgA, IgM 0.08%: +13; +15; +4 0.16%: +9; +7; +15 0.24%: +39; +11; +7 0.32%: +21; +3; +9 | [100] | ↑ Plasma Arg ↑ Born alive ↑ Milk quality | ||
BCCA: L-Val, L-Ile, and L-Leu at 9, 4.5, and 9 g/day; Arg: 22.5 g/day; BCCA + Arg | From day 100 of gestation until weaning (d27) | IgG, IgA, IgM BCCA: +12; +37; +75 Arg: +42; +61; +42 BCCA +Arg: −16; −30; +51 | IgG, IgA, IgM BCCA: −16; +18; −16 Arg: +4; +13; +32 BCCA+Arg: −8; +99; +186 | Sow serum IgG, IgA, IgM d −4 BCCG: +36; +21; +13 Arg: +44; +23; +7 BCCG +Arg: +82; −11; −5 d 10 BCCG: −28; +131; +24 Arg: +21; +122; +9 BCCG +Arg: −15; +75; +5 d 27 BCCG: +6; −33; +27 Arg: −13; −20; +21 BCCG +Arg: +2; −47; +7 | [95] | ↑ Sow productive performance ↑ Intestinal microbiota |
Arg 25 g/day | From day 30 of gestation until weaning (d28) | [113] | No change | |||
Arg 0.72%, 1%, and 1.5% in the diet | From day 70 of gestation until farrowing | [109] | ↑ Litter and piglet weight gain | |||
L-Arg 0.5%, 1%, and 1.5% supplementation | During lactation | [108] | ↑ Piglet weight gain ↑ Milk composition | |||
L-Arg 25.5 g/day supplementation | From d77 of gestation until farrowing | [110] | ↓ Within-litter variation | |||
L-Arg 0.5% and 1% supplementation | During lactation | [107] | ↑ Plasma Arg level ↑ Weight gain of piglets | |||
Total Val–Lys ratio of 0.63, 0.73, and 0.93 | From d75 of gestation until farrowing | [119] | ↑ Daily weight gain of piglets ↑ Prolactin in plasma | |||
Glutamate 2% supplementation | From one week before farrowing until day 21 of lactation | [92] | ↑ Milk production ↑ Growth of piglets | |||
Glutamate 1% and 2% supplementation | During lactation | [115] | ↑ Milk synthesis ↑ Piglet growth | |||
Glutamine and glutamate 1.5% supplementation | From one week before farrowing until day 21 of lactation | [114] | ↑ Glutamine content of milk ↑ Fat content in colostrum and milk | |||
0.137%, 0.275%, and 0.55% serine supplementation | From day 110 of gestation until weaning | [118] | ↑Improved Se status of sows and piglets ↑ Piglet weight |
6.1.3. Effectiveness
6.2. Dietary Antioxidants (Vitamin E, Vitamin C, Vitamin A, and Se)
6.2.1. Mode of Action
6.2.2. Most Pronounced Effects
Changes in Ig Concentration (+/− % Changes Compared to the Control) | ||||||
---|---|---|---|---|---|---|
Treatment in Feed | Feeding Protocol | Colostrum | Milk | Serum/Plasma Sow or Piglet | References | Effects in General |
250 IU/kg vit. E | From day 107 of gestation until day 21 of lactation | IgG, IgA +20; +12 | IgG, IgA +8; +8 | Sow plasma IgG, IgA d 0: +9; +9 d 21: +7; +20 Piglet plasma IgG, IgA d 21: +11; +9 | [62] | ↑ Colostrum, milk, and plasma tocopherol levels ↑ Milk composition ↑ Humoral immune function and antioxidant activity ↑ Weight of piglets at weaning |
500 mg/kg vit. E, 10 g/day vit. C, and in combination | From the beginning of pregnancy until weaning | IgG Vi tE: −17 Vit C: −14 E+C: +6 | IgA Vit E: −39 Vit C: −22 E+C: −12 | Piglet plasma d 21 IgG Vit E: −6 Vit C: +3 E+C: +31 | [87] | ↑ Alpha-tocopherol in colostrum and milk and piglet tissues and plasma at weaning Combined treatment is more beneficial |
4 or 8 mg/kg β-carotene | From day 85 of gestation until day 21 of lactation | IgG, IgA, IgM 4 mg: +8; +82; +72 8 mg: +23; +114; +77 | IgG, IgA, IgM 4 mg: +35; +31; +113 8 mg: +60; +12; +134 | [89] | ↓ Inflammatory markers in colostrum and milk ↑ Lactose concentration in milk ↑ Litter and piglet weight at weaning | |
80 ppm of oxidized β-carotene for parity of 1, 2, and 3+ sows | From day 60 of gestation until the end of lactation | IgG, IgA P1: +32; +1 P2: +18; +24 P3+: −25; −24 | IgG, IgA P1: +127; +35 P2: −48; −19 P3+: +30; +24 | Sow plasma IgG, IgM d −54 P1: −63; −67 P2: −66; −63 P3+: −56; −58 d 0 P1: −15; +19 P2: +52; +24 P3+: +18; −12 d 21 P1: −25; +1 P2: −13; +24 P3+: +86; +3 | [121] | No effect on reproductive performance No effect on colostrum and milk composition |
Combination of heat stress (HS) and active cooling (AC) in a farrowing unit with 0.30 (control) or 1.2 mg/kg organic Se supplementation | From day 85 of gestation until day 21 of lactation | IgG, IgA, IgM AC: +33; +40; +58 HS: +15; +15; +100 | IgG, IgA, IgM AC: +164; +74; +53 HS: +126; +53; +26 | Sow plasma d 0 IgG, IgA, IgM AC: +21; +3; +30 HS: +16; − 11; +6 d 21 IgG, IgA, IgM AC: +44; +127; +104 HS: +130; +40; +52 Piglet plasma d 1 IgG, IgA, IgM AC: +105; +21; +20; HS: +37; +57; +35 d 21 IgG, IgA, IgM AC: +99; +37; − 6 HS: +130; +99; +60 | [125] | ↑ Pre-weaning survival ↑ Colostrum and milk composition ↑ Matrnal selenium and antioxidant status ↑ Ig transfer irrespective of climatic conditions |
0.3 mg/kg Se as an inorganic source (control) or 0.2 mg/kg as an organic source | From day 85 of gestation until day 23 of lactation | IgG, IgA, IgM +11; +24; +13 | IgG, IgA, IgM +18; +12; +36 | Sow plasma IgG, IgA, IgM d 1: +3; +17; +28 d 21: +1; +85; +1 Piglet plasma IgG, IgA, IgM d 1: +2; +15; +39 d 21: +15; +30; +14 | [63] | ↑ Piglet growth during the first week of lactation ↑ Se status, antioxidant capacity, and immunoglobulin transfer ↑ microbiota ↑ Small intestinal barrier function |
0.15 or 0.30 mg/kg Se in inorganic or organic form | From day 6 pre-farrowing until day 3 postpartum | [128] | ↑ The organic source results in higher milk Se content ↑ The inorganic source has higher biological activity of glutathione peroxidase | |||
0.3 mg/kg Se as an organic and inorganic source | During gestation | [129] | ↑ Increased litter size ↑ Sow and piglet antioxidant capacity ↑ Piglet growth | |||
0.3 ppm inorganic or organic Se | From 60 days before breeding until farrowing | Data in the figure | Data in the figure | Data in the figure | [127] | ↑ Passive transfer of immunoglobulins |
0.30 mg/kg inorganic or organic Se in combination with 30 IU/kg or 90 IU/kg vit. E | From day 1 of gestation until 21 d postpartum | [124] | ↑ Antioxidant status of serum and milk with organic Se ↑ Milk composition with organic Se No beneficial effect of elevated vit. E supplementation |
6.2.3. Effectiveness
6.3. Pre- and Probiotics (Dietary Fiber, MOS, Yeast, Bacteria, Enzymes, and Sugar Beet Pulp)
6.3.1. Mode of Action
6.3.2. Most Pronounced Effects
Changes in Ig Concentration+/− % Changes Compared to the Control | ||||||
---|---|---|---|---|---|---|
Treatment in Feed | Feeding Protocol | Colostrum | Milk | Serum/Plasma Sow or Piglet | References | Effects in General |
Elevated (23.4%) total dietary fiber | From day 92 of gestation until farrowing | IgG, IgA +1; −38 | IgA −24 | [60] | ↑ Colostrum intake of low-birth-weight piglets ↑ Sow behavior | |
Elevated (19.3 to 21.7%) total dietary fiber | From day 90 of gestation until farrowing | IgG −16 | [19] | ↑ Arterial acetate and colostral fat | ||
33% digestible (corn) starch and 33% resistant (pea) starch | From day 88 of gestation until weaning (d28) | IgG −6 | [69] | Changed microbiota ↑ Milk composition | ||
Sugar beet pulp: 20% and 10% Wheat bran: 30% and 15% (gestation and lactation) | From day 86 of gestation until day 21 of lactation | IgG, IgA, IgM SBP20%: +6; +15; +7 SBP10%: +2; +9; +6 | IgG, IgA, IgM SBP20%: +1; +4; +3 SBP10%: 0; −2; 0 | Piglet serum d 21 IgG, IgA, IgM SBP20%: 0; −4; +1 SBP10%: −6; −3; +5 | [61] | ↑ Milk quality with SBP ↑ Growth performance of piglets with SBP ↑ Intestinal barrier function with SBP |
400 mg/kg MOS | From day 86 of gestation until weaning (d20) | IgG, IgA, IgM +4; −1; +51 | IgG, IgA, IgM −1; −2; +8 | Piglet serum d 20 IgG, IgA, IgM +15; +13; −2 | [88] | ↓ Weaning to the estrus interval ↑ Growth and immunity of piglets |
8 g/sow/day MOS in two experiments | From 4 weeks prepartum until 4 weeks postpartum | IgG, IgA, IgM exp. 1: +25; −1; +25 exp. 2: +14; +6; +13 | Sow plasma d −4 IgG, IgA, IgM exp. 1: +14; +11; +1 exp. 2: +9; 0; −15 d 0 exp. 1: +5; +5; +16 exp. 2: +25; +1; +31 d 21 exp. 1: +6; +18; +11 exp. 2: +31; +17; +38 Piglet plasma d 0 exp. 1: +29; +9; +21 exp. 2: +18; −2; +21 d 21 exp. 1: +8; +10; +2 exp. 2: +21; 0; 0 | [80] | ↑ Survival of piglets ↑ Bodyweight gain in piglets | |
0.2% MOS | From day 102 of gestation and during lactation | IgG, IgA, IgM +12; +10; +2 | IgG, IgA, IgM +30; +19; +24 | Sow serum d −2 IgG, IgA, IgM +5; +2; +26 d 16 IgG, IgA, IgM −1; +18; +37 Piglet serum d 16 IgG, IgA, IgM −5; −6; +9 | [96] | ↑ Reproductive performance ↑ Bodyweight of piglets |
Chitosan oligosaccharide 100 mg/kg | From day 85 of gestation and during lactation (d 21) | IgG, IgA, IgM +23; +2; +46 | IgG, IgA, IgM +29; +8; +2 | Sow serum d 1 IgG, IgA, IgM +31; +28; +27 d 21 +10; +19; +15 | [83] | ↑ Piglet growth |
Chitosan oligosaccharide 30 mg/kg | From day 86 of gestation and during lactation (d 20) | IgG, IgA, IgM +8; −8; +39 | IgG, IgA, IgM +2; +2; +8 | Piglet serum d 0 IgG, IgA, IgM +3; +1; +13 d 20 IgG, IgA, IgM +18; +19; +13 | [97] | No effect on sow reproductive performance ↑ Humoral and innate immunity and anti-inflammatory ability |
Yeast derivative 2 g/kg | During gestation | IgG, IgA, IgM +5; −13; −12 | [74] | ↑ Colostrum production ↑ Sow physiology | ||
Yeast 106 CFU or 107 CFU/g diet in lactation (L) feed or gestation (G) feed | During gestation and lactation (21 d) | IgG G-/L106: +10 G-/L107: +41 G106/L106: +51 G107/L107: +133 | . | Sow plasma d 1 IgG, IgA G-/L106: −25; −10 G-/L107: −1; −8 G106/L106: −20; −29 G107/L107: −11; −46 d 21 IgG, IgA G-/L106: +19; −6 G-/L107: −9; +2 G106/L106: −1; −28 G107/L107: +45; −40 Piglet plasma d 1 IgG, IgA G-/L106: +51; +29 G-/L107: +27; +28 G106/L106: +43; +9 G107/L107: +162; +10 d 21 IgG, IgA G-/L106: +64; +27 G-/L107: +14; +9 G106/L106: +62; −18 G107/L107: +108; +55 | [94] | No effect on sow reproductive performance ↓ Weaning to estrus interval |
Live yeast 1 g/kg (1010 CFU/g) | From day 90 of gestation and during lactation (d 21) | Sow plasma d 1 IgG, IgM +47; +3 | [98] | ↑ Colostrum composition and liver function ↓ Number of stillborn and low-BW piglets | ||
Live yeast 0.1 g/kg (1010 CFU/g) | From day 28 gestation until weaning (d 28) | IgG, IgA +2; −8 | IgA +29 | [79] | ↑ Beneficial microbes in sows and piglets | |
Live yeast 425 mg/kg (1.5 × 1011 CFU/kg) | From day 60 of gestation until weaning (d 28) | Sow serum d 0 IgG, IgA, IgM +9; +70; +82 d 28 IgG, IgA, IgM +24; +89; +31 Piglets serum d 28 IgG, IgA, IgM +33; +52; +49 | [91] | ↑ Immunity of sows and piglets | ||
Live yeast 1 g/kg (1010 CFU/g) | From day 94 of gestation until weaning (d 28) | IgA +103 | . | Sow serum d 0 IgA +5 Piglet serum IgA data in the Figure | [93] | ↓ Duration and severity of post-weaning diarrhea |
Live yeast strains (4) in 0.05% or 0.5% | From day 80 gestation until weaning (d 18) | Data in the figure | Data in the figure | Data in the figure | [141] | No effect on sow and piglet weight ↑ IgG milk and colostrum ↑ IgA in milk maintained |
Soybean isoflavone and astragalus polysaccharide mixture: 100, 200, and 300 mg/kg | From day 107 of gestation until weaning (d 21) | Sow serum d 1 IgG, IgA 100 mg: +1; +2 200 mg: +6; +9 300 mg: +6; +6 d 10 IgG, IgA 100 mg: +9; +1 200 mg: +17; +10 300 mg: +13; +3 d 21 IgG, IgA 100 mg: +2; +2 200 mg: +20; +10 300 mg: +12; +6 | [102] | ↑ Lactation yield ↑ Antioxidant capacity ↑ Hormone levels ↑ Health status | ||
Clostridium butyricum: 10 g/sow/day | From 1 week before farrowing until weaning (d 29) | IgG, IgA −3; +5 | [70] | ↑ Lipidomic and metabolomic profile of milk | ||
C. butyricum: 0.1%, 0.2%, or 0.4% | From day 90 of gestation until weaning (d 21) | IgG, IgM +6; +5 +9; +22 +17; +25 | IgG, IgM +5; +9 +14; +25 +13; +28 | [59] | ↓ Duration of farrowing ↑ Growth performance and antioxidant status of piglets | |
xylanase and xylo-oligosaccharide: 100 mg/kg | From day 85 of gestation during the lactation period | IgG, IgA, IgM +7; −3; +11 | IgG, IgA, IgM 0; +11; +9 | Sow plasma d 0 IgG, IgA, IgM +3; 0; +6 d 28 IgG, IgA, IgM +14; +10; +1 | [71] | ↑ Weight gain of piglets ↓ Oxidative stress of sows |
6.3.3. Effectiveness
6.4. Other Feed Additives (Omega-3 Fatty Acids, Plants, and Plant Extracts)
6.4.1. Mode of Action and Most Pronounced Effects
Changes in Ig Concentration (+/− % Changes Compared to the Control) | ||||||
---|---|---|---|---|---|---|
Treatment in Feed | Feeding Protocol | Colostrum | Milk | Serum/Plasma Sow or Piglet | References | Effects |
Seaweed extract (SWE) 10 g/day or fish oil (FO): 100 g/day | From day 109 of gestation until weaning (d 26) | IgG, IgA, IgM SWE: +10; −15; +14 FO: +1; 0; −11 | IgG, IgA, IgM SWE: +12; −1; −15 FO: +15; +7; +18 | Piglet serum d 5 IgG, IgA, IgM SWE: +19; +25; +2 FO: +8; −19; −11 d 15 IgG, IgA, IgM SWE: +21; −13; +17 FO: −3; +29; +4 | [57] | ↑ Lymphocyte phagocytosis at weaning ↑ Leukocyte phagocytosis at weaning (FO) No effect on piglet performance |
Seaweed extract (SWE) 1.8 g/day or 100 g/day fish oil (FO) | From day 109 of gestation until weaning (d 24) | IgG, IgA +10; −15 +1; 0 | IgG, IgA +12; −1 +15; +7 | Piglet serum d 5 IgG, IgA, IgM SWE: +19; +25; +2 FO: +8; −19; −11 d 15 IgG, IgA, IgM SWE: +21; −13; +17 FO: −3; +29; +4 | [58] | ↑ Humoral immunne response in piglets No effect on piglet performance |
Seaweed extract (SWE) 10 g/day | From day 107 of gestation until weaning (d 26) | IgG, IgA, IgM +12; +45; +7 | IgG, IgA, IgM +7; +11; +7 | Piglet serum IgG, IgA, IgM d 14: +21; +9; +22 d 26: +5; 0; −2 | [52] | ↑ Pro-inflammatory TNF-α mRNA expression in LPS-stimulated ileum tissue at weaning |
3% soybean, coconut, palm, and mixed oil | From day 107 of gestation until day 21 of lactation | There was no control group; however, Ig levels were measured in the colostrum, milk, and plasma of sows | [72] | Oil source has no effect on sow or litter performance and milk composition ↑ Colostrum fat and plasma immunoglobulin level in sows and piglets when soybean oil is fed | ||
Palm oil 3.2/4.1%, fish oil 3.0/3.9%, and soybean oil 2.9/3.8% | From day 90 of gestation until weaning (d17) | IgG, IgM PO: −8; +9; FO: +49; +36 SO: −7; −4 | IgG, IgM PO: −14; +14 FO: +16; +33 SO: −6; +4 | [76] | ↑ Weaning survival rate and weaning weight with FO and SO | |
Pinecone oil: 200 or 400 mg/kg | From day 107 of gestation until day 21 of lactation | [153] | ↓ Maternal stress ↑ Milk quality | |||
Conjugated linoleic acid 0.5% | From 106 days of gestation until 21 days of lactation | IgG +47 | Sow serum IgG d 2: +93 d 10: +42 d 20: +44 Piglet serum IgG d 15: +9 | [64] | ↑ Lysozyme levels | |
Resin acid: 5 g/day | From 1 week before farrowing until weaning (d21 or d28) in three herds | IgG, IgA, IgM +22; +1; +15 +17; −11; +4 +18; −; − | [73] | ↑ Colostrum production | ||
Lysophospholipids 0.05% | From day 110 of gestation until weaning | IgG, IgA +17; +4 | IgG, IgA +70; +2 | [86] | ↑ Intestinal health of piglets | |
Garnicol: 200 mg/kg or 600 mg/kg | From day 90 of gestation until farrowing | IgG, IgA 200 mg: +15; +80 600 mg: +18; +166 | [155] | Alleviates bile acid disorder ↑ Maternal immune and oxidative status ↑ Milk composition | ||
Resveratrol: 300 mg/kg diet | From day 20 after breeding through to gestation and lactation | [156] | ↑ Antioxidant status in placenta and milk ↑ Weaning weight | |||
Glycitein: 15 mg/kg, 30 mg/kg, and 45 mg/kg | From day 85 of gestation until day 18 of lactation | [157] | ↑ Antioxidant capacity of plasma and milk ↑ Milk composition ↑ Piglet growth | |||
Ginger extract: 0.25% and 0.5% | From 30 d before farrowing until d28 postpartum | IgG 0.25%: +15 0.5%: +17 | Sow plasma d 0 IgG 0.25%: −3 0.5%: +12 d 28 IgG 0.25%: +11 0.5%: +20 Piglet plasma d 28 IgG 0.25%: +2 0.5%: +16 | [78] | ↑ Antioxidant capacity of colostrum | |
A. paniculata 250 ppm or 1000 ppm | From 6 d before farrowing until d25 postpartum | IgG −12 0 | [82] | ↓ Longissimus muscle loss | ||
Dietary saponins, extracted from the plant Quillaja saponaria, 2.5 g/day | Between days 72 and 93 of gestation | IgG, IgA −15; +25 | IgG, IgA −13; −2 | Sow serum IgG, IgA d 0: +77; +3 d 3: +5; −13 d 21: +20; +10 | [56] | ↓ Performance of suckling piglets ↓ Piglet stillborn incidence |
200, 400, or 600 mg/kg MgSO4 supplementation | From 90 days of gestation until 21 days of lactation | IgG, IgA, IgM 200 mg: +6; +20; +14 400 mg: +16; +23; +22 600 mg: +13; +12; +8 | IgG, IgA, IgM 200 mg: −1; +3; 0 400 mg: +3; +5; +2 600 mg: +7; +11; −1 | Sow plasma d −7 IgG, IgA, IgM 200 mg: +3; +4; +20 400 mg: +39; +4; +17 600 mg: +15; 0; +20 d 0 IgG, IgA, IgM 200 mg: +5; 0; −3 400 mg: +38; +19; +3 600 mg: +54; +14; −3 d 21 IgG, IgA, IgM 200 mg: +2; +25; +17 400 mg: +47; +15; +6 600 mg: +28; +20; −3 | [75] | ↓ Survival percentage and litter weight at weaning ↓ Colostrum fat content ↑ Fecal moisture content |
β-hydroxy β-methyl butyrate 15 mg/kg | For 15 days prior to parturition in three experiments | IgG, IgA, IgM exp 1: +35; +4; +8 exp 2: +8; +4; +10 exp 3: −4; +5; +12 | [53] | ↑ Total live-born litter weight | ||
β-hydroxy β-methyl butyrate 5, 15, or 45 mg/kg | For 15 days prior to parturition | IgG, IgA, IgM 5 mg/kg: +6; −5; −3 15 mg/kg: +20; +10; +11 45 mg/kg: +44; +10; 0 | [54] | ↑ Total live-born litter weight and piglet birth weight in a quadratic response ↑ Colostrum intake and yield | ||
Sodium butyrate 500 mg/kg | One month before mating until d 7 of lactation | IgG, IgA +9; +30 | [66] | ↑ Piglet growth | ||
Fermented rapeseed meal 4% (8% in the transition period) | During gestation and lactation (d 28) | IgG, IgA, IgM +32; +17; +2 | [85] | ↑ Production parameters ↑ Nutrient digestibility ↑ Gut microbiota |
6.4.2. Effectiveness
7. General Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Quiniou, N.; Dagorn, J.; Gaudré, D. Variation of piglets’ birth weight and consequences on subsequent performance. Livest. Prod. Sci. 2003, 78, 63–70. [Google Scholar] [CrossRef]
- Islas-Fabila, P.; Roldán-Santiago, P.; de la Cruz-Cruz, L.A.; Limón-Morales, O.; Dutro-Aceves, A.; Orozco-Gregorio, H.; Bonilla-Jaime, H. Importance of Selected Nutrients and Additives in the Feed of Pregnant Sows for the Survival of Newborn Piglets. Animals 2024, 14, 418. [Google Scholar] [CrossRef]
- Gormley, A.; Jang, K.B.; Garavito-Duarte, Y.; Deng, Z.; Kim, S.W. Impacts of Maternal Nutrition on Sow Performance and Potential Positive Effects on Piglet Performance. Animals 2024, 14, 1858. [Google Scholar] [CrossRef]
- Decaluwé, R.; Maes, D.; Cools, A.; Wuyts, B.; De Smet, S.; Marescau, B.; De Deyn, P.P.; Janssens, G.P.J. Effect of peripartal feeding strategy on colostrum yield and composition in sows1. J. Anim. Sci. 2014, 92, 3557–3567. [Google Scholar] [CrossRef]
- Theil, P.K.; Krogh, U.; Bruun, T.S.; Feyera, T. Feeding the modern sow to sustain high productivity. Mol. Reprod. Dev. 2023, 90, 517–532. [Google Scholar] [CrossRef]
- Theil, P.K.; Hurley, W.L. Theil, P.K.; Hurley, W.L. The protein component of sow colostrum and milk. In Milk proteins: From Structure to Biological Properties and Health Aspects; Gigli, I., Ed.; IntechOpen: Rijeka, Croatia, 2016; pp. 183–198. [Google Scholar] [CrossRef]
- Oliviero, C.; Junnikkala, S.; Peltoniemi, O. The challenge of large litters on the immune system of the sow and the piglets. Reprod. Domest. Anim. 2019, 54, 12–21. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, F.; Zhang, Y.; Lv, Y.; Heng, J.; Min, T.; Li, L.; Guan, W. Recent progress of porcine milk components and mammary gland function. J. Anim. Sci. Biotechnol. 2018, 9, 77. [Google Scholar] [CrossRef]
- Curtis, J.; Bourne, F.J. Half-lives of immunoglobulins IgG, IgA and IgM in the serum of new-born pigs. Immunology 1973, 24, 147–155. [Google Scholar]
- Harzing, A.W. Publish or Perish. 2007. Available online: http://www.harzing.com/pop.htm (accessed on 2 October 2024).
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Schroeder, H.W., Jr.; Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 2010, 125, S41–S52. [Google Scholar] [CrossRef]
- Patel, A.; Jialal, I. Biochemistry, Immunoglobulin A. 2019. Available online: https://www.ncbi.nlm.nih.gov/books/NBK551516/ (accessed on 8 October 2024).
- Sathe, A.; Cusick, J.K. Biochemistry, Immunoglobulin M. 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK555995/ (accessed on 8 October 2024).
- Vaillant, A.A.J.; Jamal, Z.; Patel, P.; Ramphul, K. Immunoglobulin. 2018. Available online: http://www.ncbi.nlm.nih.gov/books/NBK513460/ (accessed on 8 October 2024).
- Hurley, W.L.; Theil, P.K. Immunoglobulins in mammary secretions. In Advanced Dairy Chemistry, Volume 1A: Proteins: Basic Aspects, 4th ed.; McSweeney, P.L.H., Fox, P.F., Eds.; Springer Science: New York, NY, USA, 2013; pp. 275–294. [Google Scholar]
- Salmon, H.; Berri, M.; Gerdts, V.; Meurens, F. Humoral and cellular factors of maternal immunity in swine. Dev. Comp. Immunol. 2009, 33, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Hurley, W.L. Composition of sow colostrum and milk. In The Gestating and Lactating Sow; Wageningen Academic: Wageningen, The Netherlands, 2015; pp. 193–229. [Google Scholar] [CrossRef]
- Feyera, T.; Zhou, P.; Nuntapaitoon, M.; Sørensen, K.U.; Krogh, U.; Bruun, T.S.; Purup, S.; Jørgensen, H.; Poulsen, H.D.; Theil, P.K. Mammary metabolism and colostrogenesis in sows during late gestation and the colostral period1. J. Anim. Sci. 2019, 97, 231–245. [Google Scholar] [CrossRef]
- Quesnel, H.; Farmer, C.; Devillers, N. Colostrum intake: Influence on piglet performance and factors of variation. Livest. Sci. 2012, 146, 105–114. [Google Scholar] [CrossRef]
- Amatucci, L.; Luise, D.; Correa, F.; Bosi, P.; Trevisi, P. Importance of breed, parity and sow colostrum components on litter performance and health. Animals 2022, 12, 1230. [Google Scholar] [CrossRef]
- LE Dividich, J.; Rooke, J.A.; Herpin, P. Nutritional and immunological importance of colostrum for the new-born pig. J. Agric. Sci. 2005, 143, 469–485. [Google Scholar] [CrossRef]
- Huang, S.-C.; Hu, Z.; Hasler-Rapacz, J.; Rapacz, J. Preferential mammary storage and secretion of immunoglobulin gamma (IgG) subclasses in swine. J. Reprod. Immunol. 1992, 21, 15–28. [Google Scholar] [CrossRef]
- Schnulle, P.; Hurley, W. Sequence and expression of the FcRn in the porcine mammary gland. Veter. Immunol. Immunopathol. 2003, 91, 227–231. [Google Scholar] [CrossRef]
- Kielland, C.; Rootwelt, V.; Reksen, O.; Framstad, T. The association between immunoglobulin G in sow colostrum and piglet plasma1. J. Anim. Sci. 2015, 93, 4453–4462. [Google Scholar] [CrossRef]
- Werhahn, E.; Klobasa, F.; Butler, J. Investigation of some factors which influence the absorption of IgG by the neonatal piglet. Veter. Immunol. Immunopathol. 1981, 2, 35–51. [Google Scholar] [CrossRef]
- Quesnel, H. Colostrum production by sows: Variability of colostrum yield and immunoglobulin G concentrations. Animal 2011, 5, 1546–1553. [Google Scholar] [CrossRef]
- Lanferdini, E.; Andretta, I.; Fonseca, L.; Moreira, R.; Cantarelli, V.; Ferreira, R.; Saraiva, A.; Abreu, M. Piglet birth weight, subsequent performance, carcass traits and pork quality: A meta-analytical study. Livest. Sci. 2018, 214, 175–179. [Google Scholar] [CrossRef]
- Zotti, E.; Resmini, F.A.; Schutz, L.G.; Volz, N.; Milani, R.P.; Bridi, A.M.; Alfieri, A.A.; da Silva, C.A. Impact of piglet birthweight and sow parity on mortality rates, growth performance, and carcass traits in pigs. Rev. Bras. Zootec. 2017, 46, 856–862. [Google Scholar] [CrossRef]
- Ferrari, C.; Sbardella, P.; Bernardi, M.; Coutinho, M.; Vaz, I.; Wentz, I.; Bortolozzo, F. Effect of birth weight and colostrum intake on mortality and performance of piglets after cross-fostering in sows of different parities. Prev. Veter. Med. 2014, 114, 259–266. [Google Scholar] [CrossRef]
- Van Ginneken, C.; Ayuso, M.; Van Bockstal, L.; Van Cruchten, S. Preweaning performance in intrauterine growth-restricted piglets: Characteristics and interventions. Mol. Reprod. Dev. 2023, 90, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Segura, M.; Martínez-Miró, S.; López, M.J.; Madrid, J.; Hernández, F. Effect of parity on reproductive performance and composition of sow colostrum during first 24 h postpartum. Animals 2020, 10, 1853. [Google Scholar] [CrossRef]
- Hasan, S.; Orro, T.; Valros, A.; Junnikkala, S.; Peltoniemi, O.; Oliviero, C. Factors affecting sow colostrum yield and composition, and their impact on piglet growth and health. Livest. Sci. 2019, 227, 60–67. [Google Scholar] [CrossRef]
- Cabrera, R.A.; Lin, X.; Campbell, J.M.; Moeser, A.J.; Odle, J. Influence of birth order, birth weight, colostrum and serum immunoglobulin G on neonatal piglet survival. J. Anim. Sci. Biotechnol. 2012, 3, 42. [Google Scholar] [CrossRef]
- Klobasa, F.; Butler, J.E. Absolute and relative concentrations of immunoglobulins G, M, and A, and albumin in lacteal secretion of sows of different lactation numbers. Am. J. Vet. Res. 1987, 48, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Craig, J.R.; Dunshea, F.R.; Cottrell, J.J.; Wijesiriwardana, U.A.; Pluske, J.R. Primiparous and multiparous sows have largely similar colostrum and milk composition profiles throughout lactation. Animals 2019, 9, 35. [Google Scholar] [CrossRef]
- Devillers, N.; Farmer, C.; Le Dividich, J.; Prunier, A. Variability of colostrum yield and colostrum intake in pigs. Animal 2007, 1, 1033–1041. [Google Scholar] [CrossRef]
- Amavizca-Nazar, A.; Montalvo-Corral, M.; González-Rios, H.; Pinelli-Saavedra, A. Hot environment on reproductive performance, immunoglobulins, vitamin E, and vitamin A status in sows and their progeny under commercial husbandry. J. Anim. Sci. Technol. 2019, 61, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Farmer, C.; Quesnel, H. Nutritional, hormonal, and environmental effects on colostrum in sows. J. Anim. Sci. 2009, 87, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, C.; Peng, Y.; Zhang, Y.; Liu, Y.; Liu, Y.; Yin, Y. Research progress on anti-stress nutrition strategies in swine. Anim. Nutr. 2023, 13, 342–360. [Google Scholar] [CrossRef] [PubMed]
- Black, J.; Mullan, B.; Lorschy, M.; Giles, L. Lactation in the sow during heat stress. Livest. Prod. Sci. 1993, 35, 153–170. [Google Scholar] [CrossRef]
- Machado-Neto, R.; Graves, C.N.; Curtis, S.E. Immunoglobulins in Piglets from Sows Heat-Stressed Prepartum. J. Anim. Sci. 1987, 65, 445. [Google Scholar] [CrossRef]
- Nuntapaitoon, M. Colostrum and milk in sow. In Milk Protein-New Research Approaches; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Zhao, Y.; Flowers, W.L.; Saraiva, A.; Yeum, K.-J.; Kim, S.W. Effect of social ranks and gestation housing systems on oxidative stress status, reproductive performance, and immune status of sows. J. Anim. Sci. 2013, 91, 5848–5858. [Google Scholar] [CrossRef]
- Zeng, F.; Zhang, S. Impacts of sow behaviour on reproductive performance: Current understanding. J. Appl. Anim. Res. 2023, 51, 256–264. [Google Scholar] [CrossRef]
- Aguinaga, M.A.; Gómez-Carballar, F.; Nieto, R.; Aguilera, J.F. Production and composition of Iberian sow’s milk and use of milk nutrients by the suckling Iberian piglet. Animal 2011, 5, 1390–1397. [Google Scholar] [CrossRef]
- Zou, S.; McLaren, D.; Hurley, W. Pig colostrum and milk composition:comparisons between Chinese Meishan and US breeds. Livest. Prod. Sci. 1992, 30, 115–127. [Google Scholar] [CrossRef]
- Farmer, C.; Charagu, P.; Palin, M.F. Influence of genotype on metabolic variables, colostrum and milk composition of primiparous sows. Can. J. Anim. Sci. 2007, 87, 511–515. [Google Scholar] [CrossRef]
- Inoue, T. Possible factors influencing the immunoglobulin M concentration in swine colostrum. Am. J. Veter. Res. 1981, 42, 1429–1432. [Google Scholar] [CrossRef]
- Souza, A.; Bombassaro, G.; Fonseca, F.; Lopes, L.; Maciag, S.; Volpato, F.; Bastos, A. A comparative evaluation of methods for estimating the colostrum quality in sows. Arq. Bras. Med. Veter. Zootec. 2021, 73, 1047–1057. [Google Scholar] [CrossRef]
- Jackson, J.R.; Hurley, W.L.; Easter, R.A.; Jensen, A.H.; Odle, J. Effects of Induced or Delayed Parturition and Supplemental Dietary Fat on Colostrum and Milk Composition in Sows112. J. Anim. Sci. 1995, 73, 1906–1913. [Google Scholar] [CrossRef]
- Leonard, S.G.; Sweeney, T.; Bahar, B.; O’Doherty, J.V. Effect of maternal seaweed extract supplementation on suckling piglet growth, humoral immunity, selected microflora, and immune response after an ex vivo lipopolysaccharide challenge. J. Anim. Sci. 2012, 90, 505–514. [Google Scholar] [CrossRef]
- Davis, H.; Jagger, S.; Toplis, P.; Miller, H. Feeding β-hydroxy β-methyl butyrate to sows in late gestation improves litter and piglet performance to weaning and colostrum immunoglobulin concentrations. Anim. Feed. Sci. Technol. 2021, 275, 114889. [Google Scholar] [CrossRef]
- Davis, H.E.; Jagger, S.; Toplis, P.; Miller, H.M. Dietary β-hydroxy β-methyl butyrate supplementation of sows improves litter performance and colostrum production in a dose-dependent manner. Anim. Feed. Sci. Technol. 2022, 294, 115486. [Google Scholar] [CrossRef]
- Maciag, S.; Volpato, F.; Bombassaro, G.; Forner, R.; Oliveira, K.P.; Bovolato, A.L.C.; Lopes, L.; Bastos, A.P. Effects of freezing storage on the stability of maternal cellular and humoral immune components in porcine colostrum. Veter. Immunol. Immunopathol. 2022, 254, 110520. [Google Scholar] [CrossRef]
- Llsley, S.E.; Miller, H.M. Effect of dietary supplementation of sows with quillaja saponins during gestation on colostrum composition and performance of piglets suckled. Anim. Sci. 2005, 80, 179–184. [Google Scholar] [CrossRef]
- Leonard, S.G.; Sweeney, T.; Bahar, B.; Lynch, B.P.; O’Doherty, J.V. Effect of maternal fish oil and seaweed extract supplementation on colostrum and milk composition, humoral immune response, and performance of suckled piglets. J. Anim. Sci. 2010, 88, 2988–2997. [Google Scholar] [CrossRef]
- Leonard, S.; Sweeney, T.; Bahar, B.; Pierce, K.; Lynch, B.; O’Doherty, J. The effects of maternal dietary supplementation with seaweed extract and fish oil on the humoral immune response and performance of suckling piglets. Livest. Sci. 2010, 134, 211–214. [Google Scholar] [CrossRef]
- Cao, M.; Wu, Q.J.; Zhang, P.; Li, W.T.; Mao, Z.Y.; Wu, D.M.; Jiang, X.M.; Zhuo, Y.; Fang, Z.F.; Che, L.Q.; et al. Effects of dietary Clostridium butyricum addition to sows in late gestation and lactation on reproductive performance and intestinal microbiota1. J. Anim. Sci. 2019, 97, 3426–3439. [Google Scholar] [CrossRef]
- Loisel, F.; Farmer, C.; Ramaekers, P.; Quesnel, H. Effects of high fiber intake during late pregnancy on sow physiology, colostrum production, and piglet performance. J. Anim. Sci. 2013, 91, 5269–5279. [Google Scholar] [CrossRef] [PubMed]
- Shang, Q.; Liu, H.; Liu, S.; He, T.; Piao, X. Effects of dietary fiber sources during late gestation and lactation on sow performance, milk quality, and intestinal health in piglets. J. Anim. Sci. 2019, 97, 4922–4933. [Google Scholar] [CrossRef]
- Wang, L.; Xu, X.; Su, G.; Shi, B.; Shan, A. High concentration of vitamin E supplementation in sow diet during the last week of gestation and lactation affects the immunological variables and antioxidative parameters in piglets. J. Dairy Res. 2017, 84, 8–13. [Google Scholar] [CrossRef]
- Xiong, L.; Lin, T.; Yue, X.; Zhang, S.; Liu, X.; Chen, F.; Zhang, S.; Guan, W. Maternal Selenium-Enriched Yeast Supplementation in Sows Enhances Offspring Growth and Antioxidant Status through the Nrf2/Keap1 Pathway. Antioxidants 2023, 12, 2064. [Google Scholar] [CrossRef]
- Bontempo, V.; Sciannimanico, D.; Pastorelli, G.; Rossi, R.; Corino, C.; Rosi, F. Dietary conjugated linoleic acid positively affects immunologic variables in lactating sows and piglets. J. Nutr. 2004, 134, 817–824. [Google Scholar] [CrossRef]
- Göransson, L. The effect on late pregnancy feed allowance on the composition of the sow’s colostrum and milk. Acta Veter. Scand. 1990, 31, 109–115. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Wang, M.; Guo, H.; Jia, Y.; Yang, X.; Zhao, R. Effects of sodium butyrate supplementation on reproductive performance and colostrum composition in gilts. Animal 2016, 10, 1722–1727. [Google Scholar] [CrossRef] [PubMed]
- Juthamanee, P.; Suwimonteerabutr, J.; Tummaruk, P. The influence of parity, body condition, litter size and carbetocin administration on colostrum production and immunoglobulin levels in highly productive sows within a tropical environment. Trop. Anim. Health Prod. 2024, 56, 74. [Google Scholar] [CrossRef]
- Rolinec, M.; Bíro, D.; Gálik, B.; Šimko, M.; Juráček, M. Immunoglobulins in colostrum of sows with porcine reproductive and respiratory syndrome-PRRS. J. Cent. Eur. Agric. 2012, 13, 303–311. [Google Scholar] [CrossRef]
- Leblois, J.; Massart, S.; Soyeurt, H.; Grelet, C.; Dehareng, F.; Schroyen, M.; Li, B.; Wavreille, J.; Bindelle, J.; Everaert, N. Feeding sows resistant starch during gestation and lactation impacts their faecal microbiota and milk composition but shows limited effects on their progeny. PLoS ONE 2018, 13, e0199568. [Google Scholar] [CrossRef] [PubMed]
- Ruampatana, J.; Suwimonteerabutr, J.; Homyog, K.; Mekboonsonglarp, W.; Kanjanavaikoon, K.; Van der Veken, W.; Poonyachoti, S.; Feyera, T.; Settachaimongkon, S.; Nuntapaitoon, M. Clostridium butyricum Probiotic Feed Additive: Modulation of Sow Milk Metabolomics and Mitigation of Pre-Weaning Piglet Diarrhea. Animals 2024, 14, 2098. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, W.-N.; Sun, W.-J.; Cordero, G.; Hasan, S.; Bontempo, V.; Xiao, J.-F.; Li, Y.-P.; Pi, Y.; Li, X.-L.; et al. Effects of Dietary Supplementation of Stimbiotics to Sows on Lactation Performance, Immune Function, and Anti-Inflammatory and Antioxidant Capacities during Late Gestation and Lactation. Veter. Sci. 2024, 11, 53. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, C.; Zhao, X.; Shi, B.; Shan, A. Effects of fat sources in sow on the fatty acid profiles and fat globule size of milk and immunoglobulins of sows and piglets. Anim. Feed. Sci. Technol. 2017, 234, 217–227. [Google Scholar] [CrossRef]
- Hasan, S.; Saha, S.; Junnikkala, S.; Orro, T.; Peltoniemi, O.; Oliviero, C. Late gestation diet supplementation of resin acid-enriched composition increases sow colostrum immunoglobulin G content, piglet colostrum intake and improve sow gut microbiota. Animal 2019, 13, 1599–1606. [Google Scholar] [CrossRef]
- Hasan, S.; Junnikkala, S.; Peltoniemi, O.; Paulin, L.; Lyyski, A.; Vuorenmaa, J.; Oliviero, C. Dietary supplementation with yeast hydrolysate in pregnancy influences colostrum yield and gut microbiota of sows and piglets after birth. PLoS ONE 2018, 13, e0197586. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.X.; Cheng, S.Y.; Liu, S.T.; Shi, B.M.; Shan, A.S. Dietary supplementation of magnesium sulfate during late gestation and lactation affects the milk composition and immunoglobulin levels in sows. Asian-Australas. J. Anim. Sci. 2014, 27, 1469–1477. [Google Scholar] [CrossRef]
- Jin, C.; Fang, Z.; Lin, Y.; Che, L.; Wu, C.; Xu, S.; Feng, B.; Li, J.; Wu, D. Influence of dietary fat source on sow and litter performance, colostrum and milk fatty acid profile in late gestation and lactation. Anim. Sci. J. 2017, 88, 1768–1778. [Google Scholar] [CrossRef] [PubMed]
- Maneetong, P.; Srisang, C.; Sunanta, N.; Muchalintamolee, P.; Pearodwong, P.; Suwimonteerabutr, J.; De Rensis, F.; Tummaruk, P. Postpartum prostaglandin F2α administration affects colostrum yield, immunoglobulin G, and piglet performance. Anim. Biosci. 2020, 34, 833. [Google Scholar] [CrossRef]
- Lee, S.D.; Kim, J.H.; Jung, H.J.; Kim, I.C.; Kim, S.B.; Lim, S.Y.; Jung, W.S.; Lee, S.-H.; Kim, Y.J. The effect of ginger extracts on the antioxidant capacity and IgG concentrations in the colostrum and plasma of neo-born piglets and sows. Livest. Sci. 2013, 154, 117–122. [Google Scholar] [CrossRef]
- Le Flocʹh, N.; Achard, C.S.; Eugenio, F.A.; Apper, E.; Combes, S.; Quesnel, H. Effect of live yeast supplementation in sow diet during gestation and lactation on sow and piglet fecal microbiota, health, and performance. J. Anim. Sci. 2022, 100, skac209. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Czech, A.; Grela, E.R.; Mokrzycka, A.; Pejsak, Z. Efficacy of mannanoligosaccharides additive to sows diets on colostrum, blood immunoglobulin content and production parameters of piglets. Pol. J. Vet. Sci. 2010, 13, 525–531. [Google Scholar]
- Miró, S.M.; Naranjo, S.; Madrid, J.; López, M.J.; Sánchez, C.J.; Segura, M.M.; Hernández, F. Evaluation of immunoglobulin G absorption from goat colostrum by newborn piglets. Animals 2020, 10, 637. [Google Scholar] [CrossRef]
- Tummaruk, P.; Petchsangharn, K.; Shayutapong, K.; Wisetsiri, T.; Krimtum, P.; Kaewkaen, S.; Taechamaeteekul, P.; Dumniem, N.; Suwimonteerabutr, J.; De Rensis, F. Effect of Andrographis paniculata supplementation during the transition period on colostrum yield, immunoglobulin G, and postpartum complications in multiparous sows during tropical summer. Anim. Biosci. 2024, 37, 862–874. [Google Scholar] [CrossRef]
- Wan, J.; Xu, Q.; He, J. Maternal chitosan oligosaccharide supplementation during late gestation and lactation affects offspring growth. Ital. J. Anim. Sci. 2018, 17, 994–1000. [Google Scholar] [CrossRef]
- Luise, D.; Correa, F.; Fusco, L.; Bosi, P.; Trevisi, P. Productive effects of a colostrum-oriented amino acid dietary supply for sows in transition from gestation to lactation. Ital. J. Anim. Sci. 2021, 20, 1837–1850. [Google Scholar] [CrossRef]
- Grela, E.R.; Czech, A.; Kiesz, M.; Wlazło, Ł.; Nowakowicz-Dębek, B. A fermented rapeseed meal additive: Effects on production performance, nutrient digestibility, colostrum immunoglobulin content and microbial flora in sows. Anim. Nutr. 2019, 5, 373–379. [Google Scholar] [CrossRef]
- Jang, K.B.; Purvis, J.M.; Kim, S.W. Supplemental effects of dietary lysophospholipids in lactation diets on sow performance, milk composition, gut health, and gut-associated microbiome of offspring. J. Anim. Sci. 2020, 98, skaa227. [Google Scholar] [CrossRef] [PubMed]
- Pinelli-Saavedra, A.; de la Barca, A.C.; Hernández, J.; Valenzuela, R.; Scaife, J. Effect of supplementing sows’ feed with α-tocopherol acetate and vitamin C on transfer of α-tocopherol to piglet tissues, colostrum, and milk: Aspects of immune status of piglets. Res. Veter. Sci. 2008, 85, 92–100. [Google Scholar] [CrossRef]
- Duan, X.; Chen, D.; Zheng, P.; Tian, G.; Wang, J.; Mao, X.; Yu, J.; He, J.; Li, B.; Huang, Z.; et al. Effects of dietary mannan oligosaccharide supplementation on performance and immune response of sows and their offspring. Anim. Feed. Sci. Technol. 2016, 218, 17–25. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Zhang, Y.; Lv, Y.; Qiao, H.; Tian, M.; Cheng, L.; Chen, F.; Zhang, S.; Guan, W. Effects of maternal supplementation with fully oxidised β-carotene on the reproductive performance and immune response of sows, as well as the growth performance of nursing piglets. Br. J. Nutr. 2020, 125, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Curtis, J.; Bourne, F. Immunoglobulin quantitation in sow serum, colostrum and milk and the serum of young pigs. Biochim. Biophys. Acta (BBA)-Protein Struct. 1971, 236, 319–332. [Google Scholar] [CrossRef]
- Xia, T.; Yin, C.; Comi, M.; Agazzi, A.; Perricone, V.; Li, X.; Jiang, X. Live Yeast Supplementation in Gestating and Lactating Primiparous Sows Improves Immune Response in Dams and Their Progeny. Animals 2022, 12, 1315. [Google Scholar] [CrossRef]
- Li, T.X.; Kim, I.H. Supplementing Monosodium Glutamate in Sow Diets Enhances Reproductive Performance in Lactating Sows and Improves the Growth of Suckling Piglets. Animals 2024, 14, 1714. [Google Scholar] [CrossRef]
- Trckova, M.; Faldyna, M.; Alexa, P.; Zajacova, Z.S.; Gopfert, E.; Kumprechtova, D.; Auclair, E.; D’Inca, R. The effects of live yeast Saccharomyces cerevisiae on postweaning diarrhea, immune response, and growth performance in weaned piglets. J. Anim. Sci. 2014, 92, 767–774. [Google Scholar] [CrossRef]
- Jang, Y.; Kang, K.; Piao, L.; Jeong, T.; Auclair, E.; Jonvel, S.; D’Inca, R.; Kim, Y. Effects of live yeast supplementation to gestation and lactation diets on reproductive performance, immunological parameters and milk composition in sows. Livest. Sci. 2012, 152, 167–173. [Google Scholar] [CrossRef]
- Luise, D.; Correa, F.; Stefanelli, C.; Simongiovanni, A.; Chalvon-Demersay, T.; Zini, M.; Fusco, L.; Bosi, P.; Trevisi, P. Productive and physiological implications of top-dress addition of branched-chain amino acids and arginine on lactating sows and offspring. J. Anim. Sci. Biotechnol. 2023, 14, 40. [Google Scholar] [CrossRef]
- Ifen, H.; Lindemann, M.D. Benefits of mannan oligosaccharides (MOS) for sows and weanling pigs. In Proceedings of the 2009 Midwest Swine Nutrition Conference, Indianapolis, IN, USA, 10 September 2009. [Google Scholar]
- Duan, X.; Tian, G.; Chen, D.; Yang, J.; Zhang, L.; Li, B.; Huang, L.; Zhang, D.; Zheng, P.; Mao, X.; et al. Effects of diet chitosan oligosaccharide on performance and immune response of sows and their offspring. Livest. Sci. 2020, 239, 104114. [Google Scholar] [CrossRef]
- Peng, X.; Yan, C.; Hu, L.; Huang, Y.; Fang, Z.; Lin, Y.; Xu, S.; Feng, B.; Li, J.; Zhuo, Y.; et al. Live yeast supplementation during late gestation and lactation affects reproductive performance, colostrum and milk composition, blood biochemical and immunological parameters of sows. Anim. Nutr. 2020, 6, 288–292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jurgens, M.H.; Rikabi, R.A.; Zimmerman, D.R. The effect of dietary active dry yeast supplement on performance of sows during gestation-lactation and their pigs. J. Anim. Sci. 1997, 75, 593–597. [Google Scholar] [CrossRef]
- Wen, X.; Jiang, Z.; Yang, X.; Xiao, H.; Gao, K.; Wang, L. Effect of Dietary Standardized Ileal Digestible Arginine to Lysine Ratio on Reproductive Performance, Plasma Biochemical Index, and Immunity of Gestating Sows. Animals 2024, 14, 2688. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; Li, X.G.; Kong, X.; Huang, R.; Ruan, Z.; Yao, K.; Deng, Z.; Xie, M.; Shinzato, I.; Yin, Y.; et al. Dietary l-arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids 2009, 37, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yang, J.; Wang, S.; Zhang, X.; Hou, J.; Xu, F.; Wang, Z.; Xu, L.; Diao, X. Effects of soybean isoflavone and astragalus polysaccharide mixture on colostrum components, serum antioxidant, immune and hormone levels of lactating sows. Animals 2021, 11, 132. [Google Scholar] [CrossRef]
- Kim, S.W.; Mateo, R.D.; Yin, Y.-L.; Wu, G. Functional amino acids and fatty acids for enhancing production performance of sows and piglets. Asian-Australas. J. Anim. Sci. 2006, 20, 295–306. [Google Scholar] [CrossRef]
- Wu, G.; Knabe, D.A.; Kim, S.W. Arginine nutrition in neonatal pigs. J. Nutr. 2004, 134, 2783S–2790S. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Mateo, R.D.; Wu, G.; Carroll, J.A.; Shinzato, I. Dietary L-arginine supplementation affects immune status of pregnant gilts. FASEB J. 2006, 20, A424. [Google Scholar] [CrossRef]
- Liu, X.D.; Wu, X.; Yin, Y.L.; Liu, Y.Q.; Geng, M.M.; Yang, H.S.; Blachier, F.; Wu, G.Y. Effects of dietary l-arginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein. Amino Acids 2012, 42, 2111–2119. [Google Scholar] [CrossRef]
- Zhu, C.; Guo, C.-Y.; Gao, K.-G.; Wang, L.; Chen, Z.; Ma, X.-Y.; Jiang, Z.-Y. Dietary arginine supplementation in multiparous sows during lactation improves the weight gain of suckling piglets. J. Integr. Agric. 2017, 16, 648–655. [Google Scholar] [CrossRef]
- Moreira, R.H.R.; Lanferdini, E.; Fonseca, L.d.S.; Chaves, R.F.; Garbossa, C.A.P.; Saraiva, A.; Nogueira, E.T.; de Abreu, M.L.T. Arginine improves nutritional quality of sow milk and piglet performance. Rev. Bras. Zootec. 2018, 47, e20170283. [Google Scholar] [CrossRef]
- Hong, J.; Fang, L.H.; Jeong, J.H.; Kim, Y.Y. Effects of L-arginine supplementation during late gestation on reproductive performance, piglet uniformity, blood profiles, and milk composition in high prolific sows. Animals 2020, 10, 1313. [Google Scholar] [CrossRef]
- Quesnel, H.; Quiniou, N.; Roy, H.; Lottin, A.; Boulot, S.; Gondret, F. Supplying dextrose before insemination and L-arginine during the last third of pregnancy in sow diets: Effects on within-litter variation of piglet birth weight. J. Anim. Sci. 2014, 92, 1445–1450. [Google Scholar] [CrossRef] [PubMed]
- Che, L.; Yang, P.; Fang, Z.; Lin, Y.; Wu, D. Effects of dietary arginine supplementation on reproductive performance and immunity of sows. Czech J. Anim. Sci. 2013, 58, 167–175. [Google Scholar] [CrossRef]
- Nuntapaitoon, M.; Muns, R.; Theil, P.K.; Tummaruk, P. I-arginine supplementation in sow diet during late gestation decrease stillborn piglet, increase piglet birth weight and increase immunoglobulin G concentration in colostrum. Theriogenology 2018, 121, 27–34. [Google Scholar] [CrossRef]
- Krogh, U.; Oksbjerg, N.; Purup, S.; Ramaekers, P.; Theil, P.K. Colostrum and milk production in multiparous sows fed supplementary arginine during gestation and lactation. J. Anim. Sci. 2016, 94 (Suppl. 3), 22–25. [Google Scholar] [CrossRef]
- de Aquino, R.S.; Junior, W.D.; Manso, H.; Filho, H.M.; Kutschenko, M.; Nogueira, E.; Watford, M. Glutamine and glutamate (AminoGut) supplementation influences sow colostrum and mature milk composition. Livest. Sci. 2014, 169, 112–117. [Google Scholar] [CrossRef]
- Rezaei, R.; Gabriel, A.S.; Wu, G. Dietary supplementation with monosodium glutamate enhances milk production by lactating sows and the growth of suckling piglets. Amino Acids 2022, 54, 1055–1068. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, L.-C.; Liu, Y.-Q.; Lu, J.-X.; Han, F.; Huang, Z.-W. The Synergistic effect of serine with selenocompounds on the expression of SelP and GPx in HepG2Cells. Biol. Trace Element Res. 2016, 173, 291–296. [Google Scholar] [CrossRef]
- Long, J.; Liu, Y.; Zhou, X.; He, L. Dietary serine supplementation regulates selenoprotein transcription and selenoenzyme activity in pigs. Biol. Trace Element Res. 2021, 199, 148–153. [Google Scholar] [CrossRef]
- Zhou, L.; Feng, Y.; Liu, Y.; He, L.; Zhou, X.; Yin, Y. Serine supplementation in the diets of late gestating and lactating sows improves selenium nutritional status in sows and their offspring. Biol. Trace Element Res. 2022, 200, 609–614. [Google Scholar] [CrossRef]
- Che, L.; Xu, M.; Gao, K.; Wang, L.; Yang, X.; Wen, X.; Xiao, H.; Jiang, Z. Effects of dietary valine supplementation during late gestation on the reproductive performance and mammary gland development of gilts. J. Anim. Sci. Biotechnol. 2020, 11, 15. [Google Scholar] [CrossRef]
- Blavi, L.; Solà-Oriol, D.; Llonch, P.; López-Vergé, S.; Martín-Orúe, S.M.; Pérez, J.F. Management and feeding strategies in early life to increase piglet performance and welfare around weaning: A review. Animals 2021, 11, 302. [Google Scholar] [CrossRef] [PubMed]
- Elefson, S.K.; Ross, J.W.; Rademacher, C.J.; Greiner, L.L. Evaluation of oxidized beta-carotene on sow and piglet immune systems, sow reproductive performance, and piglet growth. J. Anim. Sci. 2023, 101, skad066. [Google Scholar] [CrossRef]
- Sivertsen, T.; Vie, E.; Bernhoft, A.; Baustad, B. Vitamin E and selenium plasma concentrations in weanling pigs under field conditions in Norwegian pig herds. Acta Veter. Scand. 2007, 49, 1. [Google Scholar] [CrossRef]
- Wuryastuti, H.; Stowe, H.D.; Bull, R.W.; Miller, E.R. Effects of vitamin E and selenium on immune responses of peripheral blood, colostrum, and milk leukocytes of sows. J. Anim. Sci. 1993, 71, 2464–2472. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Han, J.H.; Guan, W.T.; Chen, F.; Wang, C.X.; Zhang, Y.Z.; Lv, Y.T.; Lin, G. Selenium and vitamin E in sow diets: I. Effect on antioxidant status and reproductive performance in multiparous sows. Anim. Feed Sci. Technol. 2016, 221, 111–123. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, F.; Guan, W.; Song, H.; Tian, M.; Cheng, L.; Shi, K.; Song, J.; Chen, F.; Zhang, S.; et al. Increasing selenium supply for heat-stressed or actively cooled sows improves piglet preweaning survival, colostrum and milk composition, as well as maternal selenium, antioxidant status and immunoglobulin transfer. J. Trace Elem. Med. Biol. 2019, 52, 89–99. [Google Scholar] [CrossRef]
- Johnston, J.B.; Nickerson, J.G.; Daroszewski, J.; Mogg, T.J.; Burton, G.W. Biologically active polymers from spontaneous carotenoid oxidation: A new frontier in carotenoid activity. PLoS ONE 2014, 9, e111346. [Google Scholar] [CrossRef]
- Gelderman, A.; Clapper, J. Effects of inorganic or organic selenium on immunoglobulins in swine. J. Anim. Sci. Biotechnol. 2013, 4, 47. [Google Scholar] [CrossRef] [PubMed]
- Mahan, D.C. Effect of organic and inorganic selenium sources and levels on sow colostrum and milk selenium content. J. Anim. Sci. 2000, 78, 100–105. [Google Scholar] [CrossRef]
- Mou, D.; Ding, D.; Li, S.; Yan, H.; Qin, B.; Li, Z.; Zhao, L.; Che, L.; Fang, Z.; Xu, S.; et al. Effect of maternal organic selenium supplementation during pregnancy on sow reproductive performance and long-term effect on their progeny. J. Anim. Sci. 2020, 98, skaa366. [Google Scholar] [CrossRef]
- Monteiro, M.S.; Poor, A.P.; Muro, B.B.; Carnevale, R.F.; Leal, D.F.; Garbossa, C.A.; Moreno, A.M.; Almond, G. The sow microbiome: Current and future perspectives to maximize the productivity in swine herds. J. Swine Health Prod. 2022, 30, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Wei, H.; Yu, H.; Xu, C.; Jiang, S.; Peng, J. Metabolic syndrome during perinatal period in sows and the link with gut microbiota and metabolites. Front. Microbiol. 2018, 9, 1989. [Google Scholar] [CrossRef] [PubMed]
- Gaukroger, C.; Edwards, S.; Walshaw, J.; Nelson, A.; Adams, I.; Stewart, C.; Kyriazakis, I. Shifting sows: Longitudinal changes in the periparturient faecal microbiota of primiparous and multiparous sows. Animal 2020, 15, 100135. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, X.; Cui, Y.; Wang, W.; Liu, H.; Li, Z.; Guo, Z.; Ma, S.; Li, D.; Wang, C.; et al. Consumption of dietary fiber from different sources during pregnancy alters sow gut microbiota and improves performance and reduces inflammation in sows and piglets. MSystems 2021, 6, e00591-20. [Google Scholar] [CrossRef]
- Leijdekkers, A.G.M.; Aguirre, M.; Venema, K.; Bosch, G.; Gruppen, H.; Schols, H.A. In vitro fermentability of sugar beet pulp derived oligosaccharides using human and pig fecal inocula. J. Agric. Food Chem. 2014, 62, 1079–1087. [Google Scholar] [CrossRef]
- Wang, L.; Beltranena, E.; Zijlstra, R. Diet nutrient digestibility and growth performance of weaned pigs fed sugar beet pulp. Anim. Feed. Sci. Technol. 2016, 211, 145–152. [Google Scholar] [CrossRef]
- Rekiel, A.; Bielecki, W.; Cichowicz, M.; Więcek, J.; Kulisiewicz, J. Effect of chosen feed additives on the histology of mucosa in fatteners’ intestines. Med. Weter. 2008, 64, 339–343. [Google Scholar]
- Gu, X.; Li, H.; Song, Z.; Ding, Y.; He, X.; Fan, Z. Effects of isomaltooligosaccharide and Bacillus supplementation on sow performance, serum metabolites, and serum and placental oxidative status. Anim. Reprod. Sci. 2019, 207, 52–60. [Google Scholar] [CrossRef]
- Simon, O.; Jadamus, A.; Vahjen, W. Probiotic feed additives—Effectiveness and expected modes of action. J. Anim. Feed. Sci. 2001, 10 (Suppl. 1), 51–67. [Google Scholar] [CrossRef]
- Sun, H.; de Laguna, F.B.; Wang, S.; Liu, F.; Shi, L.; Jiang, H.; Hu, X.; Qin, P.; Tan, J. Effect of Saccharomyces cerevisiae boulardii on sows’ farrowing duration and reproductive performance, and weanling piglets’ performance and IgG concentration. J. Anim. Sci. Technol. 2022, 64, 10–22. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, L.; Wei, S.-Y.; Chen, Z.; Ma, X.-Y.; Zheng, C.-T.; Jiang, Z.-Y. Effect of yeast Saccharomyces cerevisiae supplementation on serum antioxidant capacity, mucosal sIgA secretions and gut microbial populations in weaned piglets. J. Integr. Agric. 2017, 16, 2029–2037. [Google Scholar] [CrossRef]
- Zanello, G.; Meurens, F.; Serreau, D.; Chevaleyre, C.; Melo, S.; Berri, M.; D’inca, R.; Auclair, E.; Salmon, H. Effects of dietary yeast strains on immunoglobulin in colostrum and milk of sows. Veter. Immunol. Immunopathol. 2013, 152, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Collier, C.T.; Carroll, J.A.; Ballou, M.A.; Starkey, J.D.; Sparks, J.C. Oral administration of Saccharomyces cerevisiae boulardii reduces mortality associated with immune and cortisol responses to Escherichia coli endotoxin in pigs. J. Anim. Sci. 2011, 89, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Hancox, L.R.; Le Bon, M.; Richards, P.J.; Guillou, D.; Dodd, C.E.R.; Mellits, K.H. Effect of a single dose of Saccharomyces cerevisiae var. boulardii on the occurrence of porcine neonatal diarrhoea. Animal 2015, 9, 1756–1759. [Google Scholar] [CrossRef]
- Jarosz, Ł.; Ciszewski, A.; Marek, A.; Grądzki, Z.; Kaczmarek, B.; Rysiak, A. The effect of feed supplementation with EM Bokashi® multimicrobial probiotic preparation on selected parameters of sow colostrum and milk as indicators of the specific and nonspecific immune response. Probiotics Antimicrob. Proteins 2021, 14, 1029–1041. [Google Scholar] [CrossRef]
- Wang, C.; Wei, S.; Xu, B.; Hao, L.; Su, W.; Jin, M.; Wang, Y. Bacillus subtilis and Enterococcus faecium co-fermented feed regulates lactating sow’s performance, immune status and gut microbiota. Microb. Biotechnol. 2020, 14, 614–627. [Google Scholar] [CrossRef]
- Lauridsen, C.; Stagsted, J.; Jensen, S.K. n−6 and n−3 fatty acids ratio and vitamin E in porcine maternal diet influence the antioxidant status and immune cell eicosanoid response in the progeny. Prostaglandins Other Lipid Mediat. 2007, 84, 66–78. [Google Scholar] [CrossRef]
- McAfee, J.M.; Kattesh, H.G.; Lindemann, M.D.; Voy, B.H.; Kojima, C.J.; Sanchez, N.C.B.; Carroll, J.A.; Gillespie, B.E.; Saxton, A.M. Effect of omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation to lactating sows on growth and indicators of stress in the postweaned pig. J. Anim. Sci. 2019, 97, 4453–4463. [Google Scholar] [CrossRef]
- Shen, Y.; Wan, H.; Zhu, J.; Fang, Z.; Che, L.; Xu, S.; Lin, Y.; Li, J.; Wu, D. Fish oil and olive oil supplementation in late pregnancy and lactation differentially affect oxidative stress and inflammation in sows and piglets. Lipids 2015, 50, 647–658. [Google Scholar] [CrossRef]
- Laws, J.; Amusquivar, E.; Laws, A.; Herrera, E.; Lean, I.; Dodds, P.; Clarke, L. Supplementation of sow diets with oil during gestation: Sow body condition, milk yield and milk composition. Livest. Sci. 2009, 123, 88–96. [Google Scholar] [CrossRef]
- Holen, J.P.; Woodworth, J.C.; Tokach, M.D.; Goodband, R.D.; DeRouchey, J.M.; Gebhardt, J.T.; DeDecker, A.E.; Martinez, X. Evaluation of essential fatty acids in lactating sow diets on sow reproductive performance, colostrum and milk composition, and piglet survivability. J. Anim. Sci. 2022, 100, skac167. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.E.; Dennis, E.A. Phospholipase A2 biochemistry. Cardiovasc. Drugs Ther. 2009, 23, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Reis, P.; Holmberg, K.; Watzke, H.; Leser, M.; Miller, R. Lipases at interfaces: A review. Adv. Colloid Interface Sci. 2009, 147-148, 237–250. [Google Scholar] [CrossRef]
- Zhang, Q.; Cho, S.; Kim, B.; Kim, I.H. Pinecone oil supplemented to multiparous sows from 107 days prenatal to 21 days postpartum improves reproductive performance and milk composition and affects serum parameters. J. Anim. Physiol. Anim. Nutr. 2024, 108, 226–233. [Google Scholar] [CrossRef]
- Yamaguchi, F.; Saito, M.; Ariga, T.; Yoshimura, Y.; Nakazawa, H. Free Radical scavenging activity and antiulcer activity of garcinol from Garcinia indica fruit rind. J. Agric. Food Chem. 2000, 48, 2320–2325. [Google Scholar] [CrossRef]
- Wang, T.; Huang, L.; Xia, C.; Zhou, Y.; Yao, W.; Zhang, L.; Huang, F. Dietary supplementation with garcinol during late gestation alleviates disorders of bile acid metabolism and improves the performance of sows and newborn piglets. J. Anim. Sci. 2023, 101, skad352. [Google Scholar] [CrossRef]
- Meng, Q.; Guo, T.; Li, G.; Sun, S.; He, S.; Cheng, B.; Shi, B.; Shan, A. Dietary resveratrol improves antioxidant status of sows and piglets and regulates antioxidant gene expression in placenta by Keap1-Nrf2 pathway and Sirt1. J. Anim. Sci. Biotechnol. 2018, 9, 34. [Google Scholar] [CrossRef]
- Hu, Y.J.; Gao, K.G.; Zheng, C.T.; Wu, Z.J.; Yang, X.F.; Wang, L.; Ma, X.Y.; Zhou, A.G.; Jiang, Z.J. Effect of dietary supplementation with glycitein during late pregnancy and lactation on antioxidative indices and performance of primiparous sows. J. Anim. Sci. 2015, 93, 2246–2254. [Google Scholar] [CrossRef]
- Nguyen, T.X.; Agazzi, A.; Comi, M.; Bontempo, V.; Guido, I.; Panseri, S.; Sauerwein, H.; Eckersall, P.D.; Burchmore, R.; Savoini, G. Effects of low ω6:ω3 ratio in sow diet and seaweed supplement in piglet diet on performance, colostrum and milk fatty acid profiles, and oxidative status. Animals 2020, 10, 2049. [Google Scholar] [CrossRef]
- Ma, Y.-H.; Liu, A.-J.; Zhang, G.-R.; Lang, J. Effect of seleno-arginine on cellular immunological function in D-gal aging mice. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2007, 23, 1126–1129. [Google Scholar]
- Liu, A.; Ma, Y.; Zhu, Z. Protective effect of selenoarginine against oxidative stress in D-galactose-induced aging mice. Biosci. Biotechnol. Biochem. 2009, 73, 1461–1464. [Google Scholar] [CrossRef] [PubMed]
Serum Sow | Serum Piglet | Sow Milk (Day 6–21) | |||
---|---|---|---|---|---|
Before Farrowing (Day −2 to −7) | Farrowing (Day 0) | After Farrowing (Day 12–28) | Day 12–28 | ||
IgG colostrum | |||||
r | 0.849 | 0.468 | 0.447 | 0.617 | 0.285 |
p-value | 0.0320 | 0.1060 | 0.1090 | 0.0060 | 0.1880 |
IgA colostrum | |||||
r | 0.609 | 0.930 | 0.939 | 0.494 | 0.441 |
p-value | 0.2000 | 0.0001 | 0.0001 | 0.0520 | 0.0352 |
IgM colostrum | |||||
r | 0.873 | 0.872 | 0.844 | 0.828 | 0.996 |
p-value | 0.023 | 0.0020 | 0.0010 | 0.0005 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabó, C.; Ortega, A.D.S.V.; Lugata, J.K.; Czeglédi, L.; Csernus, B.; Gulyás, G.; Kovács, B.; Pál, K.; Pusztahelyi, T.; Kasza, R.; et al. Factors Affecting the Ig Content of Sow’s Colostrum: A Systematic Review and Meta-Analysis. Agriculture 2025, 15, 641. https://doi.org/10.3390/agriculture15060641
Szabó C, Ortega ADSV, Lugata JK, Czeglédi L, Csernus B, Gulyás G, Kovács B, Pál K, Pusztahelyi T, Kasza R, et al. Factors Affecting the Ig Content of Sow’s Colostrum: A Systematic Review and Meta-Analysis. Agriculture. 2025; 15(6):641. https://doi.org/10.3390/agriculture15060641
Chicago/Turabian StyleSzabó, Csaba, Arth David Sol Valmoria Ortega, James Kachungwa Lugata, Levente Czeglédi, Brigitta Csernus, Gabriella Gulyás, Béla Kovács, Károly Pál, Tünde Pusztahelyi, Rozália Kasza, and et al. 2025. "Factors Affecting the Ig Content of Sow’s Colostrum: A Systematic Review and Meta-Analysis" Agriculture 15, no. 6: 641. https://doi.org/10.3390/agriculture15060641
APA StyleSzabó, C., Ortega, A. D. S. V., Lugata, J. K., Czeglédi, L., Csernus, B., Gulyás, G., Kovács, B., Pál, K., Pusztahelyi, T., Kasza, R., Czakó, G., & Horváth, M. (2025). Factors Affecting the Ig Content of Sow’s Colostrum: A Systematic Review and Meta-Analysis. Agriculture, 15(6), 641. https://doi.org/10.3390/agriculture15060641