Next Article in Journal
Alleviation of Chilling Injury in Postharvest Sweet Basil (Ocimum basilicum L.) with Silicon and Abscisic Acid Applications
Previous Article in Journal
Factors Affecting the Ig Content of Sow’s Colostrum: A Systematic Review and Meta-Analysis
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Investigating the Biology of Leaf-Cutting Ants to Support the Development of Alternative Methods for the Control and Management of These Agricultural Pests

by
Virginia Elena Masiulionis
1 and
Richard Ian Samuels
2,*
1
Postgraduate Program in Agriculture and Biodiversity, Federal University of Sergipe, São Cristóvão 49107-230, SE, Brazil
2
Laboratory of Entomology and Plant Pathology, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil
*
Author to whom correspondence should be addressed.
Agriculture 2025, 15(6), 642; https://doi.org/10.3390/agriculture15060642
Submission received: 12 February 2025 / Revised: 10 March 2025 / Accepted: 13 March 2025 / Published: 18 March 2025
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)

Abstract

:
Concerns about the environmental and health risks of synthetic insecticides are driving the search for alternative pest control methods. Leaf-cutting ants (LCAs), one of the most significant pests in the neotropics, cause substantial economic damage to agriculture and present challenges for control due to their complex biology and ecology. While chemical control remains the primary strategy, its intensive use has negative environmental impacts, promotes pest resistance, and endangers non-target species, including plants, animals, and humans. This review describes the biology of LCAs, examines traditional control methods and suggests alternative strategies such as the use of entomopathogenic fungi (EPFs) combined with sublethal doses of insecticides, plant essential oils (EOs), and RNAi techniques. Here, we emphasize the need to address LCA management sustainably by investigating the biology and ecology at both the “colony” and “individual” levels. Colony-level factors include morphology, life cycle, behavior, division of labor, and nest structure, while individual-level mechanisms involve sensory, biochemical, and behavioral adaptations for garden sterilization and decontamination. This review also highlights the potential of sublethal insecticide doses combined with EPFs to induce behavioral changes and worker mortality, and it details the mode of action of EOs and the use of RNAi as promising control strategies. The integration of biological and chemical approaches could offer sustainable alternatives to synthetic insecticides.

1. Introduction

One of the main challenges in agricultural and forestry production is crop destruction caused by pests, primarily insects [1]. Currently, the use of synthetic pesticides is the most commonly used technique for pest control; however, the negative environmental impact of pesticides raises serious concerns [2]. While these compounds can offer broad-spectrum action and rapid effects in treated areas, their effectiveness is often limited in terms of duration and overall impact [3]. This is because these effects cannot be confined solely to crops, leading to their dispersion into surrounding ecosystems, where they cause significant harm to both invertebrates and vertebrates [3]. Additionally, certain synthetic insecticides exhibit a prolonged half-life, persisting in the environment for extended periods, often surpassing several generations of various animal species [4]. They also tend to accumulate in the food chain, amplifying their detrimental effects [5].
Leaf-cutting ants (LCAs) are known to cause billions of dollars in losses in forestry plantations and various agricultural crops [6,7]. Leaf-cutting ants are native to South and Central America, Mexico, and parts of the southern United States [8]. These species exhibit fascinating ecological behavior but have devastating impacts on agricultural productivity. By cutting and transporting leaves to their nests, they can quickly defoliate young plants, weaken trees in reforestation projects, and significantly reduce yields of commercial crops [9]. In farming systems where a single species predominates (monoculture), pest activity becomes even more intense due to the favorable conditions created by such practices, with large expanses of uniformly cultivated land [10,11]. These factors highlight the need for sustainable and effective management strategies that need to take into account the complex biology and adaptive capabilities of LCA.
In this context, innovative approaches for the control of LCAs are necessary, focusing on compounds that target specific physiological processes without affecting other organisms. Promising alternatives include the use of integrated pest management (IPM) strategies such as the application of sublethal doses of insecticides combined with entomopathogenic fungi (EPF), RNA interference (RNAi) technology, and bioinsecticides derived from natural sources, such as essential plant oils (EO) [12,13,14]. These strategies offer significant advantages, including lower toxicity to non-target organisms, effectiveness at low concentrations, and biodegradability. It is very important to develop safe and sustainable solutions for the responsible management of LCAs. This review aims to discuss key information about the biology and ecology of LCAs, highlighting how their complex social and organizational structure influences their behavior, adaptability, and resistance to traditional control methods. Understanding these fundamental aspects is essential for designing effective and sustainable management strategies. Additionally, the review succinctly and objectively describes traditional control methods and explores the development and application of three alternative approaches for managing these pests: (i) the use of sublethal insecticide doses combined with EPF spores, examining their impact on worker behavior and mortality; (ii) the application of RNAi as a novel tool to disrupt specific physiological processes in ants; and (iii) the use of EOs as natural control agents with insecticidal and repellent properties, characterized by their low toxicity to non-target organisms and rapid environmental degradation.

2. Leaf-Cutting Ants

Leaf-cutting ants make up a highly fascinating “autopoietic system” [15] involving a wide variety of ecological interactions. Leaf-cutting ants are eusocial insects that are found in a wide variety of habitats, distributed in regions from North America (~44 °N) to South America (~44 °S) [8,16]. LCAs include 48 species belonging to three genera, Atta (Fabricius 1804), Acromyrmex (Mayr 1865), and Amoimyrmex (Cristiano, Cardoso et al. 2020) [Hymenoptera: Formicidae: Subfamily Myrmicinae: Tribe Attini: Subtribe Attina]. Despite the differences in their biology, ecology, and geographic distribution, all LCA species are characterized by their habit of cutting leaf fragments from living plants, which are used as a substrate for the fungus that they cultivate, which in turn provides the ants with easily assimilable nutrients [17,18]. The mutualistic relationship between LCA and the fungus Leucoagaricus gongylophorus (Möller) Singer (Basidiomycota: Agaricales) is estimated to have evolved over the last 8 to 12 million years [19,20]. These insects play a preponderant role in ecosystems [9,21], increasing the availability and flow of nutrients and energy, increasing seed dispersal, as well as modifying the characteristics of the soil and vegetation [22,23,24].

3. Biology and Ecology

3.1. Ant Morphology

The morphological differences among the three genera of LCA can be observed on the dorsum of the promesonotum, with two pairs of spines in Atta, and three to four pairs of spines in Acromyrmex (the first tergum of the gaster is tuberculated) and Amoimyrmex (the first tergum of the gaster does not have tubercles). LCAs have powerful mandibles [25,26], which they use to cut different types of vegetation; their morphology is linked to the type of plant material they forage [27]. Therefore, species that harvest grasses tend to have large short mandibles, while in species that harvest dicotyledonous plants, the mandibles are longer but smaller [28]. Notable differences are observed in the way grass-cutters and dicot-cutters cut plant material, which appear to be linked to the size of their metathoracic legs. Specifically, grass-cutters have shorter metathoracic legs compared to dicot-cutters [28].

3.2. Colony Structure and Biology

3.2.1. Structure

Leaf-cutting ant colonies present a complex social organization that has a single queen (monogyny) [29], and workers display age polyethism [30], and marked polymorphism according to the genus [31,32,33]. In Atta, worker allometry is diphasic, while in Acromyrmex, it is monophasic [34]. Within the worker caste, distinctions can be made according to the division of labor [35]: with gardeners and generalists spending more time within the nest, whilst foragers, excavators, and soldiers are involved in activities outside of the nest [31,36]. Mature Atta colonies can be very large, with approximately 4–7 million individuals [18], including small “satellite” colonies linked to the primary colony [37,38]. In contrast, Acromyrmex and Amoimyrmex colonies are smaller than those of Atta, with thousands of workers [39]. Although the literature typically describes these colonies as monogynous, it has been exceptionally observed that colonies of certain species can also be polygynous [38,39].

3.2.2. Overview of the Life Cycle of an Atta Colony

An adult or sexually mature colony is considered as such three years after foundation [40,41], because at this stage it can produce winged males and gynes (virgin queens). The nuptial or mating flight is a synchronized event within the same colony as well as in other colonies, which may be of different species and from geographical areas [42,43]. This event takes place over a few days at the beginning of the rainy season when swarming behavior is triggered by weather conditions [44,45]. During the nuptial flight, queens can mate with multiple males whilst in flight [46], and the stored sperm can be used to inseminate eggs during the queen’s lifespan, which is generally more than 10–15 years [47]. Before leaving the nest on the nuptial flight, gynes carry with them in their infrabuccal pocket (a cavity located below the opening of the esophagus, just behind the base of the labium) a small quantity of the mutualistic fungus [8].
Studies have shown that nuptial flights of various Atta species can reach a range of approximately 9–11 km [48] After the nuptial flight, the mated queens land on the ground, shed their wings, and excavate a small underground “nest” consisting of a narrow entrance gallery 12–15 mm in diameter and 20–30 cm deep, which ends in a 6 cm long chamber. Once the chamber is ready, the queen seals the entrance [49]. According to Mariconi [40], on the second day after excavating the small chamber, the queen regurgitates the fungal fragment from her infrabuccal pocket. At this stage, the queen lays three types of eggs: (i) reproductive eggs, (ii) trophic eggs for her own nutrition and for the brood, and (iii) eggs that are used for mycelial growth [8]. The queen carries out the following behaviors in self-confinement: (i) caring for the fungus, (ii) self-grooming, (iii) produces eggs, (iv) feeds herself and her offspring, and (v) general care of the offspring [40,49].
After about 30 days, the brood consists of eggs, larvae, and pupae, inside a small ‘basket’ constructed from mycelium. Studies show that the first foraging adult workers emerge about 70 days after the queen establishes the nest, but this depends on the species in question [40,50]. The average lifetime of the workers varies according to species and the role performed in the nest, with lifespans estimated to be from 2 to 3 weeks and up to 4 months [34].

3.3. Nest Architecture

Leaf-cutting ants build nests to protect the colony and ensure appropriate temperature conditions [51], humidity [52], and air composition [53,54,55] for the fungus that they cultivate. In the case of Atta nests, ants remove a large amount of soil, excavating tunnels, galleries, and underground chambers [56,57]. According to Mariconi [40], it is possible to distinguish four kinds of chambers inside the nests: (i) those containing fungus gardens, (ii) waste deposits (discarded fungal garden material, old plant substrate, ant corpses), (iii) empty chambers, and (iv) chambers containing loose soil. Moser [42] also described so-called “dormancy chambers” containing leaves, workers, and myrmecophilous arthropods. Mature Atta nests can contain between 300 and 7800 chambers when counted from the ground surface down to a depth of 7–8 m [56]. Worker ants are capable of moving between 30 and 40 tons of soil during the construction of their nests, which corresponds to approximately 1.1 tons per hectare [23,58]. Externally, loose soil accumulates, forming one or several mounds with holes for ventilation or foraging [34,59,60]. Acromyrmex nests are smaller than those of Atta, reaching a depth of approximately 5 m, depending on the ant species and the environmental conditions. The number of chambers varies, with a main chamber plus tens or hundreds of smaller chambers, with various dimensions and shapes [61,62,63]. On the surface, they can form a mound of loose earth, covered with sticks, plant waste, or a simple entrance hole [64]. Most species across the three genera translocate their waste deposits to underground chambers [8,65], although there are exceptions where garbage can be discarded outside the nest or at a certain distance from the entrance holes [8,66]. Another characteristic of LCA nests is that the foraging trails are marked with pheromones to recruit workers to collect suitable resources [66,67]. These trails are used to facilitate the transport of the harvested vegetation to the nests [68,69].

3.4. The Silent Collaboration: Fungus Garden and a Small Biocenosis

3.4.1. Fungus Garden

According to the nutritional requirements of the mutualistic fungus, LCAs select plants that are suitable for fungal growth [70,71]. Depending on the ant species, this selection consists of leaves, flowers, fruits, and/or seeds of mono- or dicotyledonous plants that are subsequently cut and transported to the nests [8,70,72]. Inside the nest, the plant material is then processed in preparation for use as a substrate for the fungus, which involves cutting it into smaller pieces, licking, crimping, chewing, sterilizing, and fertilizing the fragments with fecal droplets [73,74,75]. These droplets contain various enzymes such as proteases, amylases, chitinases, cellulases, pectinases, and laccases [75,76,77]. The fungus is inoculated onto this processed material, forming a sponge-shaped structure known as the ‘fungus garden’ [78]. In specific parts of the fungus garden, hyphae present dilatations at their tips called ‘gongilidium’ (plural: gongilidia) [78,79], which form clusters known as ‘staphyla’ [8]. These are mainly consumed by the queen, brood, and some workers [17,80,81], although adult workers can also obtain some of their nutritional requirements by consuming plant sap [17,82]. Gongylidia are structures that concentrate essential amino acids [18,72,83,84], carbohydrates, lipids [85,86], and enzymes, which are produced by the fungus and ingested by the ants, which facilitate the digestion of plant material [86,87,88,89].

3.4.2. Small Biocenosis

The fungus gardens can be considered “small biocenoses” where, in addition to the cultivated fungus, other microorganisms coexist in a state of equilibrium. These microorganisms, isolated from the surface of the ants’ bodies or from the fungus gardens, include bacteria that produce antibiotics (Actinomycetes), along with other bacteria, viruses, yeasts, black yeast-like fungi, and filamentous fungi (Table 1). While some of these fungi are opportunistic, others exhibit antagonistic interactions with the cultivated fungus, contributing to the complex dynamics of the garden ecosystem.
When considering antagonistic fungi, two genera are regularly associated with LCAs: Trichoderma sp. [111,112] and Escovopsis sp. [113,114,115,116]. Both of these fungi are ascomycetes (Ascomycota: Hypocreales: Hypocreaceae). Entomopathogenic fungi (Ascomycota: Hypocreales e Eurotiales; Entomophthoromycota: Entomophthorales) have also been detected in this system, isolated from the bodies of workers, queens, and from the “fungus garden” (Table 1).
A recent study [110] describes the detection of two virus-like particles isolated from L. gongylophorus, which were visualized using transmission electron microscopy. Through RNA sequencing, two strains of mycoviruses with positive single-stranded RNA genomes (+ssRNA) were identified: Leucoagaricus gongylophorus tymo-like virus 1 (LgTlV1) and Leucoagaricus gongylophorus magoulivirus 1 (LgMV1). This discovery is highly significant, as it suggests that these mycoviruses may play a symbiotic role in the gardens cultivated by leaf-cutting ants. However, further research is needed to clarify whether these strains act as mutualists, commensals, or parasites within this complex biological system [110].

3.4.3. Other Organisms Associated with Nests

Inside the nests, in association with the ants, it is possible to find a variety of myrmecophiles [117]. These organisms can be found in fungal chambers, garbage deposits, galleries, and tunnels. Among the myrmecophilous arthropods are mites [118,119], beetles [8,120,121], moths [122], cockroaches [123], pseudoscorpions [124], spiders [125], flies, and other insects [126,127,128]. Nests can also house vertebrates such as frogs and snakes [129,130].

3.5. Protection of the Microenvironment: A Fundamental Balance

The maintenance of relatively aseptic conditions inside the nests, which helps prevent epizootic and epiphytic diseases, is the result of a set of actions carried out by the ants, the cultivated fungus, and the associated microbiota [131,132,133,134,135,136,137]. Decontamination, disinfection, and sterilization of biosystems (ants–fungus gardens) involve sensory, morphological, biochemical, and behavioral aspects.

3.5.1. Sensory Aspects

Among the actions that LCAs have developed to control biohazards is sensory detection using the antennae. The sensitivity of the antennae can be observed in tests using attractive baits containing spores of pathogenic fungi, which are rejected by the ants [131]. This detection triggers alarm/defense behavior and activates the cleaning of the contaminated parts of the body and the fungus garden by intensive use of the tibio-tarsal comb, as well as allo-grooming [131]. Studies have shown that spores of filamentous fungi such as Aspergillus, Penicillium, Paecilomyces, Scaputariopsis, and Trichoderma produce 2-heptanone [138,139,140], which triggers an alarm reaction similar to the specific alarm pheromone of the ants themselves [141]. Antennal detection of microorganisms is due to neural activity in the antennal lobes, suggesting that chemical compounds are detected by olfactory receptor neurons [141,142]. These neurons are located in specialized olfactory sensilla in the antenna, representing the main detector of pheromones that convert chemical signals into neural activity and relay that information to glomeruli in the antennal lobe [143].

3.5.2. Morphological and Biochemical Aspects

Certain morphological characteristics provide protection against pathogenic organisms. The cuticle, due to its rigidity and hardness, is one of the most important protective barriers [144,145]. Another barrier is the infrabuccal pocket, which acts as a filtration structure, allowing only fluids and small particles to reach the digestive tract [146,147]. Fungal spores or other contaminants that become trapped in the infrabuccal pocket are coated with salivary secretions, which contain heat-resistant chitinolytic enzymes released by the labial glands [85,148,149]. In addition to the salivary glands, labial glands, mandibular glands, and metapleural glands are involved in the prevention of infections by secreting antimicrobial substances [150,151,152,153].

3.5.3. Antibiosis

In addition to the strategies mentioned above, LCA colonies are protected by microbial defenses (beneficial associations with microorganisms) and compounds released by the mutualistic fungus.
  • Associated bacteria: Pseudonocardia and Streptomyces actinobacteria coexist in symbiosis on the surface of the exoskeleton of several species of LCAs [154,155]. These actinobacteria produce diffusible and volatile antimicrobial compounds [91,156,157,158]. This microbial complex protects the workers from infection by entomopathogenic fungi [159,160] as well as maintaining homeostasis within the fungal chambers, preventing the development of unwanted microorganisms [161,162]. In addition to actinobacteria, Gram-negative bacteria belonging to the genus Burkholderia (Order: Burkholderiales; Family: Burkholderiaceae) have been isolated from the fungus garden. These bacteria also inhibit entomopathogenic fungi [92]. In addition to bacteria, yeasts isolated from fungal gardens inhibited the growth of entomopathogenic fungi and other L. gongylophorus-antagonistic fungi [163].
  • Fungi cultivated by the ants: Although further studies are still needed, mutualistic fungi cultivated by LCAs release substances with antibacterial and antifungal properties [8,131,164,165,166], as well as a complex of volatile organic compounds [167]. However, it is surprising that, despite the potential relevance of these properties, there is a notable lack of recent research exploring in depth the antibiotic, antifungal, or other possible applications of these compounds, leaving a significant gap in the current knowledge of this system.

3.5.4. Behavioral Aspects

Hygienic behavior is one of the most important factors in keeping the colony free of antagonistic organisms [131,135,168,169,170]. These behaviors are as follows:
  • Self-grooming involves the meticulous care of personal hygiene, especially the antennae [171,172]. Self-grooming enables the ants to collect debris, spores, hyphae, or dirt particles in their infrabuccal pockets and then discard them in the form of waste pellets. Self-grooming also fulfills the function of spreading antimicrobial substances over the body surface [173,174].
  • Mutual grooming or allo-grooming enables workers to keep their bodies clean, especially the parts that are hard to reach by self-grooming [132,175,176,177].
  • Weeding behavior is another form of antisepsis, but of the fungus garden by the worker ants, originally proposed by Möller [78] and confirmed by Weber [177] and Currie and Stuart [178]. Weeding involves using the mouthparts to remove regions of the garden contaminated with sporulating foreign invasive fungi [154,179,180]. Currie and Stuart [178] defined another disinfection behavior for fungus gardens, which they called “fungus grooming”. This involves the removal of foreign spores by cleaning the garden with the mouthparts, collecting and accumulating these fragments as pellets in the infrabuccal pocket, and then expelling them in the garbage deposit.

4. Economic Implications and Innovative Management Approaches

Leaf-cutting ants are considered significant pests due to the severe damage they cause to crops and forest plantations (Table 2). In agricultural and reforestation areas, their defoliation activity and nest excavation compromise the growth and form of species such as Eucalyptus and Pinus, reducing the wood volume by up to 13% after a single defoliation event and causing more severe losses with successive defoliations [7]. For example, these insect pests can consume up to three tons of sugarcane annually per colony [6]. Additionally, it is estimated that up to 30% of forestry plantation management costs are allocated to control these pests, while indirect impacts, such as soil erosion near the nests and possible damage to machinery or infrastructure due to subsidence, further exacerbate their pest status [6,181].
The control of LCA (summarized in Table 3) faces significant challenges, as the available options are limited and mostly ineffective at keeping populations below economically acceptable levels [7]. Furthermore, the use of synthetic compounds often has negative impacts on both human health and the environment [6]. The complexity of control measures arises from the size and structure of nests, their behavior, complex social organization, and the large ant populations, requiring significant efforts and intensive use of resources to achieve successful outcomes. Although chemical options remain the most effective, many insecticides have now been banned, highlighting the urgent need to find more sustainable and effective alternatives [212].
Among the alternative control methods that require further development are (i) the use of sublethal doses of insecticides combined with EPF spores, aimed at enhancing the action of biological agents; (ii) research on RNAi as a novel tool to disrupt key genes involved in ant development or behavior; and (iii) the use of EO, known for their natural repellent and/or insecticidal properties, as ecological, low-impact environmental options.
Exploring these alternatives could lay the foundation for more sustainable and effective strategies, aligned with current demands for environmental conservation and responsible agriculture.

4.1. Combinations of Sublethal Doses of Insecticides and EPF

Neonicotinoids are neuroactive insecticides that act by stimulating nicotinic acetylcholine receptors (nAChRs) in the central nervous system of insects, functioning as agonists of these receptors and mimicking the action of acetylcholine (ACh) [264]. However, unlike ACh, neonicotinoids are not degraded by the enzyme acetylcholinesterase (AChE), resulting in continuous stimulation, which leads to neurotoxicity and cellular death [265,266,267]. This specificity for insect nAChRs, due to electronegative binding sites, gives neonicotinoids high selective toxicity [268]. Although initially considered less harmful to mammals, recent research has highlighted potential impacts on non-target biological systems, such as the immune and reproductive systems, underscoring the importance of assessing their environmental and toxicological risks [269,270]. Within the group of neonicotinoids, imidacloprid is one of the most widely used compounds due to its efficacy and broad-spectrum action [271]. Studies have shown that sublethal doses of this compound affect various aspects of insect behavior [272,273]. In ants, for example, disruptions have been reported in excavation, foraging, brood care, and increased consumption of sugar solutions [274,275]. These findings emphasize the possible influence of imidacloprid on activities essential for colony survival.
Neonicotinoids, including imidacloprid, have been extensively studied for use against invasive ant species such as Linepithema humile [276,277], Solenopsis invicta [274], Lasius nigerLasius flavus [278], and Lasius neglectus [273]. In Pogonomyrmex occidentalis, low doses (50 ppm) affected foraging capacity by disrupting their orientation system [279]. These sublethal effects, though seemingly minor, can accumulate over time, compromising colony fitness and altering population dynamics [280].
While neonicotinoids have been widely studied in invasive species, their use in leaf-cutting ants remains limited. However, preliminary research suggests they could be integrated into integrated pest management (IPM) strategies when combined with entomopathogenic fungi [281]. This approach takes advantage of the behavioral and physiological disruptions induced by neonicotinoids to enhance the effectiveness of biological agents.
Entomopathogenic fungi belong to different taxonomic groups, such as Oomycota, Microsporidia, Chytridiomycota, Entomophthoromycota, Basidiomycota, and Ascomycota, with Ascomycota and Entomophthoromycota being the most commonly found in natural environments [282,283]. Within Ascomycota, genera such as Beauveria, Metarhizium, Lecanicillium, Paecilomyces, and Isaria have been extensively used in biological applications due to their effectiveness against a wide range of insect pests [284,285,286,287,288,289]. The EPF infection process begins with spore adhesion to the host cuticle, facilitated by electrostatic and hydrophobic interactions and the action of lytic enzymes [283,290]. Following adhesion, spores germinate and produce specialized structures, such as appressoria in many species, allowing them to penetrate the insect cuticle [290,291]. Through this penetration, fungi reach the hemolymph, rich in nutrients such as sugars, proteins, and lipids, where they proliferate and release toxins, disrupting insect physiology and leading to host death [290,292].
However, using EPF as a standalone control tool has limitations. Their action is often slower compared to chemical methods, they exhibit low persistence under adverse environmental conditions, and broad application coverage is required, which can increase costs [282,293,294,295,296]. For these reasons, optimizing their application through technologies such as encapsulation or integrating them into combined strategies with other control methods is essential to overcome their disadvantages [283,297].
Although there are few records of natural infections of LCAs by EPF under field conditions [106,298,299], laboratory studies have demonstrated that LCA are susceptible to fungal infections under controlled conditions [300]. Nevertheless, the failure of many experiments using fungal spores, even at high concentrations [131], is attributed to the ants’ highly efficient prophylactic strategies.
Despite these challenges, recent research has demonstrated the potential for combining fungal spores with sublethal concentrations of neurotoxic insecticides such as imidacloprid [12,244]. The principle behind this combination lies in the ability of neurotoxic insecticides to disrupt the normal hygienic behaviors of ants. This disruption, caused by neurotoxic activity, acts synergistically by allowing fungal spores to germinate and penetrate the host before the insects can remove them [301,302]. This combined strategy represents a promising approach to overcome the natural barriers that hinder efficient pest control [12].
Despite advances in the study of neonicotinoids, research on their impact on leaf-cutting ants remains scarce. Studies evaluating not only sublethal effects under realistic field conditions but also their long-term impact on colony reproductive fitness are necessary. Neonicotinoids offer significant advantages, such as high specificity and efficacy, but also pose environmental and toxicological risks that must be carefully considered. Their integration into more sustainable control strategies, alongside biological and physical approaches, could represent a promising tool for responsible pest management in agricultural systems.

4.2. Applicability of RNAi as a Potential Pest Control Method

RNA interference has emerged as an innovative and promising tool for pest control, offering a safer and more sustainable alternative to conventional chemical pesticides [303,304]. This gene-silencing mechanism interferes with the expression of specific genes, disrupting vital processes in target organisms while reducing the environmental impact [305].
Initially discovered in the model organism Caenorhabditis elegans [306], RNAi is a conserved process across diverse organisms, regulating gene expression at the post-transcriptional level in response to the presence of double-stranded RNA (dsRNA) [307]. Subsequent studies in model organisms like Drosophila melanogaster have clarified the molecular foundations of this process, laying the groundwork for its application in agricultural pest control [303,308]. The RNAi process begins when dsRNA is processed by the endonuclease Dicer, which fragments it into small ~19–25 base pair segments known as small interfering RNA (siRNA) [309,310]. One strand of the siRNA associates with the Argonaute (Ago) protein, forming the RNA-induced silencing complex (RISC). This complex recognizes and degrades complementary mRNA, specifically suppressing gene expression [311,312,313].
Initially identified as an evolutionarily conserved antiviral response [314], RNAi also acts as a gene expression regulator in eukaryotes and has been widely utilized as an experimental tool in biological research [13,304,315,316]. The usefulness of RNAi in pest control depends on an efficient dsRNA delivery system tailored to the species and objectives. The main strategies include (i) microinjection: precise but limited to laboratory experiments; (ii) oral ingestion: ideal for field applications but faces challenges such as enzymatic degradation of dsRNA in the insect digestive tract; and (iii) topical application: useful for insects with permeable cuticles, although less effective for systemic distribution [317,318].
RNAi studies have been conducted on various ant species (Table 4), including Solenopsis invicta, Camponotus floridanus, Diacamma spp., Pheidole hyatti, Harpegnathos saltator, and Nylanderia fulva (reviewed by Allen [13]). For example, in S. invicta, RNAi is capable of silencing genes related to pheromone synthesis, regulating viruses, and developing oocytes [318]. In H. saltator, interference with the corazonin receptor gene affected reproductive flexibility and hunting behavior [319]. Similarly, genes related to caste development and endosymbiont regulation have been investigated in P. hyatti and C. floridanus [320,321].
However, in the case of LCA, no specific studies have been published to date. These species present unique challenges due to their eusocial colonies and hygienic behaviors, which hinder dsRNA delivery and efficacy [13]. However, RNAi is a promising biotechnological tool for pest control [337]. Its main advantages include high specificity, minimization of impacts on non-target organisms, and the ability to silence essential genes, affecting individuals and colony functioning [13,338]. However, this technology faces several limitations, for example, (i) stability of dsRNA: degrading enzymes in the environment or insect digestive systems [312,339]; (ii) efficient delivery: developing formulations that resist worker manipulation and that could be distributed through trophallaxis within colonies [340,341]; and (iii) specificity and safety: biopesticides must avoid impacts on beneficial species, such as pollinators or predators [338,342].
Incorporating nanomaterials has significantly improved RNAi efficacy. Nanoparticles protect dsRNA molecules from degradation, facilitate their transport to target cells, and increase environmental stability, essential for field applications [318,326]. Additionally, ant genomic sequencing and technologies like CRISPR offer complementary approaches for identifying and manipulating key genes [304,308,332,343].
The design of biopesticides for use against LCAs must consider their unique biology and ecology. It is essential to target genes that affect critical functions such as caste development, reproduction, or social communication while circumnavigating defensive or hygienic behaviors [13]. Advances in formulating dsRNA baits resistant to environmental degradation are promising, although success depends on overcoming current technical barriers and ensuring the safety and specificity of the developed materials [13,341].
Although no specific studies have assessed the impact of RNAi at the colony level in ants, the overall prospects are encouraging [13]. The combination of advances in genomics, biochemistry, and biotechnology paves the way for sustainable pest control, with potential benefits for both agriculture and the ecosystem [342,343].

4.3. Application of Essential Oils as a Low-Impact Alternative to Conventional Control Methods

Plants allocate a significant amount of energy and chemical resources to produce secondary metabolites such as EOs and alkaloids to defend themselves against stress and predators [344,345]. These secondary metabolites, present throughout the plant or in specific localized tissues [346], play a crucial role in insect protection through mechanisms of antixenosis (non-preference) and antibiosis [347]. Additionally, they contribute to indirect defense via volatile compounds released during insect-induced damage, which attract the natural enemies of harmful insect pests [348].
In this context, EOs stand out due to their biodegradability, low environmental persistence, and absence of negative effects on groundwater, positioning them as an eco-friendly and effective solution for pest control [349,350]. EOs are complex mixtures of volatile compounds, including monoterpenes, sesquiterpenes, and phenylpropanoids [351]. These compounds are synthesized as secondary metabolites in the plant’s secretory structures to defend against herbivores and pathogens [352]. Their composition can vary depending on factors such as plant variety, extraction method, and geographical conditions [353,354].
Various studies have confirmed that EOs possess insecticidal, repellent, antifeedant, and growth-regulating properties, demonstrating toxic effects on a wide range of arthropod pests, including Lepidoptera, Coleoptera, mites, Diptera, cockroaches, and termites [355,356,357,358]. These compounds also exhibit antifungal, antibacterial, and antioxidant activities and low toxicity toward non-target organisms, making them valuable tools for sustainable agriculture [359,360].
The toxic mechanisms of EOs against insects involve their ability to interfere with critical physiological processes [361]:
  • Acting as repellents [362];
  • Inhibiting acetylcholinesterase (AChE) activity, leading to the accumulation of acetylcholine (ACh) in synapses and causing overexcitation of the nervous system and ultimately insect death [363,364];
  • Modulating insect GABA receptors, mainly as positive allosteric modulators, which disrupt neuronal function by altering chloride (Cl−) channel activity, resulting in either hyperexcitation or nervous system inhibition, leading to insect death [361,365,366];
  • Inhibiting glutamate-activated chloride receptors (GluCls), which are expressed in the head region and neuronal ganglia and also found in legs, intestines, and reproductive systems, affecting olfactory learning, memory, muscles, and antennae [367,368,369];
  • Mimicking the effects of octopamine, a biogenic amine essential in the arthropod nervous system, synthesized from tyrosine and playing a key role as a neurotransmitter, neurohormone, and neuromodulator, regulating processes such as memory, learning, fat metabolism, respiration, and muscle function [370,371,372,373,374];
  • Acting as insect growth regulators (IGRs), interfering with key developmental processes such as molting and metamorphosis [375,376];
  • Altering the cuticle structure, causing dehydration and death. EO components displace cuticle lipids, reducing cuticle hydrophobicity and increasing permeability, facilitating the entry of toxic substances into the insect and weakening its fundamental/primary protective barrier [377,378,379];
  • Affecting antioxidant systems by modulating their defense mechanisms against oxidative stress. Some EOs increase reactive oxygen species (ROS) levels and reduce the activity of key antioxidant enzymes, such as superoxide dismutase, catalase, peroxidases, and glutathione-S-transferase, compromising pest defenses and promoting mortality [361,380].
EOs primarily target the insect nervous system, disrupting motor and cognitive functions through interactions with specific receptors, leading to behavioral changes such as intra-colony aggression, reduced foraging, and social disorganization [253,254,381,382]. These effects, caused by compounds such as caryophyllene oxide, β-eudesmol, and thymol not only directly compromise ant survival but can also dismantle the social structure of colonies, hindering their adaptability [14]. However, studies evaluating the use of EOs as bioinsecticides for controlling LCAs are limited, with only one investigation conducted under field conditions (Table 5) [14].
In the case of LCAs, EOs have demonstrated significant neurotoxic effects, causing tremors and paralysis in Atta opaciceps and A. sexdens following the application of Pogostemon cablin EO (Lamiaceae) [396], as well as disorientation and migration of entire Acromyrmex crassispinus and Acromyrmex hispidus colonies following the application of Drimys angustifolia EO (Winteraceae) [385].
Additionally, their ability to inhibit the growth of the symbiotic fungus L. gongylophorus is a complementary effect, enhancing their potential as dual management tools [393,394]. EO application methods include direct contact, spraying, fumigation, and exposure to volatiles, although most tests have been conducted in controlled laboratory settings. Expanding research to field scenarios is essential to evaluate the practical feasibility of applying EO in integrated pest management strategies.

5. Conclusions

Leaf-cutting ants have high ecological and economic relevance due to their complex biology, eusocial behavior, and ability to significantly impact agricultural systems. Considered as superorganisms [398,399], their colonies exhibit an advanced level of organization, where the interaction between the colony components and their environment allows them to adapt and thrive. However, this biological success also makes them one of the most prominent pests in tropical and subtropical regions, seriously affecting commercial crops and forest plantations.
The control of these pests has traditionally relied on the use of broad-spectrum chemical insecticides. While effective, these approaches present serious limitations, such as toxicity to non-target organisms, environmental contamination, and the potential for resistance development in colonies. This has driven the search for more sustainable alternatives that include a deeper understanding of the biology and ecology of these ants.
Among alternative methods, the use of sublethal doses of insecticides combined with entomopathogenic fungi has shown promising results by taking advantage of both neurotoxic impacts and fungal infections to overcome the ants’ hygienic defenses. Similarly, the use of RNAi could be a revolutionary tool for targeting key genetic processes, such as caste development and reproduction, though it faces technical challenges in relation to the efficient delivery of dsRNA to colonies. On the other hand, EOs, with their dual action against ants and their symbiotic fungus, represent an eco-friendly option with potential for integrated management, although their application in the field requires further research.

6. Future Directions

  • Further studies on sublethal effects of insecticides and EOs: expand research on the sublethal effects on colony behavior and social organization, particularly in natural contexts;
  • Integration of biological methods: strengthen the use of EPF in combination with other approaches, assessing their efficacy under different environmental conditions and life stages of the LCAs;
  • Optimization of RNAi delivery: develop efficient methods for dsRNA administration, such as baits resistant to environmental degradation and strategies facilitating trophallaxis-based distribution;
  • Genomic and transcriptomic analyses: apply ‘omics’ techniques to identify new target genes and crucial metabolic pathways in both ants and their symbiotic fungus, which could be manipulated through biotechnology;
  • Comprehensive evaluation of EOs: conduct field-scale studies to validate their efficacy and practical feasibility, including impact analyses on non-target species and an evaluation of application methods;
  • Ecological impact of alternative methods: study the long-term consequences of non-chemical approaches on local ecosystems to ensure these solutions are genuinely sustainable.
The management of LCAs requires a multidisciplinary approach that combines biological, chemical, and biotechnological strategies. Only through the effective integration of these methods, supported by robust research, will it be possible to develop sustainable and targeted solutions that minimize the environmental and economic impacts of this pest.

Author Contributions

V.E.M.: conceptualization, writing—original draft; R.I.S.: conceptualization, writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Funding

R.I.S. receives support from CNPq (grant number 309975/2021-2) and FAPERJ (grant number 200.377/2023).

Data Availability Statement

No new data were created or analyzed in this study.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Chowański, S.; Kudlewska, M.; Paweł Marciniak, P.; Rosiński, G. Synthetic insecticides—Is there an alternative? Pol. J. Environ. Stud. 2014, 23, 291–302. [Google Scholar]
  2. Ahmad, M.F.; Ahmad, F.A.; Alsayegh, A.A.; Zeyaullah, M.; AlShahrani, A.M.; Muzammil, K.; Saati, A.A.; Wahab, S.; Elbendary, E.Y.; Kambal, N.; et al. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 2024, 10, e29128. [Google Scholar] [CrossRef]
  3. Hassaan, M.A.; Nemr, A.E. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques, Egypt. J. Aquat. Res. 2020, 46, 207–220. [Google Scholar] [CrossRef]
  4. Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef]
  5. Ansari, I.; El-Kady, M.M.; Mahmoud, A.E.D.; Arora, C.; Verma, A.; Rajarathinam, R.; Singh, P.; Verma, D.K.; Mittal, J. Persistent pesticides: Accumulation, health risk assessment, management and remediation: An overview. Desalination Water Treat. 2024, 317, 100274. [Google Scholar] [CrossRef]
  6. Della Lucia, T.M.; Gandra, L.C.; Guedes, R.N. Managing leaf-cutting ants: Peculiarities, trends and challenges. Pest Manag. Sci. 2014, 70, 14–23. [Google Scholar] [CrossRef]
  7. Zanetti, R.; Zanuncio, J.C.; Santos, J.C.; Da Silva, W.L.P.; Ribeiro, G.T.; Lemes, P.G. An Overview of integrated management of leaf-cutting ants (Hymenoptera: Formicidae) in Brazilian forest plantations. Forests 2014, 5, 439–454. [Google Scholar] [CrossRef]
  8. Weber, N.A. Gardening Ants: The Attines; American Philosophical Society: Philadelphia, PA, USA, 1972; p. 146. [Google Scholar]
  9. Leal, I.R.; Wirth, R.; Tabarelli, M. The multiple impacts of leaf-cutting ants and their novel ecological role in human-modified neotropical forests. Biotropica 2014, 46, 516–528. [Google Scholar] [CrossRef]
  10. Blanton, C.; Ewel, J. Leaf-cutting herbivory in successional and agricultural tropical ecosystems. Ecology 1985, 66, 861–869. [Google Scholar] [CrossRef]
  11. Vasconcelos, H.L.; Cherrett, J.M. Changes in leaf-cutting ant populations (Formicidae: Attini) after the clearing of mature forest in Brazilian Amazonia. Stud. Neotrop. Fauna Environ. 1995, 2, 107–113. [Google Scholar] [CrossRef]
  12. Galvanho, J.P.; Carrera, M.P.; Moreira, D.D.O.; Erthal, M., Jr.; Silva, C.P.; Samuels, R.I. Imidacloprid inhibits behavioral defenses of the leaf-cutting ant Acromyrmex subterraneus subterraneus (Hymenoptera: Formicidae). J. Insect Behav. 2013, 26, 1–13. [Google Scholar] [CrossRef]
  13. Allen, M.L. Prospects for using RNAi as control for ants. Front. Agron. 2021, 3, 591539. [Google Scholar] [CrossRef]
  14. Pinheiro, H.S.S.; Calazans, C.C.; Masiulionis, V.E.; Andrade, V.S.; Carvalho, T.S.; Bomfim Gois, I.; Ribeiro, G.T.; Blank, A.F.; Araújo, A.P.A.; Bacci, L. Potential of alternative control of leaf-cutting ants using essential oils: A systematic review. Agric. For. Entomol. 2025, in press. [Google Scholar]
  15. Maturana, H.R.; Varela, F.J. De Máquinas y Seres Vivos: Autopoiesis, la Organización de lo vivo, 1st ed.; Lumen: Buenos Aires, Argentina, 2003; p. 140. [Google Scholar]
  16. Farji-Brener, A.G.; Ruggiero, A. Leaf-cutting ants (Atta and Acromyrmex) inhabiting Argentina: Patterns in species richness and geographical range size. J. Biogeogr. 1994, 21, 391–399. [Google Scholar] [CrossRef]
  17. Quinlan, R.J.; Cherrett, J.M. The role of fungus in the diet of the leaf-cutting ant Atta cephalotes (L.). Ecol. Entomol. 1979, 4, 151–160. [Google Scholar] [CrossRef]
  18. Hölldobler, B.; Wilson, E.O. The Ants; Harvard University Press: Cambridge, MA, USA, 1990; p. 737. [Google Scholar]
  19. Schultz, T.R.; Brady, S.G. Major evolutionary transition in ant agriculture. Proc. Natl. Acad. Sci. USA 2008, 105, 5401–5435. [Google Scholar] [CrossRef] [PubMed]
  20. Schultz, T.R.; Sosa-Calvo, J.; Kweskin, M.P.; Lloyd, M.W.; Dentinger, B.; Kooij, P.W.; Vellinga, E.C.; Rehner, S.A.; Rodrigues, A.; Montoya, Q.V.; et al. The coevolution of fungus-ant agriculture. Science 2024, 386, 105–110. [Google Scholar] [CrossRef]
  21. Nascimento, D.L.; Chiapini, M.; Vidal-Torrado, P.; Phillips, J.D.; Bernardes Ladeira, F.S.; Terra Machado, D.F.; Camargo, R.S.; Valezio, E.V. The underestimated role of leaf-cutting ants in soil and geomorphological development in neotropical America. Earth Sci. Rev. 2024, 248, 104650. [Google Scholar] [CrossRef]
  22. Jones, C.G.; Lawton, J.H.; Shachak, M. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 1997, 78, 1946–1957. [Google Scholar] [CrossRef]
  23. Bucher, E.H.; Zuccardi, R. Significación de los hormigueros de Atta vollenweideri Forel como alteradores del suelo en la Provincia de Tucumán. Acta Zool. Lilloana 1967, 23, 83–96. [Google Scholar]
  24. Maurice-Lira, J.V.; Romero-Nápoles, J.; Lara-Herrera, A.; Pérez-Moreno, J.; Flores-Maldonado, K.Y.; Guzmán-Franco, A.W.; Gonzáles-Hernández, H.; Bautista-Pérez, N.I.; Vázquez-Chávez, F.A. Effect of Atta mexicana wastes on the nutritional and microbiological characteristics of soil. Appl. Ecol. Environ. Res. 2023, 21, 5549–5564. [Google Scholar] [CrossRef]
  25. Schofield, R.M.S.; Emmett, K.D.; Niedbala, J.C.; Nesson, M.H. Leaf-cutter ants with worn mandibles cut half as fast, spend twice the energy, and tend to carry instead of cut. Behav. Ecol. Sociobiol. 2011, 65, 969–982. [Google Scholar] [CrossRef]
  26. Püffel, F.; Meyer, L.; Imirzian, N.; Roces, F.; Johnston, R.; Labonte, D. Developmental biomechanics and age polyethism in leaf-cutter ants. Proc. R. Soc. B. 2023, 290, 20230355. [Google Scholar] [CrossRef]
  27. Camargo, R.S.; Hastenreiter, I.N.; Forti, L.C.; Santos Lopes, J.F. Relationship between mandible morphology and leaf preference in leaf-cutting ants (Hymenoptera: Formicidae). Rev. Colomb. Entomol. 2015, 41, 241–244. [Google Scholar]
  28. Fowler, H.G.; Forti, L.C.; Pereira da Silva, P.; Saes, N.B. Economics of grass-cutting ants. In Fire Ants and Leaf-Cutting Ants (Studies in Insect Biology); Clifford, S., Vander Meer, R.K., Eds.; Westview Press: New York, NY, USA, 1986; pp. 18–35. [Google Scholar]
  29. Borgmeier, T. Revision der Gattung Atta Fabricius (Hymenoptera, Formicidae). Estudia Ent. 1959, 2, 1–4. [Google Scholar]
  30. Ingram, K.K.; Gordon, D.M.; Friedman, D.A.; Greene, M.; Kahler, J.; Peteru, S. Context-dependent expression of the foraging gene in field colonies of ants: The interacting roles of age, environment and task. Proc. Biol. Sci. 2016, 283, 20160841. [Google Scholar] [CrossRef]
  31. Wilson, E.O. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). Behav. Ecol. Sociobiol. 1983, 14, 55–60. [Google Scholar] [CrossRef]
  32. Hughes, W.O.; Sumner, S.; Van Borm, S.; Boomsma, J.J. Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants. Proc. Natl. Acad. Sci. USA 2003, 100, 9394–9397. [Google Scholar] [CrossRef]
  33. Souza, D.J.; Santos, J.F.L.; Della Lucia, T.M.C. Organização social das formigas-cortadeiras. In Formigas Cortadeiras da Bioecologia ao Manejo; Della Lucia, T.C.M., Ed.; UFV: Viçosa, Brasil, 2011; pp. 126–140. [Google Scholar]
  34. Fowler, H.G.; Pereira da Silva, P.; Forti, L.C.; Saes, N.B. Population dynamics of leaf-cutting ants: A brief review. In Fire Ants and Leaf-Cutting Ants (Studies in Insect Biology); Clifford, S., Vander Meer, R.K., Eds.; Westview Press: New York, NY, USA, 1986; pp. 123–145. [Google Scholar]
  35. Smith, A.R.; Muscedere, M.L.; Seid, M.A.; Traniello, J.F.; Hughes, W.O. Biogenic amines are associated with worker task but not patriline in the leaf-cutting ant Acromyrmex echinatior. J. Comp. Physiol. A. Neuroethol. Sens. Neural. Behav. Physiol. 2013, 199, 1117–1127. [Google Scholar] [CrossRef]
  36. Waddington, S.J.; Hughes, W.O. Waste management in the leaf-cutting ant Acromyrmex echinatior: The role of worker size, age and plasticity. Behav. Ecol. Sociobiol. 2010, 64, 1219–1228. [Google Scholar] [CrossRef]
  37. Moser, J.C.; Lewis, J.R. Multiple nest queens of Atta texana (Buckley 1860): (Hymenoptera: Formicidae). Turrialba 1981, 31, 256–257. [Google Scholar]
  38. Mintzer, A.C. Colony foundation in leaf-cutting ants: The perils of polygyny in Atta laevigata (Hymenoptera: Formicidae). Psyche 1991, 98, 1–5. [Google Scholar] [CrossRef]
  39. Jofré, L.E.; Medina, A.I. Patrones de actividad forrajera y tamaño de nido de Acromyrmex lobicornis (Hymenoptera: Formicidae) en una zona urbana de San Luis, Argentina. Rev. Soc. Entomol. Argent. 2012, 71, 1–2. [Google Scholar]
  40. Mariconi, F.A.M. As Saúvas; São Paulo Agronômica Ceres: São Paulo, Brasil, 1970; p. 167. [Google Scholar]
  41. Marinho, C.G.S.; Oliveira, M.A.; Araújo, M.S.; Ribeiro, M.M.R.; Della Lucia, T.M.C. Voo nupcial ou revoada de formigas cortadeiras. In Formigas Cortadeiras da Bioecologia ao Manejo; Della Lucia, T.C.M., Ed.; UFV: Viçosa, Brasil, 2011; pp. 165–172. [Google Scholar]
  42. Moser, J.C. Mating activities of Atta texana (Hymenoptera, Formicidae). Insectes Soc. 1967, 14, 295–312. [Google Scholar] [CrossRef]
  43. Amante, E. Influência de Alguns Fatores Microclimáticos Sobre a Formiga Saúva Atta laevigata (F. Smith, 1858), Atta sexdens rubropilosa Forel, 1908, Atta bisphaerica Forel, 1908, e Gonçalves, 1944 (Hymenoptera, Formicidae), em Formigueiros Localizados no Estado de São Paulo. Ph.D. Thesis, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, Brasil, 1972. [Google Scholar]
  44. Jonkman, J.C.M. The external and internal structure and growth of nests of the leaf-cutting ant Atta vollenweideri Forel, 1893 (Hymenoptera: Formicidae) Part I. J. Appl. Entomol. 1980, 89, 158–173. [Google Scholar] [CrossRef]
  45. Staab, M.; Kleineidam, C. Initiation of swarming behavior and synchronization of mating flights in the leaf-cutting ant Atta vollenweideri Forel, 1893 (Hymenoptera: Formicidae). Myrmecol. News 2014, 19, 93–102. [Google Scholar] [CrossRef]
  46. Evison, S.E.; Hughes, W.O. Genetic caste polymorphism and the evolution of polyandry in Atta leaf-cutting ants. Sci. Nat. 2011, 98, 643–649. [Google Scholar] [CrossRef]
  47. den Boer, S.P.; Baer, B.; Dreier, S.; Aron, S.; Nash, D.R.; Boomsma, J.J. Prudent sperm use by leaf-cutter ant queens. Proc. Biol. Sci. 2009, 276, 3945–3953. [Google Scholar] [CrossRef]
  48. Jutsum, A.R.; Quinlan, R.J. Flight and substrate utilization in laboratory-reared males of Atta sexdens. J. Insect Physiol. 1978, 24, 821–825. [Google Scholar] [CrossRef]
  49. Augustin, J.O.; Santos, J.F.L.; Elliot, S.L. A behavioral repertoire of Atta sexdens (Hymenoptera, Formicidae) queens during the claustral founding and ergonomic stages. Insect Soc. 2011, 58, 197–206. [Google Scholar] [CrossRef]
  50. Della Lucia, T.M.C.; Araújo, M.S. Fundação e estabelecimento de formigueiros. In As Formigas Cortadeiras; Della Lucia, T.M.C., Ed.; Folha de Viçõsa: Viçosa, Brasil, 1993; pp. 60–83. [Google Scholar]
  51. Bollazzi, M.; Kronenbitter, J.; Roces, F. Soil temperature, digging behaviour, and the adaptive value of nest depth in South American species of Acromyrmex leaf-cutting ants. Oecologia 2008, 158, 165–175. [Google Scholar] [CrossRef]
  52. Pielström, S.; Roces, F. Soil moisture and excavation behaviour in the Chaco leaf-cutting ant (Atta vollenweideri): Digging performance and prevention of water inflow into the nest. PLoS ONE 2014, 9, e95658. [Google Scholar] [CrossRef] [PubMed]
  53. Kleineidam, C.; Tautz, J. Perception of carbon dioxide and other “air-condition” parameters in the leaf cutting ant Atta cephalotes. Sci. Nat. 1996, 83, 566–568. [Google Scholar] [CrossRef]
  54. Kleineidam, C.; Ernst, R.; Roces, F. Wind-induced ventilation of the giant nests of the leaf-cutting ant Atta vollenweideri. Sci. Nat. 2001, 88, 301–305. [Google Scholar] [CrossRef] [PubMed]
  55. Bollazzi, M.; Römer, D.; Roces, F. Carbon dioxide levels and ventilation in Acromyrmex nests: Significance and evolution of architectural innovations in leaf-cutting ants. R. Soc. Open Sci. 2021, 8, 210907. [Google Scholar] [CrossRef] [PubMed]
  56. Jonkman, J.C.M. Nests of the leaf-cutting ant Atta vollenweideri as accelerators of succession in pastures. J. Appl. Entomol. 1978, 86, 25–34. [Google Scholar] [CrossRef]
  57. Forti, L.C.; Protti de Andrade, A.P.; Camargo, R.D.S.; Caldato, N.; Moreira, A.A. Discovering the giant nest architecture of grass-cutting ants, Atta capiguara (Hymenoptera, Formicidae). Insects 2017, 8, 39. [Google Scholar] [CrossRef] [PubMed]
  58. Farji-Brener, A.G. Modificaciones al suelo realizadas por hormigas cortadoras de hojas (Formicidae, Attini): Una revisión de sus efectos sobre la vegetación. Ecol. Austral 1992, 2, 87–94. [Google Scholar]
  59. Moreira, A.A.; Forti, L.C.; Boaretto, M.A.C.; Andrade, A.P.P.; Lopes, J.F.S.; Ramos, V.M. External and internal structure of Atta bisphaerica Forel (Hymenoptera: Formicidae) nests. J. Appl. Entomol. 2004, 128, 204–211. [Google Scholar] [CrossRef]
  60. Moreira, A.A.; Forti, L.C.; Andrade, A.P.P.; Boaretto, M.A.C.; Lopes, J.F.S. Nest Architecture of Atta laevigata (F. Smith, 1858) (Hymenoptera: Formicidae). Stud. Neotrop. Fauna Environ. 2004, 39, 109–116. [Google Scholar] [CrossRef]
  61. Quirán, E.; Pilati, A. Estructura de los hormigueros de Acromyrmex lobicornis (Hyrnenoptera:Forrnicidae) en un sitio natural sermiárido de La Pampa, Argentina. Rev. Soc. Entomol. Argent. 1998, 57, 45–48. [Google Scholar]
  62. Masiulionis, V.E. Fungi associated with Acromyrmex and basal Attini ants from Argentina and Brasil. Ph.D. Thesis, Universidade Estadual Paulista “Julio de Mesquita Filho”, Rio Claro, Brasil, 2013. [Google Scholar]
  63. Batista, N.R.; Oliveira, V.E.S.; Antonialli-Junior, W.F. A 3D model to illustrate the nest architecture of Acromyrmex balzani (Hymenoptera; Formicidae). Rev. Bras. Entomol. 2021, 65, 3. [Google Scholar] [CrossRef]
  64. Verza, S.S.; Forti, L.C.; Lopes, J.F.S.; Hugues, W.O.H. Nest architecture of leaf-cutting ant Acromyrmex rugosus rugosus. Insectes Soc. 2007, 54, 300–309. [Google Scholar] [CrossRef]
  65. Hart, A.; Ratnieks, F. Task partitioning, division of labour and nest compartmentalisation collectively isolate hazardous waste in the leaf-cutting ant Atta cephalotes. Behav. Ecol. Sociobiol. 2001, 49, 387–392. [Google Scholar] [CrossRef]
  66. Hart, A.; Ratnieks, F. Waste management in the leaf-cutting ant Atta colombica. Behav. Ecol. 2002, 13, 224–231. [Google Scholar] [CrossRef]
  67. Sudd, J. Interaction between ants on a scent trail. Nature 1959, 183, 1588. [Google Scholar] [CrossRef]
  68. Fowler, H.G. Foraging trails of leaf-cutting ants. JNY Entomol. Soc. 1978, 86, 132–136. [Google Scholar]
  69. Kost, C.; Gama de Oliveira, E.; Knoch, T.; Wirth, R. Temporal and spatial patterns, plasticity, and ontogeny of foraging trails in leaf-cutting ants. J. Trop. Ecol. 2005, 21, 677–688. [Google Scholar] [CrossRef]
  70. Howard, J.J. Leaf-cutting ant diet selection: The role of nutrients, water, and secondary chemistry. Ecology 1987, 68, 503–515. [Google Scholar] [CrossRef]
  71. North, R.D.; Jackson, C.W.; Howse, P.E. Evolutionary aspects of ant-fungus interactions in leaf-cutting ants. Trends Ecol. Evol. 1997, 12, 386–389. [Google Scholar] [CrossRef]
  72. Hölldobler, B.; Wilson, E.O. The Leafcutter Ants: Civilization by Instinct; W. W. Norton & Company: New York, NY, USA, 2011; p. 190. [Google Scholar]
  73. Boyd, N.D.; Martin, M.M. Faecal proteinases of the fungus-growing ant, Atta texana: Their fungal origin and ecological significance. J. Insect Physiol. 1975, 21, 1815–1820. [Google Scholar] [CrossRef]
  74. Quinlan, R.J.; Cherrett, J.M. The role of substrate preparation in the symbiosis between the leaf-cutting ant Acromyrmex octospinosus (Reich) and its food fungus. Ecol. Entomol. 1977, 2, 161–170. [Google Scholar] [CrossRef]
  75. Garrett, R.W.; Carlson, K.A.; Goggans, M.S.; Nesson, M.H.; Shepard, C.A.; Schofield, R.M.S. Leaf processing behaviour in Atta leafcutter ants: 90% of leaf cutting takes place inside the nest, and ants select pieces that require less cutting. R. Soc. Open Sci. 2016, 3, 150111. [Google Scholar] [CrossRef] [PubMed]
  76. Schiøtt, M.; Rogowska-Wrzesinska, A.; Roepstorff, P.; Boomsma, J.J. Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi. BMC Biol. 2010, 8, 156. [Google Scholar] [CrossRef]
  77. Schiøtt, M.; Boomsma, J.J. Proteomics reveals synergy between biomass degrading enzymes and inorganic Fenton chemistry in leaf-cutting ant colonies. Elife 2021, 10, e61816. [Google Scholar] [CrossRef]
  78. Möller, A. Die Pilzgärten einiger südamerikanischer Ameisen. Botan. Mitt. Tropen 1893, 6, 127. [Google Scholar]
  79. Wheeler, W.M. The fungus-growing ants of North America. B. Am. Mus. Nat. Hist. 1907, 23, 669–807. [Google Scholar]
  80. Bass, M.; Cherrett, J.M. Fungal hyphae as a source of nutrients for the leaf-cutting ant Atta sexdens. Physiol. Entomol. 1995, 20, 1–6. [Google Scholar] [CrossRef]
  81. Silva, A.; Bacci, M.; Siqueira, C.G.; Bueno, O.C.; Pagnocca, F.C.; Hebling, M.J.A. Survival of Atta sexdens workers on different food sources. J. Insect Physiol. 2003, 49, 307–313. [Google Scholar] [CrossRef]
  82. Littledyke, M.; Cherrett, J.M. Direct ingestion of plant sap from cut leaves by the leaf-cutting ants Atta cephalotes (L.) and Acromyrmex octospinosus (reich) (Formicidae, Attini). Bull. Entomol. Res. 1976, 66, 205–217. [Google Scholar] [CrossRef]
  83. Martin, M.M.; Carman, R.M.; MacConnell, J.G. Nutrients derived from the fungus cultured by the fungus-growing ant Atta colombica tonsipes. Ann. Entomol. Soc. Am. 1969, 62, 11–13. [Google Scholar] [CrossRef]
  84. De Fine Licht, H.; Boomsma, J.J.; Tunlid, A. Symbiotic adaptations in the fungal cultivar of leaf-cutting ants. Nat. Commun. 2014, 5, 5675. [Google Scholar] [CrossRef] [PubMed]
  85. Quinlan, R.J.; Cherrett, J.M. Studies on the role of the infrabuccal pocket of the leaf-cutting ant Acromyrmex octospinosus (Reich) (Hym., Formicidae). Ins. Soc. 1978, 25, 237–245. [Google Scholar] [CrossRef]
  86. De Fine Licht, H.H.; Schiøtt, M.; Rogowska-Wrzesinska, A.; Nygaard, S.; Roepstorff, P.; Boomsma, J.J. Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts. Proc. Natl. Acad. Sci. USA. 2013, 8, 583–587. [Google Scholar] [CrossRef] [PubMed]
  87. Aylward, F.O.; Khadempour, L.; Tremmel, D.M.; McDonald, B.R.; Nicora, C.D.; Wu, S.; Moore, R.J.; Orton, D.J.; Monroe, M.E.; Piehowski, P.D.; et al. Enrichment and broad representation of plant biomass-degrading enzymes in the specialized hyphal swellings of Leucoagaricus gongylophorus, the fungal symbiont of leaf-cutter ants. PLoS ONE 2015, 10, e0134752. [Google Scholar] [CrossRef] [PubMed]
  88. Khadempour, L.; Burnum-Johnson, K.E.; Baker, E.S.; Nicora, C.D.; Webb-Robertson, B.M.; White, R.A., 3rd; Monroe, M.E.; Huang, E.L.; Smith, R.D.; Currie, C.R. The fungal cultivar of leaf-cutter ants produces specific enzymes in response to different plant substrates. Mol. Ecol. 2016, 25, 5795–5805. [Google Scholar] [CrossRef]
  89. Conlon, B.H.; O’Tuama, D.; Michelsen, A.; Crumière, A.J.J.; Shik, J.Z. A fungal symbiont converts provisioned cellulose into edible yield for its leafcutter ant farmers. Biol. Lett. 2022, 18, 20220022. [Google Scholar] [CrossRef]
  90. Currie, C.R.; Mueller, U.G.; Malloch, D. The agricultural pathology of ant fungus gardens. Proc. Natl. Acad. Sci. USA 1999, 96, 7998–8002. [Google Scholar] [CrossRef]
  91. Barke, J.; Seipke, R.F.; Grüschow, S.; Heavens, D.; Drou, N.; Bibb, M.J.; Goss, R.J.M.; Yu, D.W.; Hutchings, M.I. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol. 2010, 8, 109. [Google Scholar] [CrossRef]
  92. Santos, A.V.; Dillon, R.J.; Dillon, V.M.; Reynolds, S.E.; Samuels, R.I. Ocurrence of the antibiotic producing bacterium Burkholderia sp. in colonies of the leaf-cutting ant Atta sexdens rubropilosa. FEMS Microbiol. Lett. 2004, 239, 319–323. [Google Scholar] [CrossRef]
  93. Khadempour, L.; Fan, H.; Keefover-Ring, K.; Carlos-Shanley, C.; Nagamoto, N.S.; Dam, M.A.; Pupo, M.T.; Currie, C.R. Metagenomics reveals diet-specific specialization of bacterial communities in fungus gardens of grass- and dicot-cutter ants. Front. Microbiol. 2020, 11, 570770. [Google Scholar] [CrossRef]
  94. Barcoto, M.O.; Carlos-Shanley, C.; Fan, H.; Ferro, M.; Nagamoto, N.S.; Bacci, M., Jr.; Currie, C.R.; Rodrigues, A. Fungus-growing insects host a distinctive microbiota apparently adapted to the fungiculture environment. Sci. Rep. 2020, 10, 12384. [Google Scholar] [CrossRef]
  95. Li, H.; Young, S.E.; Poulsen, M.; Currie, C.R. Symbiont-mediated digestion of plant biomass in fungus-farming insects. Annu. Rev. Entomol. 2021, 66, 297–316. [Google Scholar] [CrossRef]
  96. Pagnocca, F.C.; Rodrigues, A.; Nagamoto, N.S.; Bacci, M., Jr. Yeasts and filamentous fungi carried by the gynes of leaf-cutting ants. Antonie Van Leeuwenhoek 2008, 94, 517–526. [Google Scholar] [CrossRef]
  97. Masiulionis, V.E.; Pagnocca, F.C. Wickerhamomyces spegazzinii sp. nov., an ascomycetous yeast isolated from the fungus garden of Acromyrmex lundii nest (Hymenoptera: Formicidae). Int. J. Syst. Evol. Microbiol. 2016, 66, 2141–2145. [Google Scholar] [CrossRef]
  98. Masiulionis, V.E.; Pagnocca, F.C. Rhodosporidiobolus geoffroeae sp. nov., a basidiomycetous yeast isolated from the waste deposit of the attine ant Acromyrmex lundii. Int. J. Syst. Evol. Microbiol. 2017, 67, 1028–1032. [Google Scholar] [CrossRef]
  99. Giraldo, C.; Chaves-López, C.; Tofalo, R.; Angrisani, R.; Rodrigues, A.; Montoya-Lerma, J. Yeasts associated with the worker caste of the leaf-cutting ant Atta cephalotes under experimental conditions in Colombia. Arch. Microbiol. 2022, 204, 284. [Google Scholar] [CrossRef]
  100. Guedes, F.L.A.; Attili-Angelis, D.; Pagnocca, F.C. Selective isolation of dematiaceous fungi from the workers of Atta laevigata (Formicidae: Attini). Folia Microbiol. 2012, 57, 21–26. [Google Scholar] [CrossRef]
  101. Duarte, A.P.; Ferro, M.; Rodrigues, A.; Bacci, M., Jr.; Nagamoto, N.S.; Forti, L.C.; Pagnocca, F.C. Prevalence of the genus Cladosporium on the integument of leaf-cutting ants characterized by 454 pyrosequencing. Antonie Van Leeuwenhoek 2016, 109, 1235–1243. [Google Scholar] [CrossRef]
  102. Duarte, A.P.M.; Attili-Angelis, D.; Baron, N.C.; Groenewald, J.Z.; Crous, P.W.; Pagnocca, F.C. Riding with the ants. Persoonia 2017, 38, 81–99. [Google Scholar] [CrossRef]
  103. Fisher, P.J.; Stradling, D.J.; Sutton, B.C.; Petrini, L.E. Microfungi in the fungus gardens of the leaf-cutting ant Atta cephalotes: A preliminary study. Mycol. Res. 1996, 100, 541–546. [Google Scholar] [CrossRef]
  104. Pagnocca, F.C.; Masiulionis, V.E.; Rodrigues, A. Specialized fungal parasites and opportunistic fungi in gardens of attine ants. Psyche 2012, 905109. [Google Scholar] [CrossRef]
  105. Marfetán, J.A.; Folgarait, P.J. Diversity of mycobiota in colonies of different species of leafcutting ants and sampling sites across Argentina. Ecol. Austral 2017, 27, 3. [Google Scholar]
  106. Alves, S.B. Controle Microbiano de Insetos, 2nd ed.; Biblioteca de Ciências Agrárias Luiz de Queiroz: Piracicaba, Brasil, 1998; p. 424. [Google Scholar]
  107. Hughes, W.O.; Thomsen, L.; Eilenberg, J.; Boomsma, J.J. Diversity of entomopathogenic fungi near leaf-cutting ant nests in a neotropical forest, with particular reference to Metarhizium anisopliae var. anisopliae. J. Invertebr. Pathol. 2004, 85, 46–53. [Google Scholar] [CrossRef]
  108. Goffré, D.; Folgarait, P.J. Purpureocillium lilacinum, potential agent for biological control of the leaf-cutting ant Acromyrmex lundii. J. Invertebr. Pathol. 2015, 130, 107–115. [Google Scholar] [CrossRef]
  109. Goffré, D.; Jensen, A.B.; Lopez Lastra, C.C.; Humber, R.A.; Folgarait, P.J. Conidiobolus lunulus, a new entomophthoralean species isolated from leafcutter ants. Mycologia 2021, 113, 56–64. [Google Scholar] [CrossRef]
  110. Rødsgaard-Jørgensen, A.; Leal-Dutra, C.A.; de Santana, S.F.; Jensen, A.R.; Marques, R.E.; Aguiar, E.R.G.R.; Shik, J.Z. Two +ssRNA mycoviruses cohabiting the fungal cultivar of leafcutter ants. Virol. J. 2024, 21, 211. [Google Scholar] [CrossRef] [PubMed]
  111. Montoya, Q.V.; Meirelles, L.A.; Chaverri, P.; Rodrigues, A. Unraveling Trichoderma species in the attine ant environment: Description of three new taxa. Antonie Van Leeuwenhoek 2016, 109, 633–651. [Google Scholar] [CrossRef]
  112. Armando, N.G.; Marfetán, J.A.; Folgarait, P.J. Trichoderma species associated with Acromyrmex ant nests from Argentina and first report of Trichoderma lentiforme for the country. Darwiniana Nueva Ser. 2017, 5, 72–82. [Google Scholar] [CrossRef]
  113. Augustin, J.O.; Groenewald, J.Z.; Nascimento, R.J.; Mizubuti, E.S.; Barreto, R.W.; Elliot, S.L.; Evans, H.C. Yet more “weeds” in the garden: Fungal novelties from nests of leaf-cutting ants. PLoS ONE 2013, 8, e82265. [Google Scholar] [CrossRef]
  114. Masiulionis, V.E.; Cabello, M.N.; Seifert, K.A.; Pagnocca, F.C. Escovopsis trichodermoides sp. nov., isolated from a nest of the lower attine ant Mycocepurus goeldii. Antonie Van Leeuwenhoek 2015, 107, 731–740. [Google Scholar] [CrossRef]
  115. Marfetán, J.A.; Romero, A.I.; Cafaro, M.J.; Folgarait, P.J. Five new Escovopsis species from Argentina. Mycotaxon 2018, 133, 569–589. [Google Scholar] [CrossRef]
  116. Montoya, Q.V.; Martiarena, M.J.S.; Rodrigues, A. Taxonomy and systematics of the fungus-growing ant associate Escovopsis (Hypocreaceae). Stud. Mycol. 2023, 106, 349–397. [Google Scholar] [CrossRef]
  117. Kronauer, D.J.; Pierce, N.E. Myrmecophiles. Curr. Biol. 2011, 21, R208–R209. [Google Scholar] [CrossRef]
  118. Krantz, G.W.; Moser, J.C. A new genus and species of Macrochelidae (Acari: Mesostigmata) associated with the Texas leaf-cutting ant, Atta texana (Buckley) in Louisiana, USA. Int. J. Acarol. 2012, 38, 576–582. [Google Scholar] [CrossRef]
  119. Peralta, L.; Martínez, P.A. Ensambles de ácaros oribátidos en hormigueros de Acromyrmex spp. (Hymenoptera, Formicidae). Ecol. Austral 2013, 23, 209–217. [Google Scholar] [CrossRef]
  120. Marquez-Luna, J.; Navarette-Heredia, J.L. Especies de Staphylinidae (Insecta: Coleoptera) asociadas a detritos de Atta mexicana (F. Smith) (Hymenoptera: Formicidae) en dos localidades de Morelos, Mexico. Folia Entomol. Mex. 1994, 90, 31–46. [Google Scholar]
  121. Navarrete-Heredia, J.L. Beetles associated with Atta and Acromyrmex ants (Hymenoptera: Formicidae: Attini). Trans. Am. Entomol. Soc. 2001, 127, 381–429. [Google Scholar]
  122. Sánchez-Peña, S.R.; Davis, D.R.; Mueller, U.G. A gregarious, mycophagous, myrmecophilous moth, Amydria anceps Walsingham (Lepidoptera: Acrolophidae), living in Atta mexicana (F. Smith) (Hymenoptera: Formicidae) spent fungal culture accumulations. Proc. Entomol. Soc. Wash. 2003, 105, 186–194. [Google Scholar]
  123. Wheeler, W.M. A new myrmecophile from the mushroom gardens of the Texan leaf-cutting ant. Amer. Natural. 1900, 34, 851–862. [Google Scholar] [CrossRef]
  124. Martínez, R.J.; Guzmán, G.A.; Villegas, D.I.; Emmen, D. Associated pseudoscorpions (Arachnida: Pseudoscorpiones) with waste heaps of Atta colombica (Guérin-Méneville, 1844) (Hymenoptera: Formicidae) in Panama. Rev. Chil. Entomol. 2021, 47, 67–74. [Google Scholar] [CrossRef]
  125. Erthal, M.; Tonhasca, A. Attacobius attarum spiders (Corinnidae): Myrmecophilous predators of immature forms of the leaf-cutting ant Atta sexdens (Formicidae). Biotropica 2001, 33, 374–376. [Google Scholar] [CrossRef]
  126. Bruch, C. Descripción de dos himenópteros mirmecófilos. Physis 1915, 2, 19–23. [Google Scholar]
  127. Moser, J.C. Contents and structure of Atta texana nest in summer. Ann. Entomol. Soc. Am. 1963, 56, 286–291. [Google Scholar] [CrossRef]
  128. Araújo, M.S.; Pereira, J.M.M.; Gandra, L.C.; Ribeiro, M.M.R.; Oliveira, M.A. Predadores e outros organismos associados aos ninhas de formigas cortadeiras. In Formigas Cortadeiras da Bioecologia ao Manejo; Della Lucia, T.C.M., Ed.; UFV: Viçosa, Brasil, 2011; pp. 311–320. [Google Scholar]
  129. Schlüter, A.; Regös, J. Lithodytes lineatus (Schneider, 1799) (Amphibia: Leptodactylidae) as a dweller in nests of the leaf cutting ant Atta cephalotes (Linnaeus, 1758) (Hymenoptera: Attini). Amphibia-Reptilia 1981, 2, 117–121. [Google Scholar] [CrossRef]
  130. Sierra-Serrano, O.; Salcedo-Rivera, G.; Marmolejo-Vargas, A.; Jiménez Bolaño, J.D. Use of leaf-cutter ant fungus gardens as nurseries for eggs of Ashmead’s banded cat-eyed snakes, Leptodeira ashmeadii (Hallowell 1845). Reptiles Amphib. 2023, 30, e18149. [Google Scholar] [CrossRef]
  131. Kermarrec, A.; Decharme, M.; Febvay, G. Leaf-cutting symbiotic fungi: A synthesis of recent research. In Fire Ants and Leaf-Cutting Ants (Studies in Insect Biology); Clifford, S., Vander Meer, R.K., Eds.; Westview Press: New York, NY, USA, 1986; pp. 231–246. [Google Scholar]
  132. Schmid-Hempel, P. Parasites in Social Insects; Princeton University Press: Princeton, NJ, USA, 1998; p. 392. [Google Scholar]
  133. Holldobler, B.; Wilson, E.O. The Superorganism: The Beauty Elegance and Strangeness of Insect Societies; WW Norton & Company: New York, NY, USA, 2009; p. 544. [Google Scholar]
  134. Meunier, J. Social immunity and the evolution of group living in insects. Phil. Trans. R. Soc. 2015, 370, 20140102. [Google Scholar] [CrossRef]
  135. Cremer, S.; Pull, C.D.; Fürst, M.A. Social immunity: Emergence and evolution of colony-level disease protection. Annu. Rev. Entomol. 2018, 63, 105–123. [Google Scholar] [CrossRef]
  136. Abbot, P. Defense in social insects: Diversity, division of labor, and evolution. Annu. Rev. Entomol. 2022, 67, 407–436. [Google Scholar] [CrossRef]
  137. Kermarrec, A. Étude des relations synécologiques entre les nématodes et la fourmi-manioc: Acromyrmex octospinosus. Ann. Zool. Ecol. Anim. 1975, 7, 27–44. [Google Scholar]
  138. Gehrig, R.; Knight, S. Formation of 2-heptanone from caprylic acid by spores of various filamentous fungi. Nature 1961, 192, 1185. [Google Scholar] [CrossRef]
  139. van der Schaft, P.H.; ter Burg, N.; van den Bosch, S.; Cohen, A.M. Fed-batch production of 2-heptanone by Fusarium poae. Appl. Microbiol. Biotechnol. 1992, 36, 709–711. [Google Scholar] [CrossRef]
  140. Speckbacher, V.; Zeilinger, S.; Zimmermann, S.; Mayhew, C.A.; Wiesenhofer, H.; Ruzsanyi, V. Monitoring the volatile language of fungi using gas chromatography-ion mobility spectrometry. Anal. Bioanal. Chem. 2021, 413, 3055–3067. [Google Scholar] [CrossRef]
  141. Brandstaetter, A.S.; Kleineidam, C.J. Distributed representation of social odors indicates parallel processing in the antennal lobe of ants. J. Neurophysiol. 2011, 106, 2437–2449. [Google Scholar] [CrossRef]
  142. Brandstaetter, A.S.; Rössler, W.; Kleineidam, C.J. Friends and foes from an ant brain’s point of view—Neuronal correlates of colony odors in a social insect. PLoS ONE 2011, 6, e21383. [Google Scholar] [CrossRef]
  143. Kelber, C.; Rössler, W.; Roces, F.; Kleineidam, C.J. The antennal lobes of fungus-growing ants (Attini): Neuroanatomical traits and evolutionary trends. Brain Behav. Evol. 2009, 73, 273–284. [Google Scholar] [CrossRef]
  144. Wraight, S.P.; Butt, T.M.; Galaini-Wraight, S.; Allee, L.L.; Soper, R.S.; Roberts, D.W. Germination and infection processes of the entomophthoralean fungus Erynia radicans on the potato leafhopper, Empoasca fabae. J. Invertebr. Pathol. 1990, 56, 157–174. [Google Scholar] [CrossRef]
  145. Dubovskiy, I.M.; Whitten, M.M.; Yaroslavtseva, O.N.; Greig, C.; Kryukov, V.Y.; Grizanova, E.V.; Mukherjee, K.; Vilcinskas, A.; Glupov, V.V.; Butt, T.M. Can insects develop resistance to insect pathogenic fungi? PLoS ONE 2013, 8, e60248, Erratum in PLoS ONE 2014, 9, 1. [Google Scholar] [CrossRef]
  146. Bailey, I.W. Some relations between ants and fungi. Ecology 1920, 1, 174–189. [Google Scholar] [CrossRef]
  147. Eisner, T.; Happ, G.M. The infrabuccal pocket of a Formicine ant: A social filtration device. Psyche 1962, 69, 025068. [Google Scholar] [CrossRef]
  148. Febvay, G.; Decharme, M.; Kermanac, A. Digestion of chitin by the labial glands of Acromyrmex octospinosus Reich (Hymenoptera: Formicidae). Can. J. Zool. 1984, 62, 229–234. [Google Scholar] [CrossRef]
  149. Little, A.E.; Murakami, T.; Mueller, U.G.; Currie, C.R. Defending against parasites: Fungus-growing ants combine specialized behaviours and microbial symbionts to protect their fungus gardens. Biol. Lett. 2006, 2, 12–16. [Google Scholar] [CrossRef] [PubMed]
  150. Ortius-Lechner, D.; Maile, R.; Morgan, E.D.; Boomsma, J.J. Metapleural gland secretion of the leaf-cutter ant Acromyrmex octospinosus: New compounds and their functional significance. J. Chem. Ecol. 2000, 26, 1667–1683. [Google Scholar] [CrossRef]
  151. Marsaro, L., Jr.; Della Lucia, T.M.; Barbosa, L.C.A.; Maffia, L.A.; Morandi, M.A.B. Efeito das secrecões da glândula mandibular de Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae) sobre a germinação de conídios de Botrytis cinerea. Pers. Fr. Neotrop. Entomol. 2001, 30, 403–406. [Google Scholar] [CrossRef]
  152. Fernández-Marín, H.; Zimmerman, J.K.; Nash, D.R.; Boomsma, J.J.; Wcislo, W.T. Reduced biological control and enhanced chemical pest management in the evolution of fungus-farming in ants. Proc. R. Soc. B 2009, 276, 2263–2269. [Google Scholar] [CrossRef]
  153. Yek, S.H.; Nash, D.R.; Jensen, A.B.; Boomsma, J.J. Regulation and specificity of antifungal metapleural gland secretion in leaf-cutting ants. Proc. R. Soc. B 2012, 279, 4215–4222. [Google Scholar] [CrossRef]
  154. Currie, C.R.; Poulsen, M.; Mendenhall, J.; Boomsma, J.J.; Billen, J. Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 2006, 311, 81–83. [Google Scholar] [CrossRef]
  155. Haeder, S.; Wirth, R.; Herz, H.; Spiteller, D. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc. Natl. Acad. Sci. USA 2009, 106, 4742–4746. [Google Scholar] [CrossRef]
  156. Seipke, R.F.; Barke, J.; Brearley, C.; Hill, L.; Yu, D.W.; Goss, R.J.M.; Matthew, I.; Hutchings, M.I. A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus. PLoS ONE 2011, 6, e22028. [Google Scholar] [CrossRef]
  157. Dhodary, B.; Spiteller, D. Ammonia production by Streptomyces symbionts of Acromyrmex leaf-cutting ants strongly inhibits the fungal pathogen Escovopsis. Microorganisms 2021, 9, 1622. [Google Scholar] [CrossRef]
  158. Ortega, H.E.; Ferreira, L.L.G.; Melo, W.G.P.; Oliveira, A.L.L.; Ramos Alvarenga, R.F.; Lopes, N.P.; Bugni, T.S.; Andricopulo, A.D.; Pupo, M.T. Antifungal compounds from Streptomyces associated with attine ants also inhibit Leishmania donovani. PLoS Negl. Trop. Dis. 2019, 13, e0007643. [Google Scholar] [CrossRef]
  159. Mattoso, T.C.; Moreira, D.D.; Samuels, R.I. Symbiotic bacteria on the cuticle of the leaf-cutting ant Acromyrmex subterraneus subterraneus protect workers from attack by entomopathogenic fungi. Biol. Lett. 2012, 8, 461–464. [Google Scholar] [CrossRef]
  160. Bruner-Montero, G.; Wood, M.; Horn, H.A.; Gemperline, E.; Li, L.; Currie, C.R. Symbiont-mediated protection of Acromyrmex leaf-cutter ants from the entomopathogenic fungus Metarhizium anisopliae. mBio 2021, 12, e0188521. [Google Scholar] [CrossRef]
  161. Maurice-Lira, J.V.; Romero-Nápoles, J.; Pérez-Cárcamo, J.; Martínez-Cerón, D.M.; Flores-Maldonado, K.Y.; Morales-Rodríguez, S.; Pérez-Moreno, J. Antimicrobial-producing microorganisms in fungus-farming ants: A critical review on insights into a natural biological defense with biotechnological potential. Ann. Entomol. Soc. Am. 2025, 118, 1–15. [Google Scholar] [CrossRef]
  162. Rodrigues, A.; Cable, R.N.; Mueller, U.G.; Bacci, M., Jr.; Pagnocca, F.C. Antagonistic interactions between garden yeasts and microfungal garden pathogens of leaf-cutting ants. Antonie Van Leeuwenhoek 2009, 96, 331–342. [Google Scholar] [CrossRef]
  163. Hervey, A.; Nair, M.S.R. Antibiotic metabolite of a fungus cultivated by gardening ants. Mycologia 1979, 71, 1064–1066. [Google Scholar] [CrossRef]
  164. Kermarrec, A.; Febvay, G.; Decharme, M. Protection of leaf-cutting ants from biohazards: Is there a future for microbiological control? In Fire Ants and Leaf-Cutting Ants (Studies in Insect Biology); Clifford, S., Vander Meer, R.K., Eds.; Westview Press: New York, NY, USA, 1986; pp. 339–356. [Google Scholar]
  165. Motta, A.C.Q.; Avelino, D.S.; Marinho, C.G.S.; Fadini, M.A.M.; Melo, J.O.F. Leucoagaricus gongylophorus confere proteção para Atta sexdens contra extratos vegetais. Ciênc. Florest. 2022, 32, 86–101. [Google Scholar] [CrossRef]
  166. Masiulionis, V.E.; Pagnocca, F.C. In vitro study of volatile organic compounds produced by the mutualistic fungus of leaf-cutter ants and the antagonist Escovopsis. Fungal Ecol. 2020, 48, 100986. [Google Scholar] [CrossRef]
  167. Delabie, J.; Masson, C.; Febvay, G. Neurobiological basis of chemical communication in the fungus-growing ant, Acromyrmex octospinosus. In Fire Ants and Leaf-Cutting Ants (Studies in Insect Biology); Clifford, S., Vander Meer, R.K., Eds.; Westview Press: New York, NY, USA, 1986; pp. 302–315. [Google Scholar]
  168. Cremer, S. Social immunity in insects. Curr. Biol. 2019, 29, R458–R463. [Google Scholar] [CrossRef]
  169. Liu, L.; Zhao, X.-Y.; Tang, Q.-B.; Lei, C.-L.; Huang, Q.-Y. The mechanisms of social immunity against fungal infections in eusocial insects. Toxins 2019, 11, 244. [Google Scholar] [CrossRef]
  170. Böröczky, K.; Wada-Katsumata, A.; Batchelor, D.; Zhukovskaya, M.; Schal, C. Insects groom their antennae to enhance olfactory acuity. Proc. Natl. Acad. Sci. USA 2013, 110, 3615–3620. [Google Scholar] [CrossRef]
  171. Mizutani, H.; Tagai, K.; Habe, S.; Takaku, Y.; Uebi, T.; Kimura, T.; Hariyama, T.; Ozaki, M. Antenna cleaning is essential for precise behavioral response to alarm pheromone and nestmate-non-nestmate discrimination in japanese carpenter ants (Camponotus japonicus). Insects 2021, 12, 773. [Google Scholar] [CrossRef] [PubMed]
  172. Basibuyuk, H.H.; Quicke, D.L.J. Gross morphology of multiporous plate sensilla in the Hymenoptera (Insecta). Zool. Scr. 1999, 28, 51–67. [Google Scholar] [CrossRef]
  173. Fladerer, J.P.; Bucar, F. Behavioral specialization of workers of the leafcutter ant Acromyrmex octospinosus (Hymenoptera: Formicidae) with an external bacterial layer. J. Insect Behav. 2022, 35, 127–135. [Google Scholar] [CrossRef]
  174. Hart, B.L. Behavioral adaptations to pathogens and parasites: Five strategies. Neurosci. Biobehav. Rev. 1990, 14, 273–294. [Google Scholar] [CrossRef]
  175. Cremer, S.; Armitage, S.A.O.; Schmid-Hempel, P. Social immunity. Curr. Biol. 2007, 17, R693–R702. [Google Scholar] [CrossRef]
  176. Zhukovskaya, M.; Yanagawa, A.; Forschler, B.T. Grooming behavior as a mechanism of insect disease defense. Insects 2013, 4, 609–630. [Google Scholar] [CrossRef]
  177. Weber, N.A. Weeding as a factor in fungus culture by ants. Anat. Rec. 1957, 128, 638. [Google Scholar]
  178. Currie, C.R.; Stuart, A.E. Weeding and grooming of pathogens in agriculture by ants. Proc. Biol. Sci. 2001, 268, 1033–1039. [Google Scholar] [CrossRef]
  179. Mighell, K.; Van Bael, S.A. Selective elimination of microfungi in leaf-cutting ant gardens. Fungal Ecol. 2016, 24, 15–20. [Google Scholar] [CrossRef]
  180. Bonadies, E.; Wcislo, W.T.; Gálvez, D.; Hughes, W.O.H.; Fernández-Marín, H. Hygiene defense behaviors used by a fungus-growing ant depend on the fungal pathogen stages. Insects 2019, 10, 130. [Google Scholar] [CrossRef]
  181. Fischer, M. Forest Health: Leaf-Cutting Ant; Texas A&M Forest Service: Lufkin, TX, USA, 2015; Available online: http://texasforestservice.tamu.edu/LeafCuttingAnt/ (accessed on 26 March 2023).
  182. Zanetti, R.; Zanuncio, J.C.; Mayhé-Nunes, A.J.; Medeiros, A.G.B.; Souza-Silva, A. Combate sistemático de formigas-cortadeiras com iscas granuladas, em eucaliptais com cultivo mínimo. Revista Árvore 2003, 27, 387–392. [Google Scholar] [CrossRef]
  183. Della Lucia, T.M.C.; Souza, D.J. Importância e história de vida das formigas cortadeiras. In Formigas Cortadeiras da Bioecologia ao Manejo; Della Lucia, T.C.M., Ed.; UFV: Viçosa, Brasil, 2011; pp. 13–26. [Google Scholar]
  184. Souza, A.; Zanetti, R.; Calegario, N. Nível de dano econômico para formigas-cortadeiras em função do índice de produtividade florestal de eucaliptais em uma região de Mata Atlântica. Neotrop. Entomol. 2011, 40, 483–488. [Google Scholar]
  185. Nickele, M.A.; Reis Filho, W.; Penteado, S.d.R.C.; de Queiroz, E.C.; Schaitza, E.G.; Pie, M.R. Potential damage by Acromyrmex ant species in pine plantations in southern Brazil. Agr. Forest. Entomol. 2021, 23, 32–40. [Google Scholar] [CrossRef]
  186. Reis Filho, W.; Iede, E.T.; Nickele, M.A.; Caldato, N.; Ferreira, A.C. Reconhecimento dos Danos Causados por Formigas Cortadeiras do Gênero Acromyrmex em Plantios Iniciais de Pinus taeda no Sul do Brasil. Comunicado Técnico, 189; Embrapa Florestas: Colombo, Sri Lanka, 2007; p. 4. [Google Scholar]
  187. Nickele, M.A.; Reis Filho, W.; Oliveira, E.B.; Iede, E.T.; Caldato, N.; Strapasson, P. Attack of leaf-cutting ants in initial pine plantations and growth of plants artificially defoliated. Pesq. Agropec. Bras. 2012, 47, 892–899. [Google Scholar] [CrossRef]
  188. Cantarelli, E.B.; Costa, E.C.; Pezzutti, R.V.; Zanetti, R.; Fleck, M.D. Damage by Acromyrmex spp. to an initial Pinus taeda L. planting. Floram 2019, 26, e20160060. [Google Scholar] [CrossRef]
  189. Scherf, A.N.; Corley, J.C.; Gioia, C.D.; Eskiviski, E.R.; Carazzo, C.; Patzer, H.R.; Dimarco, R.D. Impact of a leaf-cutting ant (Atta sexdens L.) on a Pinus taeda plantation: A 6 year-long study. J. Appl. Entomol. 2022, 146, 1178–1184. [Google Scholar] [CrossRef]
  190. Casa, J.; Carissimi Boff, M.I.; Dresch Rech, T.; Boff, P. Danos e preferência de forrageamento de formigas cortadeiras em vimeiros. Agropec. Catarin. 2008, 21, 74–78. [Google Scholar]
  191. Jiménez, N.L.; Fosco, I.R.; Nassar, G.C.; Sánchez-Restrepo, A.F.; Danna, M.S.; Calcaterra, L.A. Economic injury level and economic threshold as required by forest stewardship council for management of leaf-cutting ants in forest plantations. Agr. Forest Entomol. 2021, 23, 87–96. [Google Scholar] [CrossRef]
  192. Jiménez, N.L.; Farji-Brener, A.G.; Calcaterra, L.A. Long-term quantification of leaf-cutting ant damage in willow forestations in the lower delta of the Paraná River, Argentina. Agr. Forest Entomol. 2022, 24, 432–445. [Google Scholar] [CrossRef]
  193. Jiménez, N.L.; Sánchez-Restrepo, A.F.; Guala, M.E.; Battagliotti, C.; Farji-Brener, A.G.; Calcaterra, L.A. Biomass consumption, foraging activity and harvesting patterns in two sympatric leaf-cutting ant species in a Salicaceae plantation in Argentina. Agric. Forest Entomol. 2024, 1–13. [Google Scholar] [CrossRef]
  194. Abreu, J.M.; Delabie, J.H.C. Controle das formigas-cortadeiras em plantios de cacau. Rev. Theobroma 1986, 16, 199–211. [Google Scholar]
  195. Cáseres, S. Guía Práctica Para la Identificación y el Manejo de las Plagas de Citrus, 1st ed.; INTA: Buenos Aires, Argentina, 2006; p. 96. [Google Scholar]
  196. Saluso, A.; Ermácora, O.; Anglada, M.; Toledo, C.; Borguesan, C. Principales invertebrados plagas de la soja y técnicas utilizadas en la toma de decisiones (Campaña agrícola 2006–2007). Rev. Cient. Agropec. 2007, 11, 153–158. [Google Scholar]
  197. Dans, D.; Anglada, M.; Maidana, A. Caracterización del daño de hormigas cortadoras en el cultivo de sorgo (Sorghum spp.). Rev. Cient. Agropec. 2009, 13, 7–15. [Google Scholar]
  198. Formolo, R.; Rufato, L.; Botton, M.; Machota, R., Jr. Diagnóstico da área cultivada com uva fina de mesa (Vitis vinifera L.) sob cobertura plástica e do manejo de pragas. Rev. Bras. Frutic. 2011, 33, 103–110. [Google Scholar] [CrossRef]
  199. Donatti Ricalde, M.G.; Enimar Loeck, A.; Perrone Ricalde, M. Ocorrência de ninhos de formigas cortadeiras em área de vinhedo no Rio Grande do Sul, Brasil. Bol. San. Veg. Plagas 2012, 38, 47–57. [Google Scholar]
  200. Anglada, M.M.; Saluso, A.; Ermácora, O.; Maidana, A.; Dans, D.; Decuyper, C. Hormigas podadoras: Estudios bioecológicos y alternativas de manejo en sistemas agrícolas y vegetación de monte en Entre Ríos. Cienc. Docencia Y Tecnol. 2013, 3, 1–19. [Google Scholar]
  201. Sodré, G.A. Cultivo do Cacaueiro No Estado da Bahía; MAPA/Ceplac/Cepec: Ilhéus, Brasil, 2017; p. 126. [Google Scholar]
  202. Dagatti, C.; Bernabé, A.; Rossi, L.; Becerra, V. Actividad forrajera de Acromyrmex striatus (Roger,1863) (Formicidae: Attini) en un viñedo orgánico en Mendoza, Argentina. Rev. De Investig. Agropecu. 2019, 45, 191–195. [Google Scholar]
  203. Dagatti, C.V.; Vargas, G.A. Actividad forrajera y de mantenimiento de nido de la hormiga cortadora de hojas Acromyrmex lobicornis (Hymenoptera: Formicidae) en un viñedo orgánico inserto en el desierto de Monte en Mendoza, Argentina. Rev. Soc. Entomol. Argent. 2021, 80, 120–128. [Google Scholar] [CrossRef]
  204. Dow Agrosciences. Controle de Formigas Cortadeiras. Manual Técnico; Lakree: São Paulo, Brasil, 2000; p. 9. [Google Scholar]
  205. Stingel, E. Controle de formigas cortadeiras na cultura da cana-de-açúcar. Biológico 2007, 69 (Suppl. S2), 81. [Google Scholar]
  206. Copello, A. La reina y demás población de un gran hormiguero. Rev. Soc. Entomol. Argent. 1927, 3, 17–20. [Google Scholar]
  207. Amante, E. Saúva tira boi da pastagem. Coopercotia 1967, 23, 38–40. [Google Scholar]
  208. Amante, E. A formiga sauva Atta capiguara, pragadas pastagens. O Biológico 1967, 33, 113–120. [Google Scholar]
  209. Nascimento, D., Jr. Pragas das pastagens: Uma análise crítica. In Disciplina ZOO 650-Forragicultura; Universidade Federal de Viçosa: Viçosa, Brasil, 1997; Available online: https://sites.usp.br/gefepfzea/wp-content/uploads/sites/134/2014/05/Pragas-de-pastagens.pdf (accessed on 24 March 2023).
  210. Costa, W.B.; Barboza, A.R.D.; Paulo Francisco, J.P.; Lopes, A.D. Survey and registration of the occurrence of leaf-cutting ants in grassland areas. Sci. Agrar. Parana. 2022, 21, 305–313. [Google Scholar] [CrossRef]
  211. Robinson, S.W.; Fowler, H.G. Foraging and pest potential of Paraguayan grass-cutting ants (Atta and Acromyrmex) to the cattle industry. J. Appl. Entomol. 1982, 93, 42–54. [Google Scholar] [CrossRef]
  212. Montoya-Lerma, J.; Giraldo-Echeverri, C.; Armbrecht, I.; Farji-Brener, A.; Calle, Z. Leaf-cutting ants revisited: Towards rational management and control. Int. J. Pest Manag. 2012, 58, 225–247. [Google Scholar] [CrossRef]
  213. Della Lucia, T.M.C.; Vilela, E.F. Métodos atuais de controle e perspectivas. In As Formigas Cortadeiras; Della Lucia, T.M.C., Ed.; Folha de Viçosa: Viçosa, Brasil, 1993; pp. 163–179. [Google Scholar]
  214. Moressi, M.; Neto, M.A.; Crepaldi, R.A.; Carbonari, V.; Demétrio, M.F.; Silvestre, R. Eficiência do controle mecânico de formigas cortadeiras (Atta laevigata) no reflorestamento com espécies nativas. O Biológico 2007, 69, 471–473. [Google Scholar]
  215. Oliveira, M.A.; Araújo, M.S.; Marinho, C.G.S.; Ribeiro, M.M.R.; Della Lucia, T.M.C. Manejo de formigas cortadeiras. In Formigas Cortadeiras da Bioecologia ao Manejo; Della Lucia, T.C.M., Ed.; UFV: Viçosa, Brasil, 2011; pp. 400–419. [Google Scholar]
  216. Hebling, M.J.A.; Maroti, P.P.S.; Bueno, O.C.; Silva, A.O.; Pagnocca, F.C. Efeito das folhas de Ipomea batata (batata-doce) no desenvolvimento de formigueiros de Atta sexdens rubropilosa Forel, 1908 em laboratório. In Anais do Congresso Brasileiro de Entomologia; Sociedade Entomologica do Brasil: Piracicaba, Brasil, 1993; p. 230. [Google Scholar]
  217. Saverschek, N.; Roces, F. Foraging leafcutter ants: Olfactory memory underlies delayed avoidance of plants unsuitable for the symbiotic fungus. Anim. Behav. 2011, 82, 453–458. [Google Scholar] [CrossRef]
  218. Della Lucia, T.M.C.; Araújo, M.S. Formigas-cortadeiras: Atualidades no combate. In Manejo Integrado—Doenças, Pragas e Plantas Daninhas; Editora UFV: Viçosa, Brasil, 2000; pp. 245–273. [Google Scholar]
  219. Anjos, N.S.; Della Lucia, T.M.C.; Mayhé-Nunes, A.J. Guia Prático Sobre Formigas Cortadeiras em Reflorestamentos; Graff Cor: Ponte nova, Brasil, 1998; p. 100. [Google Scholar]
  220. Salvador, S.A. Hormigas isaú (Atta Vollenweideri) en la alimentación de algunas aves de Villa María, Córdoba, Argentina. Nuestras Aves 2013, 58, 63–64. [Google Scholar] [CrossRef]
  221. Poinar, G. Nematode parasites and associates of ants: Past and present. Psyche 2012, 192017. [Google Scholar] [CrossRef]
  222. Swartz, M.B. Predation on an Atta cephalotes colony by an army ant Nomamyrmex esenbecki. Biotropica 1998, 30, 682–684. [Google Scholar] [CrossRef]
  223. Powell, S.; Clark, E. Combat between large derived societies: A subterranean army ant established as a predator of mature leaf-cutting ant colonies. Insect. Soc. 2004, 51, 342–351. [Google Scholar] [CrossRef]
  224. Bragança, M.A.L.; Della Lucia, T.M.C.; Tonhasca, A., Jr. First record of phorid parasitoids (Diptera: Phoridae) of the leaf-cutting ant Atta bisphaerica Forel (Hymenoptera: Formicidae). Neotrop. Entomol. 2003, 32, 169–171. [Google Scholar] [CrossRef]
  225. Pereira, R.C.; Bailez, O.; Vieira-Júnior, J.O.L.; Silva, G.A.; Arêdes, A.; Viana-Bailez, A.M. Host size preference of the leafcutter ant parasitoid Eibesfeldtphora tonhascai (Diptera: Phoridae). Neotrop. Entomol. 2022, 51, 593–599. [Google Scholar] [CrossRef]
  226. Pimentel, F.A.; Bailez, O.; Pereira, R.C.; Viana-Bailez, A.M. Phorid parasitoids of the leaf-cutting ant Atta laevigata in the Atlantic Forest: Occurrence, parasitism rate, and host size. Entomol. Exp. Appl. 2022, 170, 495–504. [Google Scholar] [CrossRef]
  227. Castilho, A.M.C.; Fraga, M.E.; Aguiar-Menezes, E.L.; Rosa, C.A.R. Seleção de isolados de Metarhizium anisopliae e Beauveria bassiana patrogênicos a soldados de Atta bisphaerica e Atta sexdens rubropilosa em condições de laboratório. Cienc. Rural 2010, 40, 1243–1249. [Google Scholar] [CrossRef]
  228. Augustin, J.O.; Diehl, E.; Samuels, R.I.; Elliot, S.L. Fungos parasitas de formigas cortadeiras e do seu fungo mutualístico. In Formigas Cortadeiras da Bioecologia ao Manejo; Della Lucia, T.C.M., Ed. UFV: Viçosa, Brasil, 2011; pp. 284–310. [Google Scholar]
  229. Ribeiro, M.M.; Amaral, K.D.; Seide, V.E.; Souza, B.M.; Della Lucia, T.M.C.M.; Kasuya, M.C.M.; Souza, D.J. Diversity of fungi associated with Atta bisphaerica (Hymenoptera: Formicidae): The activity of Aspergillus ochraceus and Beauveria bassiana. Psyche 2012, 389806. [Google Scholar] [CrossRef]
  230. Folgarait, P.J.; Goffré, D. Conidiobolus lunulus, a newly discovered entomophthoralean species, pathogenic and specific to leaf-cutter ants. J. Invertebr. Pathol. 2021, 186, 107685. [Google Scholar] [CrossRef]
  231. Stefanelli, L.E.P.; Mota Filho, T.M.M.; Camargo, R.d.S.; Matos, C.A.O.d.; Forti, L.C. Effects of entomopathogenic fungi on individuals as well as groups of workers and immatures of Atta sexdens rubropilosa leaf-cutting ants. Insects 2021, 12, 10. [Google Scholar] [CrossRef]
  232. Mota Filho, T.M.M.; Stefanelli, L.E.P.; Camargo, R.S.; Matos, C.A.O.; Forti, L.C. Biological control in leaf-cutting ants, Atta sexdens (Hymenoptera: Formicidae), using pathogenic fungi. Rev. Árvore 2021, 45, e4516. [Google Scholar] [CrossRef]
  233. Loureiro, E.S.; Busarello, G.D.; Pessoa, L.G.A.; Uchoa-Fernandes, M.A.; Amaral, T.S.; Pessoa, M.B. Pathogenicity of Beauveria bassiana to Atta sexdens rubropilosa (Hymenoptera: Formicidae) in laboratory conditions. Res. Soc. Dev. 2022, 11, e41011225831. [Google Scholar] [CrossRef]
  234. Pinto, L.M.N.; Azambuja, A.O.; Diehl, E.; Fiuza, L.M. Pathogenicity of Bacillus thuringiensis isolated from two species of Acromyrmex (Hymenoptera, Formicidae). Braz. J. Biol. 2003, 63, 301–306. [Google Scholar] [CrossRef] [PubMed]
  235. Uribe Londoño, M.; Romero-Tabarez, M.; Ortiz-Reyes, A. Bacterial extracts for the control of Atta cephalotes (Hymenoptera: Formicidae) and its symbiotic fungus Leucoagaricus gongylophorus (Agaricales: Agaricaceae). Rev. Biol. Trop. 2019, 67, 1010–1022. [Google Scholar] [CrossRef]
  236. Ferreira-Filho, P.J.; Wilcken, C.F.; Neves, D.A.; Pogetto, M.H.; Carmo, J.B.; Guerreiro, J.C.; Serrão, J.E.; Zanuncio, J.C. Does diatomaceous earth control leaf-cutter ants (Hymenoptera: Formicidae) in the Eucalyptus plantations? J. Econ. Entomol. 2015, 108, 1124–1128. [Google Scholar] [CrossRef] [PubMed]
  237. Athanassiou, C.G.; Kavallieratos, N.G.; Chiriloaie, A.; Vassilakos, T.N.; Fătu, V.; Drosu, S.; Ciobanu, M.; Dudoiu, R. Insecticidal efficacy of natural diatomaceous earth deposits from Greece and Romania against four stored grain beetles: The effect of temperature and relative humidity. Bull. Insectology 2016, 69, 25–34. [Google Scholar]
  238. Stadler, T.; López García, G.P.; Gitto, J.G.; Buteler, M. Nanostructured alumina: Biocidal properties and mechanism of action of a novel insecticide powder. Bull. Insectology 2017, 70, 17–25. [Google Scholar]
  239. Buteler, M.; Lopez Garcia, G.; Stadler, T. Potential of nanostructured alumina for leaf-cutting ants Acromyrmex lobicornis (Hymenoptera: Formicidae) management. Aust. Entomol. 2018, 57, 292–296. [Google Scholar] [CrossRef]
  240. Cherrett, J.M. Chemical control and bait formulations for leaf-cutting ants. In Fire Ants and Leaf-Cutting Ants (Studies in Insect Biology); Clifford, S., Vander Meer, R.K., Eds.; Westview Press: New York, NY, USA, 1986; pp. 357–368. [Google Scholar]
  241. Boaretto, M.A.; Forti, L.C. Perspectivas no controle de formigas cortadeiras. Série Técnica IPEF 1997, 11, 31–46. [Google Scholar]
  242. Laranjeiro, A.J.; Lousada, R.M. Manejo de formigas cortadeiras em florestas. Inst. De Pesqui. E Estud. Florestais 2000, 13, 115–124. [Google Scholar]
  243. Vilela, E.F. Status of leaf-cutting ant control in forest plantation in Brazil. In Fire Ants and Leaf-Cutting Ants (Studies in Insect Biology); Clifford, S., Vander Meer, R.K., Eds.; Westview Press: New York, NY, USA, 1986; pp. 399–408. [Google Scholar]
  244. dos Santos, A.; Zanetti, R.; Zanuncio, J.C.; Lúcia Aparecida Mendonça, L.A.; Souza-Silva, A.; Medeiros, A.G.B. Eficiência e custo de controle de ninhos de Atta spp. (Hymenoptera: Formicidae) com termonebulização. Cerne 2007, 13, 23–27. [Google Scholar]
  245. Zanetti, R.; Zanuncio, J.C.; Souza Silva, A.; Mendonça, L.A.; Mattos, J.O.S.; Rizental, M.S. Eficiência de produtos termonebulígenos no controle de Atta laevigata (Hymenoptera: Formicidae) em plantio de eucalipto. Ciência E Agrotecnol. 2008, 32, 1313–1316. [Google Scholar] [CrossRef]
  246. Forti, L.C.; Della Lucia, T.M.C.; Yassu, W.K.; Bento, J.M.; Pinhão, M.A. Metodologias para experimentos com iscas granuladas para formigas cortadeira. In As Formigas Cortadeiras; Della Lucia, T.M.C., Ed.; Folha de Viçosa: Viçosa, Brasil, 1993; pp. 191–211. [Google Scholar]
  247. Antunes, E.C.; Guedes, R.N.C.; Della Lucia, T.M.; Serrão, J.E. Sub-lethal effects of abamectin suppressing colonies of the leaf-cutting ant Acromyrmex subterraneus subterraneus. Pest Manag. Sci. 2000, 56, 1059–1064. [Google Scholar] [CrossRef]
  248. Britto, J.S.; Forti, L.C.; de Oliveira, M.A.; Bonetti Filho, R.Z.; Wilcken, C.F.; Zanuncio, J.C.; Loeck, A.E.; Caldato, N.; Nagamoto, N.S.; Alves, P.G.L.; et al. Use of alternatives to PFOS, its salts and PFOSF for the control of leaf-cutting ants Atta and Acromyrmex. Int. J. Environ. Stud. 2016, 3, 11–92. [Google Scholar]
  249. Mota Filho, T.M.M.; Camargo, R.S.; Zanuncio, J.C.; Stefanelli, L.E.P.; de Matos, C.A.O.; Forti, L.C. Contamination routes and mortality of the leaf-cutting ant Atta sexdens (Hymenoptera: Formicidae) by the insecticides fipronil and sulfluramid through social interactions. Pest Manag. Sci. 2021, 77, 4411–4417. [Google Scholar] [CrossRef]
  250. Scudillio, T.; Camargo, R.D.; Mota Filho, T.M.M.; Matos, C.A.O.; Zanuncio, J.C.; Julian Alberto Sabattini, J.A.; Forti, L.C. Contamination and mortality of leaf-cutting ant workers by the quinone inside inhibitor fungicide after social interactions. Sci. Rep. 2023, 13, 6169. [Google Scholar] [CrossRef]
  251. Hubbel, S.P.; Wiemer, D.F. Host plant selection by an attine ant. In Social Insects in the Tropics; Jaisson, P., Ed.; University of Paris Press: Paris, France, 1983; pp. 133–154. [Google Scholar]
  252. Marsaro, A.L., Jr.; Souza, R.C.; Della Lucia, T.M.C.; Fernandes, J.B.; Silva, M.F.G.F.; Vieira, P.C. Behavioral changes in workers of the leaf-cutting ant Atta sexdens rubropilosa induced by chemical components of Eucalyptus maculata leaves. J. Chem. Ecol. 2004, 30, 1771–1780. [Google Scholar] [CrossRef]
  253. Marinho, C.G.S.; Della Lucia, T.M.C.; Ribeiro, M.M.R.; Magalhães, S.T.V.; Jham, G.N. Interference of β-eudesmol in nestmate recognition in Atta sexdens rubropilosa (Hymenoptera: Formicidae). Bull. Entomol. Res. 2008, 98, 467–473. [Google Scholar] [CrossRef]
  254. Boulogne, I.; Germosen-Robineau, L.; Ozier-Lafontaine, H.; Jacoby-Koaly, C.; Aurela, L.; Loranger-Merciris, G. Acromyrmex octospinosus (Hymenoptera: Formicidae) management. Effects of TRAMIL’s insecticidal plant extracts. Pest Manag. Sci. 2012, 68, 313–320. [Google Scholar] [CrossRef] [PubMed]
  255. Boulogne, I.; Germosen-Robineau, L.; Ozier-Lafontaine, H.; Desfontaines, L.; Loranger- Merciris, G. Acromyrmex octospinosus (Hymenoptera: Formicidae) management. Effects of TRAMIL’s fungicidal plant extracts. J. Econ. Entomol. 2012, 105, 1224–1233. [Google Scholar] [CrossRef]
  256. Medina, A.I.; Mangione, A.M.; García, M. Exposure to creosote bush phenolic resin causes avoidance in the leaf-cutting ant Acromyrmex lobicornis (Formicidae: Attini). Rev. Chil. Hist. Nat. 2012, 85, 209–218. [Google Scholar] [CrossRef]
  257. Defagó, M.T.; Nolli, L.; Napal, G.D.; Palacios, S.M.; Buffa, L.M. Can the extract of Aristolochia argentina Griseb affect the foraging decisions of the leaf cutting ant Acromyrmex lundi (Guérin)? Preliminary assays. Int. J. Pest Manag. 2013, 63, 207–212. [Google Scholar] [CrossRef]
  258. Marinho, C.G.S.; Della Lucia, T.M.C.; Guedes, R.N.C.; Ribeiro, M.M.R.; Lima, E.R. β-eudesmol-induced agression in the leaf-cutting ant Atta sexdens rubropilosa. Entomol. Exp. Appl. 2005, 117, 89–93. [Google Scholar] [CrossRef]
  259. Alonso, E.C.; Santos, D.Y. Ricinus communis and Jatropha curcas (Euphorbiaceae) seed oil toxicity against Atta sexdens rubropilosa (Hymenoptera: Formicidae). J. Econ. Entomol. 2013, 106, 742–746. [Google Scholar] [CrossRef] [PubMed]
  260. Diaz Napal, G.N.; Buffa, L.M.; Nolli, L.C.; Defagó, M.T.; Valladares, G.R.; Carpinella, M.C.; Ruiz, G.; Palacios, S.M. Screening of native plants from central Argentina against the leaf-cutting ant Acromyrmex lundi (Guérin) and its symbiotic fungus. Ind. Crops Prod. 2015, 76, 275–280. [Google Scholar] [CrossRef]
  261. Lobo-Echeverri, T.; Galindo, V.M.; Aubad, P.; Ortiz-Reyes, A.; Preciado, L.M.; Sánchez, M.; Jiménez, J.; Thomas, O.P. Inhibition of Leucoagaricus gongylophorus with Carica papaya: An alternative to control the leaf-cutter ant Acromyrmex octospinosus. Int. J. Pest Manag. 2019, 66, 201–214. [Google Scholar] [CrossRef]
  262. Graebin, A.; Amaral, K.D.; Lira, D.C.; Collares, L.J.; Bernardes, R.C.; Turchen, L.M.; Della-Lucia, T.M.C.; Guedes, R.N.C. Nasturtium leaf compounds, diphenyl disulfide and lyral, against Atta sexdens (Hymenoptera: Formicidae) and their symbiotic fungi. J. Econ. Entomol. 2024, 117, 1703–1711. [Google Scholar] [CrossRef]
  263. Buszewski, B.; Bukowska, M.; Ligor, M.; Staneczko-Baranowska, I. A holistic study of neonicotinoids neuroactive insecticides-properties, applications, occurrence, and analysis. Environ. Sci. Pollut. Res. Int. 2019, 26, 34723–34740. [Google Scholar] [CrossRef]
  264. Matsuda, K.; Buckingham, S.D.; Kleier, D.; Rauh, J.J.; Grauso, M.; Sattelle, D.B. Neonicotinoids: Insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol. Sci. 2001, 22, 573–580. [Google Scholar] [CrossRef]
  265. Kimura-Kuroda, J.; Komuta, Y.; Kuroda, Y.; Hayashi, M.; Kawano, H. Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats. PLoS ONE 2012, 7, e32432. [Google Scholar] [CrossRef]
  266. Casida, J.E.; Durkin, K.A. Neuroactive insecticides: Targets, selectivity, resistance, and secondary effects. Annu. Rev. Entomol. 2013, 58, 99–117. [Google Scholar] [CrossRef]
  267. Yang, L.; Zhao, Y.L.; Zhao, C.Y.; Li, H.H.; Wang, M.J.; Morris-Natschke, S.L.; Qian, K.; Lee, K.H.; Liu, Y.-Q. Design, synthesis, crystal structure, bioactivity, and molecular docking studies of novel sulfonylamidine-derived neonicotinoid analogs. Med. Chem. Res. 2014, 23, 5043–5057. [Google Scholar] [CrossRef]
  268. Pisa, L.; Goulson, D.; Yang, E.C.; Gibbons, D.; Sánchez-Bayo, F.; Mitchell, E.; Aebi, A.; van der Sluijs, J.; MacQuarrie, C.J.K.; Giorio, C.; et al. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: Impacts on organisms and ecosystems. Environ. Sci. Pollut. Res. Int. 2021, 28, 11749–11797. [Google Scholar] [CrossRef]
  269. Ruckert, A.; Allen, L.N.; Ramirez, R.A. Combinations of plant water-stress and neonicotinoids can lead to secondary outbreaks of Banks grass mite (Oligonychus pratensis Banks). PLoS ONE 2018, 13, e0191536. [Google Scholar] [CrossRef]
  270. Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D.W.; Giorio, C.; Girolami, V.; et al. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. Int. 2015, 22, 5–34. [Google Scholar] [CrossRef]
  271. Sheets, L.P.; Li, A.A.; Minnema, D.J.; Collier, R.H.; Creek, M.R.; Peffer, R.C. A critical review of neonicotinoid insecticides for developmental neurotoxicity. Crit. Rev. Toxicol. 2016, 46, 153–190. [Google Scholar] [CrossRef] [PubMed]
  272. Frizzi, F.; Balzani, P.; Frasconi Wendt, C.; Masoni, A.; Carta, E.; Innocenti, M.R.; Santini, G. Effects of starvation on the fighting ability of invasive and autochthonous ants. Entomol. Sci. 2023, 26, e12531. [Google Scholar] [CrossRef]
  273. Wang, L.; Zeng, L.; Chen, J. Impact of imidacloprid on new queens of imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae). Sci. Rep. 2015, 5, 17938. [Google Scholar] [CrossRef] [PubMed]
  274. Schläppi, D.; Kettler, N.; Straub, L.; Glauser, G.; Neumann, P. Long-term effects of neonicotinoid insecticides on ants. Commun. Biol. 2020, 3, 335. [Google Scholar] [CrossRef]
  275. Daane, K.M.; Cooper, M.L.; Sime, K.R.; Nelson, E.H.; Battany, M.C.; Rust, M.K. Testing baits to control Argentine ants (Hymenoptera: Formicidae) in vineyards. J. Econ. Entomol. 2008, 101, 699–709. [Google Scholar] [CrossRef]
  276. Blight, O.; Orgeas, J.; Renucci, M.; Provost, E. Imidacloprid gel bait effective in Argentine ant control at nest scale. Sociobiology 2011, 58, 23–30. [Google Scholar]
  277. Thiel, S.; Köhler, H.R. A sublethal imidacloprid concentration alters foraging and competition behaviour of ants. Ecotoxicology 2016, 25, 814–823. [Google Scholar] [CrossRef] [PubMed]
  278. Sappington, J.D. Imidacloprid alters ant sociobehavioral traits at environmentally relevant concentrations. Ecotoxicology 2018, 27, 1179–1187. [Google Scholar] [CrossRef]
  279. Straub, L.; Villamar-Bouza, L.; Bruckner, S.; Chantawannakul, P.; Kolari, E.; Maitip, J.; Vidondo, B.; Neumann, P.; Williams, G.R. Negative effects of neonicotinoids on male honeybee survival, behaviour and physiology in the field. J. Appl. Ecol. 2021, 58, 2515–2528. [Google Scholar] [CrossRef]
  280. Santos, A.V.; de Oliveira, B.L.; Samuels, R.I. Selection of entomopathogenic fungi for use in combination with sub-lethal doses of imidacloprid: Perspectives for the control of the leaf-cutting ant Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae). Mycopathologia 2007, 163, 233–240. [Google Scholar] [CrossRef]
  281. Sharma, A.; Srivastava, A.; Shukla, A.K.; Srivastava, K.; Srivastava, A.K.; Saxena, A.K. Entomopathogenic fungi: A potential source for biological control of insect pests. In Phytobiomes: Current Insights and Future Vistas; Solanki, M., Kashyap, P., Kumari, B., Eds.; Springer: Singapore, 2020; pp. 225–250. [Google Scholar] [CrossRef]
  282. Bihal, R.; Al-Khayri, J.M.; Banu, A.N.; Kudesia, N.; Ahmed, F.K.; Sarkar, R.; Arora, A.; Abd-Elsalam, K.A. Entomopathogenic fungi: An eco-friendly synthesis of sustainable nanoparticles and their nanopesticide properties. Microorganisms 2023, 11, 1617. [Google Scholar] [CrossRef] [PubMed]
  283. Khan, S.; Guo, L.; Maimaiti, Y.; Mijit, M.; Qiu, D. Entomopathogenic fungi as microbial biocontrol agent. Mol. Plant Breed. 2012, 3, 63–79. [Google Scholar] [CrossRef]
  284. Jaihan, P.; Sangdee, K.; Sangdee, A. Selection of entomopathogenic fungus for biological control of chili anthracnose disease caused by Colletotrichum spp. Eur. J. Plant Pathol. 2016, 146, 551–564. [Google Scholar] [CrossRef]
  285. Araújo, J.P.; Hughes, D.P. Diversity of entomopathogenic fungi: Which groups conquered the insect body? Adv. Genet. 2016, 94, 1–39. [Google Scholar] [CrossRef]
  286. Mascarin, G.M.; Jaronski, S.T. The production and uses of Beauveria bassiana as a microbial insecticide. World J. Microbiol. Biotechnol. 2016, 32, 177. [Google Scholar] [CrossRef]
  287. Litwin, A.; Nowak, M.; Różalska, S. Entomopathogenic fungi: Unconventional applications. Rev. Environ. Sci. Biotechnol. 2020, 19, 23–42. [Google Scholar] [CrossRef]
  288. Mantzoukas, S.; Kitsiou, F.; Natsiopoulos, D.; Eliopoulos, P.A. Entomopathogenic fungi: Interactions and applications. Encyclopedia 2022, 2, 646–656. [Google Scholar] [CrossRef]
  289. Pucheta, D.M.; Macias, A.F.; Navarro, S.R.; Mayra, D.L.T. Mechanism of action of entomopathogenic fungi. Interciencia 2016, 156, 2164–2171. [Google Scholar]
  290. Liu, D.; Smagghe, G.; Liu, T.X. Interactions between entomopathogenic fungi and insects and prospects with glycans. J. Fungi 2023, 9, 575. [Google Scholar] [CrossRef]
  291. Skinner, M.; Parker, B.L.; Kim, J.S. Role of entomopathogenic fungi. In Integrated Pest Management; Abrol, D.P., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 169–191. [Google Scholar]
  292. Goettel, M.S.; Inglis, G.D.; Wraight, S.P. Overview of pathogen groups: Fungi. In Field Manual of Techniques in Invertebrate Pathology; Lacey, L.A., Kaya, H.K., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; p. 255282. [Google Scholar]
  293. de Crecy, E.; Jaronski, S.; Lyons, B.; Keyhan, N.O. Directed evolution of a filamentous fungus for thermotolerance. BMC Biotechnol. 2009, 9, 74. [Google Scholar] [CrossRef]
  294. Fang, W.; St Leger, R.J. Enhanced UV resistance and improved killing of Malaria mosquitoes by photolyase transgenic entomopathogenic fungi. PLoS ONE 2012, 7, e43069. [Google Scholar] [CrossRef]
  295. Quesada-Moraga, E.; González-Mas, N.; Yousef-Yousef, M.; Garrido-Jurado, I.; Fernández-Bravo, M. Key role of environmental competence in successful use of entomopathogenic fungi in microbial pest control. J. Pest Sci. 2024, 97, 1–15. [Google Scholar] [CrossRef]
  296. Meirelles, L.N.; Mesquita, E.; Corrêa, T.A.; Bitencourt, R.O.B.; Oliveira, J.L.; Fraceto, L.F.; Camargo, M.G.; Bittencourt, V.R.E.P. Encapsulation of entomopathogenic fungal conidia: Evaluation of stability and control potential of Rhipicephalus microplus. Ticks Tick Borne Dis. 2023, 14, 102184. [Google Scholar] [CrossRef] [PubMed]
  297. Diehl-Fleig, E.; Silva, M.E.; Labres, M.E.V.; Specht, A. Ocorrência natural de Beuaveria bassiana (Bals.) Vuill. no Rio Grande do Sul. Acta Biol. Leopoldensia 1992, 4, 99–104. [Google Scholar]
  298. Hughes, D.P.; Evans, H.C.; Hywel-Jones, N.; Boomsma, J.J.; Armitage, S.A.O. Novel fungal disease in complex leaf-cutting ant societies. Ecol. Entomol. 2009, 34, 214–220. [Google Scholar] [CrossRef]
  299. Fernandez-Daza, F.F.; Rodriguez-Roman, G.; Valencia-Rodriguez, M.; Gonzalez-Vargas, I.A.; Cardenas-Heano, H.; Pascol-Cereda, M.; Cuervo-Mulet, R.A. Spores of Beauveria bassiana and Trichoderma lignorum as a bioinsecticide for the control of Atta cephalotes. Biol. Res. 2019, 52, 51. [Google Scholar] [CrossRef]
  300. Boucias, D.G.; Stockes, C.; Storey, G.; Pendland, J.C. The effects of imidacloprid on the termite Reticulitermes flavipes and its interaction with the mycopathogen Beauveria bassiana. Pflanzenschutz-Nachrichten Bayer 1996, 49, 103–144. [Google Scholar]
  301. Moino, A., Jr.; Alves, S.B. Efeito de Beauveria bassiana sobre o desenvolvimento de Sitophilus zeamais. Manejo Integr. De Plagas 1998, 50, 51–54. [Google Scholar]
  302. Niu, J.; Chen, R.; Wang, J.J. RNA interference in insects: The link between antiviral defense and pest control. Insect Sci. 2024, 31, 2–12. [Google Scholar] [CrossRef] [PubMed]
  303. Zhao, J.H.; Liu, Q.Y.; Xie, Z.M.; Guo, H.S. Exploring the challenges of RNAi-based strategies for crop protection. Adv. Biotechnol. 2024, 2, 23. [Google Scholar] [CrossRef]
  304. Ortolá, B.; Daròs, J.-A. RNA Interference in insects: From a natural mechanism of gene expression regulation to a biotechnological crop protection promise. Biology 2024, 13, 137. [Google Scholar] [CrossRef] [PubMed]
  305. Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef]
  306. Cedden, D.; Bucher, G. The quest for the best target genes for RNAi-mediated pest control. Insect Mol. Biol. 2024, 1–13. [Google Scholar] [CrossRef]
  307. Chen, Y.; De Schutter, K. Biosafety aspects of RNAi-based pests’ control. Pest Manag. Sci. 2024, 80, 3697–3706. [Google Scholar] [CrossRef]
  308. Zamore, P.D.; Tuschl, T.; Sharp, P.A.; Bartel, D.P. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000, 101, 25–33. [Google Scholar] [CrossRef]
  309. Tijsterman, M.; Plasterk, R.H. Dicers at RISC; the mechanism of RNAi. Cell 2004, 117, 1–3. [Google Scholar] [CrossRef] [PubMed]
  310. Zhou, R.; Hotta, I.; Denli, A.M.; Hong, P.; Perrimon, N.; Hannon, G.J. Comparative analysis of argonaute-dependent small RNA pathways in Drosophila. Mol. Cell 2008, 32, 592–599. [Google Scholar] [CrossRef] [PubMed]
  311. Song, M.S.; Rossi, J.J. Molecular mechanisms of Dicer: Endonuclease and enzymatic activity. Biochem. J. 2017, 474, 1603–1618. [Google Scholar] [CrossRef] [PubMed]
  312. Zhu, K.Y.; Palli, S.R. Mechanisms, applications, and challenges of insect RNA interference. Annu. Rev. Entomol. 2020, 65, 293–311. [Google Scholar] [CrossRef]
  313. Shabalina, S.A.; Koonin, E.V. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol. 2008, 23, 578–587. [Google Scholar] [CrossRef]
  314. Agrawal, N.; Dasaradhi, P.V.; Mohmmed, A.; Malhotra, P.; Bhatnagar, R.K.; Mukherjee, S.K. RNA interference: Biology, mechanism, and applications. Microbiol. Mol. Biol. Rev. 2003, 67, 657–685. [Google Scholar] [CrossRef] [PubMed]
  315. Dowling, D.; Pauli, T.; Donath, A.; Meusemann, K.; Podsiadlowski, L.; Petersen, M.; Peters, R.S.; Mayer, C.; Liu, S.; Zhou, X.; et al. Phylogenetic origin and diversification of RNAi pathway genes in insects. Genome Biol. Evol. 2016, 8, 3784–3793. [Google Scholar] [CrossRef]
  316. Yu, N.; Christiaens, O.; Liu, J.; Niu, J.; Cappelle, K.; Caccia, S.; Huvenne, H.; Smagghe, G. Delivery of dsRNA for RNAi in insects: An overview and future directions. Insect Sci. 2013, 20, 4–14. [Google Scholar] [CrossRef]
  317. Lu, Y.; Deng, X.; Zhu, Q.; Wu, D.; Zhong, J.; Wen, L.; Yu, X. The dsRNA delivery, targeting and application in pest control. Agronomy 2023, 13, 714. [Google Scholar] [CrossRef]
  318. Gospocic, J.; Shields, E.J.; Glastad, K.M.; Lin, Y.; Penick, C.A.; Yan, H.; Mikheyev, A.S.; Linksvayer, T.A.; Garcia, B.A.; Berger, S.L.; et al. The neuropeptide corazonin controls social behavior and caste identity in ants. Cell 2017, 170, 748–759.e12. [Google Scholar] [CrossRef]
  319. Rajakumar, R.; Koch, S.; Couture, M.; Favé, M.J.; Lillico-Ouachour, A.; Chen, T.; De Blasis, G.; Rajakumar, A.; Ouellette, D.; Abouheif, E. Social regulation of a rudimentary organ generates complex worker-caste systems in ants. Nature 2018, 562, 574–577. [Google Scholar] [CrossRef]
  320. Ratzka, C.; Gross, R.; Feldhaar, H. Systemic gene knockdown in Camponotus floridanus workers by feeding of dsRNA. Insectes Soc. 2013, 60, 475–484. [Google Scholar] [CrossRef]
  321. Lu, H.; Vinson, S.; Pietrantonio, P. Oocyte membrane localization of vitellogenin receptor coincides with queen flying age, and receptor silencing by RNAi disrupts egg formation in fire ant virgin queens. FEBS J. 2009, 276, 3110–3123. [Google Scholar] [CrossRef]
  322. Choi, M.Y.; Vander Meer, R.K.; Coy, M.; Scharf, M.E. Phenotypic impacts of PBAN RNA interference in an ant, Solenopsis invicta, and a moth, Helicoverpa zea. J. Insect Physiol. 2012, 58, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
  323. Choi, M.Y.; Vander Meer, R.K. Ant trail pheromone biosynthesis is triggered by a neuropeptide hormone. PLoS ONE 2012, 7, e50400. [Google Scholar] [CrossRef]
  324. Castillo Bravo, P.A. Short Neuropeptide F Receptor in the Worker Brain of the Red Imported Fire Ant (Solenopsis invicta Buren) and Methodology for RNA Interference. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2015. [Google Scholar]
  325. Rydzak, P.M.; Bextine, B.R. Manipulation of viral titers of Solenopsis invicta Virus-1 by RNA interference in laboratory colonies of red imported fire ant. Southwest Entomol. 2016, 41, 379–388. [Google Scholar] [CrossRef]
  326. Du, Y.; Chen, J. The odorant binding protein, SiOBP5, mediates alarm pheromone olfactory recognition in the red imported fire ant, Solenopsis invicta. Biomolecules 2021, 11, 1595. [Google Scholar] [CrossRef]
  327. Chen, J.; Zhou, Y.; Lei, Y.; Shi, Q.; Qi, G.; He, Y.; Lyu, L. Role of the foraging gene in worker behavioral transition in the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Pest Manag. Sci. 2022, 78, 2964–2975. [Google Scholar] [CrossRef]
  328. Wang, J.D.; Chen, Y.H.; Zhang, Y.X.; Lin, J.W.; Gao, S.J.; Tang, B.Z.; Hou, Y.M. Establishment of RNAi-mediated pest control method for red imported fire ant, Solenopsis invicta. J. Agric. Food Chem. 2024, 72, 10936–10943. [Google Scholar] [CrossRef]
  329. Miyazaki, S.; Okada, Y.; Miyakawa, H.; Tokuda, G.; Cornette, R.; Koshikawa, S.; Maekawa, K.; Miura, T. Sexually dimorphic body color is regulated by sex-specific expression of yellow gene in ponerine ant, Diacamma sp. PLoS ONE 2014, 9, e92875. [Google Scholar] [CrossRef]
  330. Zhang, J.J.; Xi, G.S. Morphological changes in different caste adult ant specificities of Polyrhachis vicina Roger (Hymenoptera, Formicidae) caused in estrogen-related receptor. Gen. Comp. Endocrinol. 2018, 266, 29–37. [Google Scholar] [CrossRef]
  331. Xi, G.; Ying, Q.; Xie, H. The functional relevance of oestrogen-related receptor gene to ultraspiracle gene in regulating the development of Polyrhachis vicina (Hymenoptera: Formicidae). Orient. Insects 2019, 53, 362–378. [Google Scholar] [CrossRef]
  332. Meng, J.; Lei, J.; Davitt, A.; Holt, J.R.; Huang, J.; Gold, R.; Vargo, E.L.; Tarone, A.M.; Zhu-Salzman, K. Suppressing tawny crazy ant (Nylanderia fulva) by RNAi technology. Insect Sci. 2020, 27, 113–121. [Google Scholar] [CrossRef]
  333. Felden, A.; Dobelmann, J.; Baty, J.W.; McCormick, J.; Haywood, J.; Lester, P.J. Can immune gene silencing via dsRNA feeding promote pathogenic viruses to control the globally invasive Argentine ant? Ecol. Appl. 2023, 33, e2755. [Google Scholar] [CrossRef]
  334. Bonasio, R.; Zhang, G.; Ye, C.; Mutti, N.S.; Fang, X.; Qin, N.; Donahue, G.; Yang, P.; Li, Q.; Li, C.; et al. Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science 2010, 329, 1068–1071. [Google Scholar] [CrossRef]
  335. Cheng, D.; Lu, Y.; Zeng, L.; Liang, G.; He, X. Si-CSP9 regulates the integument and moulting process of larvae in the red imported fire ant, Solenopsis invicta. Sci. Rep. 2015, 5, 9245. [Google Scholar] [CrossRef]
  336. Bramlett, M.; Plaetinck, G.; Maienfisch, P. RNA-based biocontrols—A new paradigm in crop protection. Engineering 2020, 6, 522–527. [Google Scholar] [CrossRef]
  337. Helms, J.A.; Godfrey, A.P.; Ames, T.; Bridge, E.S. Predator foraging altitudes reveal the structure of aerial insect communities. Sci. Rep. 2016, 6, 28670. [Google Scholar] [CrossRef]
  338. Zarrabian, M.; Sherif, S.M. Silence is not always golden: A closer look at potential environmental and ecotoxicological impacts of large-scale dsRNA application. Sci. Total Environ. 2024, 950, 175311. [Google Scholar] [CrossRef]
  339. Rodovalho, C.M.; Ferro, M.; Fonseca, F.P.; Antonio, E.A.; Guilherme, I.R.; Henrique-Silva, F.; Bacci, M., Jr. Expressed sequence tags from Atta laevigata and identification of candidate genes for the control of pest leaf-cutting ants. BMC Res. Notes 2011, 4, 203. [Google Scholar] [CrossRef]
  340. Taning, C.N.; Arpaia, S.; Christiaens, O.; Dietz-Pfeilstetter, A.; Jones, H.; Mezzetti, B.; Sabbadini, S.; Sorteberg, H.G.; Sweet, J.; Ventura, V.; et al. RNA-based biocontrol compounds: Current status and perspectives to reach the market. Pest Manag. Sci. 2020, 76, 841–845. [Google Scholar] [CrossRef]
  341. Baldwin, J.; Paula-Moraes, S.V.; Pereira, R. The good side of the bad guys: Predation of lepidopteran pests by Solenopsis invicta Buren (Hymenoptera: Formicidae) in the Florida Panhandle. Florida Entomol. 2020, 103, 68–71. [Google Scholar] [CrossRef]
  342. Boomsma, J.J.; Brady, S.G.; Dunn, R.R.; Gadau, J.; Heinze, J.; Keller, L.; Moreau, C.S.; Sanders, N.J.; Schrader, L.; Schultz, T.R.; et al. The Global Ant Genomics Alliance (GAGA). Myrmecol. News 2017, 25, 61–66. [Google Scholar]
  343. Moreira, A.C.; Carneiro, R.L.; Fracola, M.F.; Micocci, K.C.; Bueno, O.C.; Souza, D.H.F. Analysis of the gene expression and RNAi-mediated knockdown of chitin synthase from leaf-cutting ant Atta sexdens. J. Braz. Chem. Soc. 2020, 31, 1979–1990. [Google Scholar] [CrossRef]
  344. Hare, J.D. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu. Rev. Entomol. 2011, 56, 161–180. [Google Scholar] [CrossRef]
  345. Jones, W.P.; Kinghorn, A.D. Extraction of Plant Secondary Metabolites. In Natural Products Isolation. Methods in Molecular Biology; Sarker, S., Nahar, L., Eds.; Humana Press: Totowa, NJ, USA, 2012; p. 864. [Google Scholar] [CrossRef]
  346. Murugan, R.; Mallavarapu, G.R.; Padmashree, K.V.; Rao, R.R.; Livingstone, C. Volatile oil composition of Pogostemon heyneanus and comparison of its composition with patchouli oil. Nat. Prod. Commun. 2010, 5, 1961–1964. [Google Scholar] [CrossRef]
  347. Divekar, P.A.; Narayana, S.; Divekar, B.A.; Kumar, R.; Gadratagi, B.G.; Ray, A.; Singh, A.K.; Rani, V.; Singh, V.; Singh, A.K.; et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int. J. Mol Sci. 2022, 23, 2690. [Google Scholar] [CrossRef]
  348. Guo, Y.; Chen, X.; Gong, P.; Wang, R.; Han, A.; Deng, Z.; Qi, Z.; Long, H.; Wang, J.; Yao, W.; et al. Advances in the role and mechanisms of essential oils and plant extracts as natural preservatives to extend the postharvest shelf life of edible mushrooms. Foods 2023, 12, 801. [Google Scholar] [CrossRef]
  349. Lengai, G.M.W.; Muthomi, J.W.; Mbega, E.R. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. Afr. 2020, 7, e00239. [Google Scholar] [CrossRef]
  350. Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
  351. Erb, M.; Kliebenstein, D.J. Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef]
  352. Al-Khayri, J.M.; Banadka, A.; Nandhini, M.; Nagella, P.; Al-Mssallem, M.Q.; Alessa, F.M. Essential oil from Coriandrum sativum: A review on its phytochemistry and biological activity. Molecules 2023, 28, 696. [Google Scholar] [CrossRef]
  353. Murcia-Meseguer, A.; Alves, T.J.S.; Budia, F.; Antonio Ortiz, A.; Medina, P. Insecticidal toxicity of thirteen commercial plant essential oils against Spodoptera exigua (Lepidoptera: Noctuidae). Phytoparasitica 2018, 46, 233–245. [Google Scholar] [CrossRef]
  354. Bacci, L.; Lima, J.K.A.; Araújo, A.P.A.; Blank, A.F.; Silva, I.M.A.; Santos, A.A.; Santos, A.C.C.; Alves, P.B.; Picanço, M.C. Toxicity, behavior impairment, and repellence of essential oils from pepper-rosmarin and patchouli to termites. Entomol. Exp. Appl. 2015, 156, 66–76. [Google Scholar] [CrossRef]
  355. Bagade, R.P.; Jadhav, A.D.; Chavan, R.V. Toxicity and repellency of four plant essential oils against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Int. J. Trop. Insect Sci. 2021, 41, 1505–1512. [Google Scholar] [CrossRef]
  356. Santos, M.I.S.; Marques, C.; Mota, J.; Pedroso, L.; Lima, A. Applications of essential oils as antibacterial agents in minimally processed fruits and vegetables—A review. Microorganisms 2022, 10, 760. [Google Scholar] [CrossRef]
  357. Costa, T.L.; Santos, R.C.; Santos, A.A.; Pimentel, E.S.; Lima, E.; Batista, C.V.; Bacci, L.; Freitas, D.R.; Picanço, M.C. Lethal and sublethal effects of an essential oil-based emulsion of patchouli, Pogostemon cablin (Lamiaceae), on the tomato leafminer. Agriculture 2023, 13, 1540. [Google Scholar] [CrossRef]
  358. Yadav, A.; Kumar, A.; Singh, P.P.; Prakash, B. Pesticidal efficacy, mode of action and safety limits profile of essential oils based nanoformulation against Callosobruchus chinensis and Aspergillus flavus. Pestic. Biochem. Physiol. 2021, 175, 104813. [Google Scholar] [CrossRef]
  359. Wani, S.; Rajput, A.; Pingale, P. Herbal nanoformulations: A magical remedy for management of fungal diseases. J. Herb. Med. 2023, 42, 100810. [Google Scholar] [CrossRef]
  360. Popescu, I.E.; Gostin, I.N.; Blidar, C.F. An overview of the mechanisms of action and administration technologies of the essential oils used as green insecticides. Agri. Eng. 2024, 6, 1195–1217. [Google Scholar] [CrossRef]
  361. Karabörklü, S.; Ayvaz, A. A comprehensive review of effective essential oil components in stored-product pest management. J. Plant Dis. Prot. 2023, 130, 449–481. [Google Scholar] [CrossRef]
  362. Jankowska, M.; Rogalska, J.; Wyszkowska, J.; Stankiewicz, M. Molecular targets for components of essential oils in the insect nervous system-A review. Molecules 2017, 23, 34. [Google Scholar] [CrossRef]
  363. Sakthivel, S.; Mohideen, H.S.; Raman, C.; Mohamad, S.B. Potential acetylcholinesterase inhibitor acting on the pesticide resistant and susceptible cotton pests. ACS Omega 2022, 7, 20515–20527. [Google Scholar] [CrossRef]
  364. Fan Tong, F.; Coats, J.R. Effects of monoterpenoid insecticides on [3H]-TBOB binding in house fly GABA receptor and 36Cl− uptake in American cockroach ventral nerve cord. Pestic. Biochem. Physiol. 2010, 98, 317–324. [Google Scholar] [CrossRef]
  365. Ozoe, Y.; Kita, T.; Ozoe, F.; Nakao, T.; Sato, K.; Hirase, K. Insecticidal 3-benzamido-N-phenylbenzamides specifically bind with high affinity to a novel allosteric site in housefly GABA receptors. Pestic. Biochem. Physiol. 2013, 107, 285–292. [Google Scholar] [CrossRef]
  366. El Hassani, A.K.; Schuster, S.; Dyck, Y.; Demares, F.; Leboulle, G.; Armengaud, C. Identification, localization and function of glutamate-gated chloride channel receptors in the honeybee brain. Eur. J. Neurosci. 2012, 36, 2409–2420. [Google Scholar] [CrossRef]
  367. Lynagh, T.; Cromer, B.A.; Dufour, V.; Laube, B. Comparative pharmacology of flatworm and roundworm glutamate-gated chloride channels: Implications for potential anthelmintics. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 244–255. [Google Scholar] [CrossRef]
  368. Qian, K.; Jiang, C.; Guan, D.; Zhuang, A.; Meng, X.; Wang, J. Characterization of glutamate-gated chloride channel in Tribolium castaneum. Insects 2023, 14, 580. [Google Scholar] [CrossRef]
  369. Kostyukovsky, M.; Rafaeli, A.; Gileadi, C.; Demchenko, N.; Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manag. Sci. 2002, 58, 1101–1106. [Google Scholar] [CrossRef]
  370. Evans, P.D.; Maqueira, B. Insect octopamine receptors: A new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invert. Neurosci. 2005, 5, 111–118. [Google Scholar] [CrossRef] [PubMed]
  371. Roeder, T. Tyramine and octopamine: Ruling behavior and metabolism. Annu. Rev. Entomol. 2005, 50, 447–477. [Google Scholar] [CrossRef] [PubMed]
  372. Pauls, D.; Blechschmidt, C.; Frantzmann, F.; El Jundi, B.; Selcho, M. A comprehensive anatomical map of the peripheral octopaminergic/tyraminergic system of Drosophila melanogaster. Sci. Rep. 2018, 8, 15314. [Google Scholar] [CrossRef]
  373. Finetti, L.; Orchard, I.; Lange, A.B. The octopamine receptor OAα1 influences oogenesis and reproductive performance in Rhodnius prolixus. PLoS ONE 2023, 18, e0296463. [Google Scholar] [CrossRef]
  374. Ramos, S.E.; Bakhtiari, M.; Castañeda-Zárate, M.; Iriart, V.; Ashman, T.L. Herbicides and their potential to disrupt plant–insect chemical communication. J. Syst. Evol. 2023, 61, 550–560. [Google Scholar] [CrossRef]
  375. Corrêa, E.J.A.; Carvalho, F.C.; Castro Oliveira, J.A.; Bertolucci, S.K.V.; Scotti, M.T.; Silveira, C.H.; Guedes, F.C.; Melo, J.O.F.; Melo-Minardi, R.C.; Lima, L.H.F. Elucidating the molecular mechanisms of essential oils’ insecticidal action using a novel cheminformatics protocol. Sci. Rep. 2023, 13, 4598. [Google Scholar] [CrossRef]
  376. Bass, C.; Jones, C.M. Mosquitoes boost body armor to resist insecticide attack. Proc. Natl. Acad. Sci. USA 2016, 113, 9145–9147. [Google Scholar] [CrossRef]
  377. Kim, S.; Yoon, J.; Tak, J.-H. Synergistic mechanism of insecticidal activity in basil and mandarin essential oils against the tobacco cutworm. J. Pest Sci. 2021, 94, 1119–1131. [Google Scholar] [CrossRef]
  378. Gao, L.; Qiao, H.; Wei, P.; Moussian, B.; Wang, Y. Xenobiotic responses in insects. Arch. Insect Biochem. Physiol. 2022, 109, e21869. [Google Scholar] [CrossRef]
  379. Kolawole, A.O.; Olajuyigbe, F.M.; Ajele, J.O.; Adedire, C.O. Activity of the antioxidant defense system in a typical bioinsecticide and synthetic insecticide-treated cowpea storage beetle Callosobrochus maculatus F. (Coleoptera: Chrysomelidae). Int. J. Insect. Sci. 2014, 6, IJIS.S19434. [Google Scholar] [CrossRef] [PubMed]
  380. Isman, M.B. Plant essential oils for pest and disease management. Crop Prot. 2000, 19, 603–608. [Google Scholar] [CrossRef]
  381. Miresmailli, S.; Isman, M.B. Botanical insecticides inspired by plant–herbivore chemical interactions. Trends Plant Sci. 2014, 19, 29–35. [Google Scholar] [CrossRef]
  382. Oliveira, B.M.S.; Melo, C.R.; Alves, P.B.; Santos, A.A.; Santos, A.C.C.; Santana, A.D.S.; Araújo, A.P.A.; Nascimento, P.E.S.; Blank, A.F.; Bacci, L. Essential oil of Aristolochia trilobata: Synthesis, routes of exposure, acute toxicity, binary mixtures and behavioral effects on leaf-cutting ants. Molecules 2017, 22, 335. [Google Scholar] [CrossRef]
  383. Melo, C.R.; Oliveira, B.M.S.; Santos, A.C.C.; Silva, J.E.; Ribeiro, G.T.; Blank, A.F.; Araújo, A.P.A.; Bacci, L. Synergistic effect of aromatic plant essential oils on the ant Acromyrmex balzani (Hymenoptera: Formicidae) and antifungal activity on its symbiotic fungus Leucoagaricus gongylophorus (Agaricales: Agaricaceae). Environ. Sci. Pollut. Res. Int. 2020, 27, 17303–17313. [Google Scholar] [CrossRef]
  384. Brito, F.A.; Bacci, L.; Santana, A.S.; Silva, J.E.; Nizio, D.A.C.; Nogueira, P.C.L.; Arrigoni-Blank, M.F.; Melo, C.R.; Melo, J.O.; Blank, A.F. Toxicity and behavioral alterations caused by essential oils of Croton tetradenius and their major compounds on Acromyrmex balzani. Crop Prot. 2020, 137, 105259. [Google Scholar] [CrossRef]
  385. Meneghetti, C.; Rebelo, R.A.; Vitorino, M.D. Efeito do óleo essencial das folhas de Drimys angustifolia em colônias de Acromyrmex spp. em plantio de Pinus taeda. Floresta 2015, 45, 755–768. [Google Scholar] [CrossRef]
  386. Silva, D.C.; Arrigoni-Blank, M.F.; Bacci, L.; Blank, A.F.; Faro, R.R.N.; Pinto, J.A.O.; Pereira, K.L.G. Toxicity and behavioral alterations of essential oils of Eplingiella fruticosa genotypes and their major compounds to Acromyrmex balzani. Crop Prot. 2019, 116, 181–187. [Google Scholar] [CrossRef]
  387. Batista-Pereira, L.G.; Fernandes, J.B.; Silva, M.F.G.F.; Vieira, P.C.; Bueno, O.C.; Corrêa, A.G. Electrophysiological responses of Atta sexdens rubropilosa workers to essential oils of Eucalyptus and its chemical composition. Z. Für Naturforschung C 2006, 61, 749–755. [Google Scholar] [CrossRef]
  388. Jung, P.H.; Silveira, A.C.; Nieri, E.M.; Potrich, M.; Silva, E.R.L.; Refatti, M. Atividade inseticida de Eugenia uniflora L. e Melia azedarach L. sobre Atta laevigata Smith. Floresta Ambiente 2013, 20, 191–196. [Google Scholar] [CrossRef]
  389. Feitosa-Alcantara, R.B.; Bacci, L.; Blank, A.F.; Alves, P.B.; Silva, I.M.D.A.; Soares, C.A.; Sampaio, T.S.; Nogueira, P.C.D.L.; Arrigoni-Blank, M.D.F. Essential oils of Hyptis pectinata chemotypes: Isolation, binary mixtures and acute toxicity on leaf-cutting ants. Molecules 2017, 22, 621. [Google Scholar] [CrossRef] [PubMed]
  390. Dantas, J.O.; Cavalcanti, S.C.H.; Araújo, A.P.A.; Silva, J.E.; Brito, T.B.; Andrade, V.S.; Pinheiro, H.S.S.; Tavares, S.R.S.A.; Blank, A.F.; Bacci, L. Formicidal potential of thymol derivatives: Adverse effects on the survival and behavior of Acromyrmex balzani. Agriculture 2023, 13, 1410. [Google Scholar] [CrossRef]
  391. Buteler, M.; Alma, A.M.; Herrera, M.L.; Gorosito, N.B.; Fernández, P.C. Novel organic repellent for leaf-cutting ants: Tea tree oil and its potential use as a management tool. Int. J. Pest Manag. 2021, 67, 1–9. [Google Scholar] [CrossRef]
  392. Melo, C.R.; Blank, A.F.; Oliveira, B.M.S.; Santos, A.C.C.; Cristaldo, P.F.; Araújo, A.P.A.; Bacci, L. Formicidal activity of essential oils of Myrcia lundiana chemotypes on Acromyrmex balzani. Crop Prot. 2021, 139, 105343. [Google Scholar] [CrossRef]
  393. Salazar, L.C.; Ortiz-Reyes, A.; Rosero, D.M.; Lobo-Echeverri, T. Dillapiole in Piper holtonii as an inhibitor of the symbiotic fungus Leucoagaricus gongylophorus of leaf-cutting ants. J. Chem. Ecol. 2020, 46, 668–674. [Google Scholar] [CrossRef]
  394. Perri, D.; Gorosito, N.; Fernandez, P.; Buteler, M. Plant-based compounds with potential as push-pull stimuli to manage behavior of leaf-cutting ants. Entomol. Exp. Appl. 2017, 163, 150–159. [Google Scholar] [CrossRef]
  395. Alma, A.M.; Arenas, A.; Carina Fernandez, P.; Buteler, M. The refuse dump provides information that influences the foraging preferences of leaf-cutting ants. Ecol. Entomol. 2024, 50, 84–92. [Google Scholar] [CrossRef]
  396. Rocha, A.G.; Oliveira, B.M.S.; Melo, C.R.; Sampaio, T.S.; Blank, A.F.; Lima, A.D.; Nunes, R.S.; Araújo, A.P.A.; Cristaldo, P.F.; Bacci, L. Lethal effect and behavioral responses of leaf-cutting ants to essential oil of Pogostemon cablin (Lamiaceae) and its nanoformulation. Neotrop. Entomol. 2018, 47, 769–779. [Google Scholar] [CrossRef]
  397. Ribeiro, R.C.; Fouad, H.A. Potential use of essential oils to control the leaf-cutting ants; Atta sexdens rubropilosa and Acromyrmex subterraneus molestans (Hymenoptera: Formicidae). Int. J. Indust. Entomol. 2016, 32, 26–34. [Google Scholar] [CrossRef]
  398. Wheeler, W.M. The ant-colony as an organism. J. Morphol. 1911, 22, 307–325. [Google Scholar] [CrossRef]
  399. Gillooly, J.F.; Hou, C.; Kaspari, M. Eusocial insects as superorganisms: Insights from metabolic theory. Commun. Integr. Biol. 2010, 3, 360–362. [Google Scholar] [CrossRef]
Table 1. Microbial diversity found in the fungus garden (FG) and on/in the bodies (B on the bodies; DS: digestive system) of leaf-cutting ants.
Table 1. Microbial diversity found in the fungus garden (FG) and on/in the bodies (B on the bodies; DS: digestive system) of leaf-cutting ants.
MicrobiotaSome Identified GeneraIsolation SourceReferences
BacteriaActinomycetotaAmycolatopsis, Nocardiopsis, Pseudonocardia, Streptomyces, TsukamurellaFG, B[90,91]
PseudomonadotaAcinetobacter, Burkholderia, Enterobacter, Klebsiella, Pantoea, PseudomonasFG, B, DS[92,93,94,95]
FungiYeastsAureobasidium, Candida, Cryptococcus, Rhodosporidiobolus, Sporobolomyces, Starmerella, Tremella, Trichosporon, WickerhamomycesFG, B[96,97,98,99]
Black yeast-like fungiAlternaria, Bipolaris, Cladophialophora, Cladosporium, Exophiala, Ochroconis, Paraphaeosphaeria, Phaeococcomyces, Phialophora, PenidiellaB[100,101,102]
Filamentous fungiAspergillus, Chaetomium, Cunninghamella, Fusarium, Escovopsis, Monilia, Mucor, Penicillium, Phomopsis, Rhizomucor, Rhizopus, Syncephalastrum, TrichodermaFG, B[96,103,104,105]
Entomopathogenic fungiAspergillus, Beauveria, Clonostachys, Conidiobolus, Fusarium, Isaria, Metarhizium, Ophiocordyceps, Paecilomyces, PurpureocilliumFG, B[106,107,108,109]
VirusMycovirus LgTlV1 §, LgMV1 §FG[110]
§ Virus-like particles (+ssRNA): LgTlV1, Leucoagaricus gongylophorus tymo-like virus 1; LgMV1, Leucoagaricus gongylophorus magoulivirus 1.
Table 2. Main damage of economic importance caused by leaf-cutting ants.
Table 2. Main damage of economic importance caused by leaf-cutting ants.
Target Injury CausedReferences
Forest
plantations
EucaliptusThe damage caused, up to the third cycle, constitutes up to 30% of plantation management expenses.
The total defoliation of the trees causes a reduction of 11 mm in diameter and 0.7 m in height, translating to a 13% loss in wood volume at the end of a seven-year rotation, and also resulting in uneven tree growth.
Newly planted seedlings are the most vulnerable, often leading to their death.
The characteristic of the plant most affected by defoliation is the diameter, when compared to the height.
In plantations with ant nest densities of 2.76 m2 (loose soil per hectare), there was a reduction of 0.87% in wood volume.
[182,183,184]
PinusAttacks on newly planted seedlings can cause different levels of defoliation, which can reach 100%, affecting the apical meristem. This mostly happens in the first month after planting, causing the death of 7.5% of the seedlings.
Wood volume loss can reach 43% (compared to controls that did not undergo defoliation), with levels of greater than 75% defoliation 30 days after planting.
Acromyrmex species caused losses in seedlings of 20.8% 65 days after planting.
A six-year study found significant reductions in total height, diameter, and wood volume, with a mortality rate of 31.2%.
[185,186,187,188,189]
SalixThe damage produced by Acromyrmex species showed a reduction in wood volume of up to 90%.
The weight, diameter, and volume losses of wood in commercial clones of Salix nigra over four years were 70% (wt), 40% (diam), and a 51% to 93% loss of wood volume, depending on the variety of the clone.
[190,191,192,193]
Other plantations and cropsCitrus, vineyards, cocoa, soybean, alfalfa, sunflower, sorghum, alfalfa, flax wheat, maizeAttack in the initial stage of crops, seedlings,
caused delays in development and/or losses of seedlings.
[194,195,196,197,198,199,200,201,202,203]
Sugarcane
plantations
The losses were calculated at 1.74 tons of sugarcane per ant colony per hectare, in each cycle, with a 30% reduction in the sucrose content of the raw material harvested.
A reduction of 3.6 tons of sugarcane per year is equivalent to the loss of 450 Kg of sugar or 300 L of alcohol, as a result of one adult ant colony per hectare.
[43,183,204,205,206]
Pastures Ten colonies per hectare can consume 52.5 Kg of grass/day, which is equivalent to the daily rations for three oxen.
Another type of damage is produced by turning the earth and forming foraging trails.
[28,68,207,208,209,210]
Indirect
damage
Environmental pollution caused by the indiscriminate use of pesticides. Structural damage to highways, dams, bridges, mausoleums, or tombs.
Accidents with animals and agricultural machinery, loss of land fertility, and negative effects on the grazing behavior of cattle. Problems of water infiltration for irrigation caused by the presence of nests in sugarcane plantations in Colombia.
[23,28,34,184,211,212]
Table 3. Conventional methods for managing leaf-cutting ants.
Table 3. Conventional methods for managing leaf-cutting ants.
Control MethodDescriptionReferences
Mechanical Remove the queen ant by digging up the part of the nest with the queen (for nests >4 months old).
Plowing during soil preparation.
[213,214]
Cultural Crop rotation, destruction of crop residues, pruning, fertilization, and intercropping.
Combine crops with alternative plants with repellent effects (castor beans, grasses, sesame).
[7,215,216,217,218]
Physical Use of fire in forested areas. Flooding in small areas.[215,219]
BiologicalMacro-
organisms
Wild and domestic birds.
Entomopathogenic nematodes.
Arthropods: coleopterans, mites, spiders, parasitoids, predatory ants.
[40,128,220,221,222,223,224]
Among the parasitoids, phorids (Diptera: Phoridae) have been studied for their possible control. These dipterans lay their eggs in foraging workers when they are transporting leaves along the trail or while cutting leaf fragments.[225,226]
Micro-
organisms
The use of microorganisms may be a promising biocontrol tactic, by offering baits containing entomopathogenic fungi, antagonistic fungi of L. gongylophorus, and bacteria. More studies are needed following the promising results obtained in the laboratory so that these techniques can be effectively transferred to the field.[227,228,229,230,231]
Entomopathogenic fungi (baits): Metarhizium anisopliae, Beauveria bassiana, Aspergillus ochraceus, Conidiobolus lunulus, Purpureocillium lilacinum
Antagonistic fungi of L. gongylophorus (baits): Trichoderma spp., Escovopsis weberi
[232,233]
Bacteria (extracts): Photorhabdus sp., Serratia marcescens, and Xenorhabdus nematophila, on workers of certain species of Acromyrmex, Atta, and the fungus L. gongylophorus[234,235]
Nano-insecticidesDiatomaceous earth (DE)/nanostructured alumina (NSA). Inert powders with low toxicity to vertebrates and non-target organisms; low impact on the environment. Mode of action on insects: Interfere with the outer waxy protective layer of the cuticle, making the insects vulnerable to water loss and dehydration. DE is a powder composed of fossilized diatoms, which when used alone against Atta colonies, cause very low worker mortality, due to the complex nest architecture.[236,237]
NSA is a high-purity homogeneous powder resulting from the combustion synthesis of glycine and aluminum nitrate. NSA shows potential for use as a granular insecticide that can be applied directly to Acromyrmex nests.[238,239]
Synthetic/Chemical insecticidesPowders. An active ingredient with contact action, using talc as an inert and application vehicle (spray-dusting). Nests have more than one chamber and therefore the product does not affect the entire ant nest. Soil moisture negatively affects this type of technique.[7,240,241]
Liquids. Applied directly to the soil. The ants have to be directly exposed to the liquid, so where the nest is deep, penetration can be poor and there is a loss of the product due to absorption by the soil.[242,243]
Nebulization. Equipment: A cylindrical steel tank coupled to a hose, with a rod and nozzle suitable for applying the product (an active ingredient diluted in solvent and mixed with gases, butane, and propane) in the nest through the entrance holes.[7,242]
Thermal-fogging. An efficient technique for combating large nests and in areas of reforestation, where the use of bait is economically not feasible. The application method involves heat atomization of an insecticide carried in diesel or mineral oil, introduced through the holes, using a thermo-nebulizer. [215,244,245,246]
Toxic bait. Baits contain an attractive substrate and a toxic ingredient (e.g., sulfluramid or fipronil). The toxic compounds are not specific and can cause negative effects on non-target species in addition to water and soil pollution. The workers are contaminated by direct contact during the cultivation of the fungus.[6,7,181,247,248,249,250]
Natural controlPheromones and behavioral control. Many pheromones have attractive properties, which makes them a promising means of improving bait attraction. Some substances, such as β-eudesmol or those contained in jatobá leaves (Hymenaea courbaril), have been shown to produce behavioral changes (e.g., agonistic behavior) in workers from Acromyrmex and Atta colonies. [215,251,252,253,254]
Repellents. Plant extracts (PEx): Their low toxicity and persistence make them environmentally safer than pesticides. These extracts can be useful in association with other control tools, such as toxic and attractive types of bait in a “push–pull” strategy.[255,256,257,258]
Insecticides/Fungicides. PEx with insecticidal and/or fungicidal properties. Insecticidal activity by contact or ingestion: Citrus seed oils, namely Citrus sinensis, Citrus limon, or Citrus reticulate (Rutaceae); PEx of families such as Amaryllidaceae, Aristolochiaceae, Asteraceae, Euphorbiaceae, Fabaceae, Myrtaceae, Rubiaceae, Rutaceae, Simaroubaceae, and Solanaceae. Certain PEx also affect the mutualistic fungus: Piper piresii (Piperaceae), Simarouba versicolor (Simaroubaceae), Raulinoa echinata (Rutaceae), and Coffea spp. (Rutaceae).[259,260,261,262,263]
Table 4. Studies on the application of RNAi technology for ant control.
Table 4. Studies on the application of RNAi technology for ant control.
RNAiAnt SpeciesTarget GeneAdministration MethodLife Stage Social Form §References
dsRNASolenopsis invictaVitellogenin receptorInjectionWPQ[322]
Pheromone biosynthesis activating neuropeptideInjection, FeedingB, P, AQ, W[323]
Pheromone biosynthesis activating neuropeptide, Pyrokinin-2 receptorInjectionAW[324]
Short neuropeptide F receptorFeedingL, AQ, W[325]
Solenopsis invicta virus 1 capsidFeedingAinEc[326]
SiOBP1, SiOBP5, SiOBP6, SiOrcoInjection, FeedingAW[327]
Sifor, 8-Br-cGMPFeedingAQ, M, W[328]
Actin, coatomer subunit beta, arginine kinase, V-type proton ATPase catalytic subunit A, V-type proton ATPase subunit B, V-type proton ATPase subunit EFeedingAQ, M[329]
CamponotusfloridanusPeptidoglycan recognition proteinsFeedingL, AEc[321]
Diacamma sp.YellowInjectionWPM, F[330]
PolyrhachisvicinaEstrogen-related receptorFeedingAinEc[331,332]
PheidolehyattiVestigialInjectionLW[320]
NylanderiafulvaActin, coatomer subunit beta, arginine kinase, V-type proton ATPase catalytic subunit A, V-type proton ATPase subunit B, V-type proton ATPase subunit EFeedingAW[333]
LinepithemahumileSpaetzle, Dicer-1FeedingAQ, W[334]
siRNACamponotusfloridanuscGMP-dependent protein kinaseInjectionAW[335]
SolenopsisinvictaChemosensory protein 9, protein kinaseFeedingLW[336]
HarpegnathossaltatorCorozonin receptor, vitellogeninInjectionAQ[319]
Life stage: A, adult; Ain, all individuals; B, brood; L, larva; P, pupa; WP, white pupa. § Social form: Ec, entire colony; F, females; M, males; Q, queens; W, workers.
Table 5. Evaluation of plant essential oils (EOs) for the control of leaf-cutting ants.
Table 5. Evaluation of plant essential oils (EOs) for the control of leaf-cutting ants.
Plant Species Source of the EOTarget SpeciesApplication MethodExperimental ContextEffects Reference
Aristolochia trilobata
(Aristolochiaceae)
A. balzani, A. sexdensTopical application, fumigationLabIn[383]
A. balzani/L. gongylophorusFumigationLabIn/Fc, Fl
Croton tetradenius
(Euphorbiaceae)
A. balzaniVolatile exposureLabIn, Re, Bm[384]
Drimys angustifolia
(Winteraceae)
A. hispidus, A. crassispinusSprayingFieldBm[385]
Eplingiella fruticose
(Lamiaceae)
A. balzaniVolatile exposure, fumigationLabRe, Bm[386]
Eucalyptus spp.
(Myrtaceae)
A. sexdensVolatile exposureLabSar[387]
Eucaliptus maculate *
(Myrtaceae)
A. sexdensVolatile exposureLabBm[252]
A. sexdens rubropilosaVolatile exposureLabBm[258]
A. sexdens rubropilosa,
A. laevigata, A. bisphaerica
Volatile exposureLabBm[253]
Eugenia uniflora
(Myrtaceae)
A. laevigattaSprayingLabIn[388]
Hyptis pectinate
(Lamiaceae)
A. balzani, A. sexdensDirect contact, fumigationLabIn[389]
Lippia spp.
(Verbenaceae)
A. balzaniTopical applicationLabIn, Re, Bm[390]
Melaleuca alternifolia
(Myrtaceae)
A. ambiguus, A. lobicornisVolatile exposureLabRe[391]
Myrcia lundiana
(Myrtaceae)
A. balzaniFumigationLabIn, Bm[392]
Piper holtonii
(Piperaceae)
L. gongylophorusDirect contactLabFc[393]
Pittosporum sp./Pluchea sp.
(Pittosporaceae/Asteraceae)
A. ambiguus, A. lobicornisDirect contact, volatile exposureLab, FieldRe[394,395] **
Pogostemon cablin
(Lamiaceae)
A. opaciceps, A. sexdensDirect contact, fumigationLabBm[396]
Brassica juncea (Brassicaceae)/Cinnamomum verum (Lauraceae)/Syzygium aromaticum
(Myrtaceae)
A. sexdens, A. subterraneusDirect contact, ingestionLabIn[397]
Effects: Bm, behavior modification; Fc, fungistatic; Fl, fungicidal; In, insecticidal; Re, repellent; Sar, sensitivity of antennal receptors. * Synonym of Corymbia maculata (Hook.) ** ref. [394] Push–pull strategy.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Masiulionis, V.E.; Samuels, R.I. Investigating the Biology of Leaf-Cutting Ants to Support the Development of Alternative Methods for the Control and Management of These Agricultural Pests. Agriculture 2025, 15, 642. https://doi.org/10.3390/agriculture15060642

AMA Style

Masiulionis VE, Samuels RI. Investigating the Biology of Leaf-Cutting Ants to Support the Development of Alternative Methods for the Control and Management of These Agricultural Pests. Agriculture. 2025; 15(6):642. https://doi.org/10.3390/agriculture15060642

Chicago/Turabian Style

Masiulionis, Virginia Elena, and Richard Ian Samuels. 2025. "Investigating the Biology of Leaf-Cutting Ants to Support the Development of Alternative Methods for the Control and Management of These Agricultural Pests" Agriculture 15, no. 6: 642. https://doi.org/10.3390/agriculture15060642

APA Style

Masiulionis, V. E., & Samuels, R. I. (2025). Investigating the Biology of Leaf-Cutting Ants to Support the Development of Alternative Methods for the Control and Management of These Agricultural Pests. Agriculture, 15(6), 642. https://doi.org/10.3390/agriculture15060642

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop