Investigating the Biology of Leaf-Cutting Ants to Support the Development of Alternative Methods for the Control and Management of These Agricultural Pests
Abstract
:1. Introduction
2. Leaf-Cutting Ants
3. Biology and Ecology
3.1. Ant Morphology
3.2. Colony Structure and Biology
3.2.1. Structure
3.2.2. Overview of the Life Cycle of an Atta Colony
3.3. Nest Architecture
3.4. The Silent Collaboration: Fungus Garden and a Small Biocenosis
3.4.1. Fungus Garden
3.4.2. Small Biocenosis
3.4.3. Other Organisms Associated with Nests
3.5. Protection of the Microenvironment: A Fundamental Balance
3.5.1. Sensory Aspects
3.5.2. Morphological and Biochemical Aspects
3.5.3. Antibiosis
- Associated bacteria: Pseudonocardia and Streptomyces actinobacteria coexist in symbiosis on the surface of the exoskeleton of several species of LCAs [154,155]. These actinobacteria produce diffusible and volatile antimicrobial compounds [91,156,157,158]. This microbial complex protects the workers from infection by entomopathogenic fungi [159,160] as well as maintaining homeostasis within the fungal chambers, preventing the development of unwanted microorganisms [161,162]. In addition to actinobacteria, Gram-negative bacteria belonging to the genus Burkholderia (Order: Burkholderiales; Family: Burkholderiaceae) have been isolated from the fungus garden. These bacteria also inhibit entomopathogenic fungi [92]. In addition to bacteria, yeasts isolated from fungal gardens inhibited the growth of entomopathogenic fungi and other L. gongylophorus-antagonistic fungi [163].
- Fungi cultivated by the ants: Although further studies are still needed, mutualistic fungi cultivated by LCAs release substances with antibacterial and antifungal properties [8,131,164,165,166], as well as a complex of volatile organic compounds [167]. However, it is surprising that, despite the potential relevance of these properties, there is a notable lack of recent research exploring in depth the antibiotic, antifungal, or other possible applications of these compounds, leaving a significant gap in the current knowledge of this system.
3.5.4. Behavioral Aspects
- Self-grooming involves the meticulous care of personal hygiene, especially the antennae [171,172]. Self-grooming enables the ants to collect debris, spores, hyphae, or dirt particles in their infrabuccal pockets and then discard them in the form of waste pellets. Self-grooming also fulfills the function of spreading antimicrobial substances over the body surface [173,174].
- Weeding behavior is another form of antisepsis, but of the fungus garden by the worker ants, originally proposed by Möller [78] and confirmed by Weber [177] and Currie and Stuart [178]. Weeding involves using the mouthparts to remove regions of the garden contaminated with sporulating foreign invasive fungi [154,179,180]. Currie and Stuart [178] defined another disinfection behavior for fungus gardens, which they called “fungus grooming”. This involves the removal of foreign spores by cleaning the garden with the mouthparts, collecting and accumulating these fragments as pellets in the infrabuccal pocket, and then expelling them in the garbage deposit.
4. Economic Implications and Innovative Management Approaches
4.1. Combinations of Sublethal Doses of Insecticides and EPF
4.2. Applicability of RNAi as a Potential Pest Control Method
4.3. Application of Essential Oils as a Low-Impact Alternative to Conventional Control Methods
- Acting as repellents [362];
- Mimicking the effects of octopamine, a biogenic amine essential in the arthropod nervous system, synthesized from tyrosine and playing a key role as a neurotransmitter, neurohormone, and neuromodulator, regulating processes such as memory, learning, fat metabolism, respiration, and muscle function [370,371,372,373,374];
- Affecting antioxidant systems by modulating their defense mechanisms against oxidative stress. Some EOs increase reactive oxygen species (ROS) levels and reduce the activity of key antioxidant enzymes, such as superoxide dismutase, catalase, peroxidases, and glutathione-S-transferase, compromising pest defenses and promoting mortality [361,380].
5. Conclusions
6. Future Directions
- Further studies on sublethal effects of insecticides and EOs: expand research on the sublethal effects on colony behavior and social organization, particularly in natural contexts;
- Integration of biological methods: strengthen the use of EPF in combination with other approaches, assessing their efficacy under different environmental conditions and life stages of the LCAs;
- Optimization of RNAi delivery: develop efficient methods for dsRNA administration, such as baits resistant to environmental degradation and strategies facilitating trophallaxis-based distribution;
- Genomic and transcriptomic analyses: apply ‘omics’ techniques to identify new target genes and crucial metabolic pathways in both ants and their symbiotic fungus, which could be manipulated through biotechnology;
- Comprehensive evaluation of EOs: conduct field-scale studies to validate their efficacy and practical feasibility, including impact analyses on non-target species and an evaluation of application methods;
- Ecological impact of alternative methods: study the long-term consequences of non-chemical approaches on local ecosystems to ensure these solutions are genuinely sustainable.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chowański, S.; Kudlewska, M.; Paweł Marciniak, P.; Rosiński, G. Synthetic insecticides—Is there an alternative? Pol. J. Environ. Stud. 2014, 23, 291–302. [Google Scholar]
- Ahmad, M.F.; Ahmad, F.A.; Alsayegh, A.A.; Zeyaullah, M.; AlShahrani, A.M.; Muzammil, K.; Saati, A.A.; Wahab, S.; Elbendary, E.Y.; Kambal, N.; et al. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 2024, 10, e29128. [Google Scholar] [CrossRef]
- Hassaan, M.A.; Nemr, A.E. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques, Egypt. J. Aquat. Res. 2020, 46, 207–220. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef]
- Ansari, I.; El-Kady, M.M.; Mahmoud, A.E.D.; Arora, C.; Verma, A.; Rajarathinam, R.; Singh, P.; Verma, D.K.; Mittal, J. Persistent pesticides: Accumulation, health risk assessment, management and remediation: An overview. Desalination Water Treat. 2024, 317, 100274. [Google Scholar] [CrossRef]
- Della Lucia, T.M.; Gandra, L.C.; Guedes, R.N. Managing leaf-cutting ants: Peculiarities, trends and challenges. Pest Manag. Sci. 2014, 70, 14–23. [Google Scholar] [CrossRef]
- Zanetti, R.; Zanuncio, J.C.; Santos, J.C.; Da Silva, W.L.P.; Ribeiro, G.T.; Lemes, P.G. An Overview of integrated management of leaf-cutting ants (Hymenoptera: Formicidae) in Brazilian forest plantations. Forests 2014, 5, 439–454. [Google Scholar] [CrossRef]
- Weber, N.A. Gardening Ants: The Attines; American Philosophical Society: Philadelphia, PA, USA, 1972; p. 146. [Google Scholar]
- Leal, I.R.; Wirth, R.; Tabarelli, M. The multiple impacts of leaf-cutting ants and their novel ecological role in human-modified neotropical forests. Biotropica 2014, 46, 516–528. [Google Scholar] [CrossRef]
- Blanton, C.; Ewel, J. Leaf-cutting herbivory in successional and agricultural tropical ecosystems. Ecology 1985, 66, 861–869. [Google Scholar] [CrossRef]
- Vasconcelos, H.L.; Cherrett, J.M. Changes in leaf-cutting ant populations (Formicidae: Attini) after the clearing of mature forest in Brazilian Amazonia. Stud. Neotrop. Fauna Environ. 1995, 2, 107–113. [Google Scholar] [CrossRef]
- Galvanho, J.P.; Carrera, M.P.; Moreira, D.D.O.; Erthal, M., Jr.; Silva, C.P.; Samuels, R.I. Imidacloprid inhibits behavioral defenses of the leaf-cutting ant Acromyrmex subterraneus subterraneus (Hymenoptera: Formicidae). J. Insect Behav. 2013, 26, 1–13. [Google Scholar] [CrossRef]
- Allen, M.L. Prospects for using RNAi as control for ants. Front. Agron. 2021, 3, 591539. [Google Scholar] [CrossRef]
- Pinheiro, H.S.S.; Calazans, C.C.; Masiulionis, V.E.; Andrade, V.S.; Carvalho, T.S.; Bomfim Gois, I.; Ribeiro, G.T.; Blank, A.F.; Araújo, A.P.A.; Bacci, L. Potential of alternative control of leaf-cutting ants using essential oils: A systematic review. Agric. For. Entomol. 2025, in press. [Google Scholar]
- Maturana, H.R.; Varela, F.J. De Máquinas y Seres Vivos: Autopoiesis, la Organización de lo vivo, 1st ed.; Lumen: Buenos Aires, Argentina, 2003; p. 140. [Google Scholar]
- Farji-Brener, A.G.; Ruggiero, A. Leaf-cutting ants (Atta and Acromyrmex) inhabiting Argentina: Patterns in species richness and geographical range size. J. Biogeogr. 1994, 21, 391–399. [Google Scholar] [CrossRef]
- Quinlan, R.J.; Cherrett, J.M. The role of fungus in the diet of the leaf-cutting ant Atta cephalotes (L.). Ecol. Entomol. 1979, 4, 151–160. [Google Scholar] [CrossRef]
- Hölldobler, B.; Wilson, E.O. The Ants; Harvard University Press: Cambridge, MA, USA, 1990; p. 737. [Google Scholar]
- Schultz, T.R.; Brady, S.G. Major evolutionary transition in ant agriculture. Proc. Natl. Acad. Sci. USA 2008, 105, 5401–5435. [Google Scholar] [CrossRef] [PubMed]
- Schultz, T.R.; Sosa-Calvo, J.; Kweskin, M.P.; Lloyd, M.W.; Dentinger, B.; Kooij, P.W.; Vellinga, E.C.; Rehner, S.A.; Rodrigues, A.; Montoya, Q.V.; et al. The coevolution of fungus-ant agriculture. Science 2024, 386, 105–110. [Google Scholar] [CrossRef]
- Nascimento, D.L.; Chiapini, M.; Vidal-Torrado, P.; Phillips, J.D.; Bernardes Ladeira, F.S.; Terra Machado, D.F.; Camargo, R.S.; Valezio, E.V. The underestimated role of leaf-cutting ants in soil and geomorphological development in neotropical America. Earth Sci. Rev. 2024, 248, 104650. [Google Scholar] [CrossRef]
- Jones, C.G.; Lawton, J.H.; Shachak, M. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 1997, 78, 1946–1957. [Google Scholar] [CrossRef]
- Bucher, E.H.; Zuccardi, R. Significación de los hormigueros de Atta vollenweideri Forel como alteradores del suelo en la Provincia de Tucumán. Acta Zool. Lilloana 1967, 23, 83–96. [Google Scholar]
- Maurice-Lira, J.V.; Romero-Nápoles, J.; Lara-Herrera, A.; Pérez-Moreno, J.; Flores-Maldonado, K.Y.; Guzmán-Franco, A.W.; Gonzáles-Hernández, H.; Bautista-Pérez, N.I.; Vázquez-Chávez, F.A. Effect of Atta mexicana wastes on the nutritional and microbiological characteristics of soil. Appl. Ecol. Environ. Res. 2023, 21, 5549–5564. [Google Scholar] [CrossRef]
- Schofield, R.M.S.; Emmett, K.D.; Niedbala, J.C.; Nesson, M.H. Leaf-cutter ants with worn mandibles cut half as fast, spend twice the energy, and tend to carry instead of cut. Behav. Ecol. Sociobiol. 2011, 65, 969–982. [Google Scholar] [CrossRef]
- Püffel, F.; Meyer, L.; Imirzian, N.; Roces, F.; Johnston, R.; Labonte, D. Developmental biomechanics and age polyethism in leaf-cutter ants. Proc. R. Soc. B. 2023, 290, 20230355. [Google Scholar] [CrossRef]
- Camargo, R.S.; Hastenreiter, I.N.; Forti, L.C.; Santos Lopes, J.F. Relationship between mandible morphology and leaf preference in leaf-cutting ants (Hymenoptera: Formicidae). Rev. Colomb. Entomol. 2015, 41, 241–244. [Google Scholar]
- Fowler, H.G.; Forti, L.C.; Pereira da Silva, P.; Saes, N.B. Economics of grass-cutting ants. In Fire Ants and Leaf-Cutting Ants (Studies in Insect Biology); Clifford, S., Vander Meer, R.K., Eds.; Westview Press: New York, NY, USA, 1986; pp. 18–35. [Google Scholar]
- Borgmeier, T. Revision der Gattung Atta Fabricius (Hymenoptera, Formicidae). Estudia Ent. 1959, 2, 1–4. [Google Scholar]
- Ingram, K.K.; Gordon, D.M.; Friedman, D.A.; Greene, M.; Kahler, J.; Peteru, S. Context-dependent expression of the foraging gene in field colonies of ants: The interacting roles of age, environment and task. Proc. Biol. Sci. 2016, 283, 20160841. [Google Scholar] [CrossRef]
- Wilson, E.O. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). Behav. Ecol. Sociobiol. 1983, 14, 55–60. [Google Scholar] [CrossRef]
- Hughes, W.O.; Sumner, S.; Van Borm, S.; Boomsma, J.J. Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants. Proc. Natl. Acad. Sci. USA 2003, 100, 9394–9397. [Google Scholar] [CrossRef]
- Souza, D.J.; Santos, J.F.L.; Della Lucia, T.M.C. Organização social das formigas-cortadeiras. In Formigas Cortadeiras da Bioecologia ao Manejo; Della Lucia, T.C.M., Ed.; UFV: Viçosa, Brasil, 2011; pp. 126–140. [Google Scholar]
- Fowler, H.G.; Pereira da Silva, P.; Forti, L.C.; Saes, N.B. Population dynamics of leaf-cutting ants: A brief review. In Fire Ants and Leaf-Cutting Ants (Studies in Insect Biology); Clifford, S., Vander Meer, R.K., Eds.; Westview Press: New York, NY, USA, 1986; pp. 123–145. [Google Scholar]
- Smith, A.R.; Muscedere, M.L.; Seid, M.A.; Traniello, J.F.; Hughes, W.O. Biogenic amines are associated with worker task but not patriline in the leaf-cutting ant Acromyrmex echinatior. J. Comp. Physiol. A. Neuroethol. Sens. Neural. Behav. Physiol. 2013, 199, 1117–1127. [Google Scholar] [CrossRef]
- Waddington, S.J.; Hughes, W.O. Waste management in the leaf-cutting ant Acromyrmex echinatior: The role of worker size, age and plasticity. Behav. Ecol. Sociobiol. 2010, 64, 1219–1228. [Google Scholar] [CrossRef]
- Moser, J.C.; Lewis, J.R. Multiple nest queens of Atta texana (Buckley 1860): (Hymenoptera: Formicidae). Turrialba 1981, 31, 256–257. [Google Scholar]
- Mintzer, A.C. Colony foundation in leaf-cutting ants: The perils of polygyny in Atta laevigata (Hymenoptera: Formicidae). Psyche 1991, 98, 1–5. [Google Scholar] [CrossRef]
- Jofré, L.E.; Medina, A.I. Patrones de actividad forrajera y tamaño de nido de Acromyrmex lobicornis (Hymenoptera: Formicidae) en una zona urbana de San Luis, Argentina. Rev. Soc. Entomol. Argent. 2012, 71, 1–2. [Google Scholar]
- Mariconi, F.A.M. As Saúvas; São Paulo Agronômica Ceres: São Paulo, Brasil, 1970; p. 167. [Google Scholar]
- Marinho, C.G.S.; Oliveira, M.A.; Araújo, M.S.; Ribeiro, M.M.R.; Della Lucia, T.M.C. Voo nupcial ou revoada de formigas cortadeiras. In Formigas Cortadeiras da Bioecologia ao Manejo; Della Lucia, T.C.M., Ed.; UFV: Viçosa, Brasil, 2011; pp. 165–172. [Google Scholar]
- Moser, J.C. Mating activities of Atta texana (Hymenoptera, Formicidae). Insectes Soc. 1967, 14, 295–312. [Google Scholar] [CrossRef]
- Amante, E. Influência de Alguns Fatores Microclimáticos Sobre a Formiga Saúva Atta laevigata (F. Smith, 1858), Atta sexdens rubropilosa Forel, 1908, Atta bisphaerica Forel, 1908, e Gonçalves, 1944 (Hymenoptera, Formicidae), em Formigueiros Localizados no Estado de São Paulo. Ph.D. Thesis, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, Brasil, 1972. [Google Scholar]
- Jonkman, J.C.M. The external and internal structure and growth of nests of the leaf-cutting ant Atta vollenweideri Forel, 1893 (Hymenoptera: Formicidae) Part I. J. Appl. Entomol. 1980, 89, 158–173. [Google Scholar] [CrossRef]
- Staab, M.; Kleineidam, C. Initiation of swarming behavior and synchronization of mating flights in the leaf-cutting ant Atta vollenweideri Forel, 1893 (Hymenoptera: Formicidae). Myrmecol. News 2014, 19, 93–102. [Google Scholar] [CrossRef]
- Evison, S.E.; Hughes, W.O. Genetic caste polymorphism and the evolution of polyandry in Atta leaf-cutting ants. Sci. Nat. 2011, 98, 643–649. [Google Scholar] [CrossRef]
- den Boer, S.P.; Baer, B.; Dreier, S.; Aron, S.; Nash, D.R.; Boomsma, J.J. Prudent sperm use by leaf-cutter ant queens. Proc. Biol. Sci. 2009, 276, 3945–3953. [Google Scholar] [CrossRef]
- Jutsum, A.R.; Quinlan, R.J. Flight and substrate utilization in laboratory-reared males of Atta sexdens. J. Insect Physiol. 1978, 24, 821–825. [Google Scholar] [CrossRef]
- Augustin, J.O.; Santos, J.F.L.; Elliot, S.L. A behavioral repertoire of Atta sexdens (Hymenoptera, Formicidae) queens during the claustral founding and ergonomic stages. Insect Soc. 2011, 58, 197–206. [Google Scholar] [CrossRef]
- Della Lucia, T.M.C.; Araújo, M.S. Fundação e estabelecimento de formigueiros. In As Formigas Cortadeiras; Della Lucia, T.M.C., Ed.; Folha de Viçõsa: Viçosa, Brasil, 1993; pp. 60–83. [Google Scholar]
- Bollazzi, M.; Kronenbitter, J.; Roces, F. Soil temperature, digging behaviour, and the adaptive value of nest depth in South American species of Acromyrmex leaf-cutting ants. Oecologia 2008, 158, 165–175. [Google Scholar] [CrossRef]
- Pielström, S.; Roces, F. Soil moisture and excavation behaviour in the Chaco leaf-cutting ant (Atta vollenweideri): Digging performance and prevention of water inflow into the nest. PLoS ONE 2014, 9, e95658. [Google Scholar] [CrossRef] [PubMed]
- Kleineidam, C.; Tautz, J. Perception of carbon dioxide and other “air-condition” parameters in the leaf cutting ant Atta cephalotes. Sci. Nat. 1996, 83, 566–568. [Google Scholar] [CrossRef]
- Kleineidam, C.; Ernst, R.; Roces, F. Wind-induced ventilation of the giant nests of the leaf-cutting ant Atta vollenweideri. Sci. Nat. 2001, 88, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Bollazzi, M.; Römer, D.; Roces, F. Carbon dioxide levels and ventilation in Acromyrmex nests: Significance and evolution of architectural innovations in leaf-cutting ants. R. Soc. Open Sci. 2021, 8, 210907. [Google Scholar] [CrossRef] [PubMed]
- Jonkman, J.C.M. Nests of the leaf-cutting ant Atta vollenweideri as accelerators of succession in pastures. J. Appl. Entomol. 1978, 86, 25–34. [Google Scholar] [CrossRef]
- Forti, L.C.; Protti de Andrade, A.P.; Camargo, R.D.S.; Caldato, N.; Moreira, A.A. Discovering the giant nest architecture of grass-cutting ants, Atta capiguara (Hymenoptera, Formicidae). Insects 2017, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Farji-Brener, A.G. Modificaciones al suelo realizadas por hormigas cortadoras de hojas (Formicidae, Attini): Una revisión de sus efectos sobre la vegetación. Ecol. Austral 1992, 2, 87–94. [Google Scholar]
- Moreira, A.A.; Forti, L.C.; Boaretto, M.A.C.; Andrade, A.P.P.; Lopes, J.F.S.; Ramos, V.M. External and internal structure of Atta bisphaerica Forel (Hymenoptera: Formicidae) nests. J. Appl. Entomol. 2004, 128, 204–211. [Google Scholar] [CrossRef]
- Moreira, A.A.; Forti, L.C.; Andrade, A.P.P.; Boaretto, M.A.C.; Lopes, J.F.S. Nest Architecture of Atta laevigata (F. Smith, 1858) (Hymenoptera: Formicidae). Stud. Neotrop. Fauna Environ. 2004, 39, 109–116. [Google Scholar] [CrossRef]
- Quirán, E.; Pilati, A. Estructura de los hormigueros de Acromyrmex lobicornis (Hyrnenoptera:Forrnicidae) en un sitio natural sermiárido de La Pampa, Argentina. Rev. Soc. Entomol. Argent. 1998, 57, 45–48. [Google Scholar]
- Masiulionis, V.E. Fungi associated with Acromyrmex and basal Attini ants from Argentina and Brasil. Ph.D. Thesis, Universidade Estadual Paulista “Julio de Mesquita Filho”, Rio Claro, Brasil, 2013. [Google Scholar]
- Batista, N.R.; Oliveira, V.E.S.; Antonialli-Junior, W.F. A 3D model to illustrate the nest architecture of Acromyrmex balzani (Hymenoptera; Formicidae). Rev. Bras. Entomol. 2021, 65, 3. [Google Scholar] [CrossRef]
- Verza, S.S.; Forti, L.C.; Lopes, J.F.S.; Hugues, W.O.H. Nest architecture of leaf-cutting ant Acromyrmex rugosus rugosus. Insectes Soc. 2007, 54, 300–309. [Google Scholar] [CrossRef]
- Hart, A.; Ratnieks, F. Task partitioning, division of labour and nest compartmentalisation collectively isolate hazardous waste in the leaf-cutting ant Atta cephalotes. Behav. Ecol. Sociobiol. 2001, 49, 387–392. [Google Scholar] [CrossRef]
- Hart, A.; Ratnieks, F. Waste management in the leaf-cutting ant Atta colombica. Behav. Ecol. 2002, 13, 224–231. [Google Scholar] [CrossRef]
- Sudd, J. Interaction between ants on a scent trail. Nature 1959, 183, 1588. [Google Scholar] [CrossRef]
- Fowler, H.G. Foraging trails of leaf-cutting ants. JNY Entomol. Soc. 1978, 86, 132–136. [Google Scholar]
- Kost, C.; Gama de Oliveira, E.; Knoch, T.; Wirth, R. Temporal and spatial patterns, plasticity, and ontogeny of foraging trails in leaf-cutting ants. J. Trop. Ecol. 2005, 21, 677–688. [Google Scholar] [CrossRef]
- Howard, J.J. Leaf-cutting ant diet selection: The role of nutrients, water, and secondary chemistry. Ecology 1987, 68, 503–515. [Google Scholar] [CrossRef]
- North, R.D.; Jackson, C.W.; Howse, P.E. Evolutionary aspects of ant-fungus interactions in leaf-cutting ants. Trends Ecol. Evol. 1997, 12, 386–389. [Google Scholar] [CrossRef]
- Hölldobler, B.; Wilson, E.O. The Leafcutter Ants: Civilization by Instinct; W. W. Norton & Company: New York, NY, USA, 2011; p. 190. [Google Scholar]
- Boyd, N.D.; Martin, M.M. Faecal proteinases of the fungus-growing ant, Atta texana: Their fungal origin and ecological significance. J. Insect Physiol. 1975, 21, 1815–1820. [Google Scholar] [CrossRef]
- Quinlan, R.J.; Cherrett, J.M. The role of substrate preparation in the symbiosis between the leaf-cutting ant Acromyrmex octospinosus (Reich) and its food fungus. Ecol. Entomol. 1977, 2, 161–170. [Google Scholar] [CrossRef]
- Garrett, R.W.; Carlson, K.A.; Goggans, M.S.; Nesson, M.H.; Shepard, C.A.; Schofield, R.M.S. Leaf processing behaviour in Atta leafcutter ants: 90% of leaf cutting takes place inside the nest, and ants select pieces that require less cutting. R. Soc. Open Sci. 2016, 3, 150111. [Google Scholar] [CrossRef] [PubMed]
- Schiøtt, M.; Rogowska-Wrzesinska, A.; Roepstorff, P.; Boomsma, J.J. Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi. BMC Biol. 2010, 8, 156. [Google Scholar] [CrossRef]
- Schiøtt, M.; Boomsma, J.J. Proteomics reveals synergy between biomass degrading enzymes and inorganic Fenton chemistry in leaf-cutting ant colonies. Elife 2021, 10, e61816. [Google Scholar] [CrossRef]
- Möller, A. Die Pilzgärten einiger südamerikanischer Ameisen. Botan. Mitt. Tropen 1893, 6, 127. [Google Scholar]
- Wheeler, W.M. The fungus-growing ants of North America. B. Am. Mus. Nat. Hist. 1907, 23, 669–807. [Google Scholar]
- Bass, M.; Cherrett, J.M. Fungal hyphae as a source of nutrients for the leaf-cutting ant Atta sexdens. Physiol. Entomol. 1995, 20, 1–6. [Google Scholar] [CrossRef]
- Silva, A.; Bacci, M.; Siqueira, C.G.; Bueno, O.C.; Pagnocca, F.C.; Hebling, M.J.A. Survival of Atta sexdens workers on different food sources. J. Insect Physiol. 2003, 49, 307–313. [Google Scholar] [CrossRef]
- Littledyke, M.; Cherrett, J.M. Direct ingestion of plant sap from cut leaves by the leaf-cutting ants Atta cephalotes (L.) and Acromyrmex octospinosus (reich) (Formicidae, Attini). Bull. Entomol. Res. 1976, 66, 205–217. [Google Scholar] [CrossRef]
- Martin, M.M.; Carman, R.M.; MacConnell, J.G. Nutrients derived from the fungus cultured by the fungus-growing ant Atta colombica tonsipes. Ann. Entomol. Soc. Am. 1969, 62, 11–13. [Google Scholar] [CrossRef]
- De Fine Licht, H.; Boomsma, J.J.; Tunlid, A. Symbiotic adaptations in the fungal cultivar of leaf-cutting ants. Nat. Commun. 2014, 5, 5675. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, R.J.; Cherrett, J.M. Studies on the role of the infrabuccal pocket of the leaf-cutting ant Acromyrmex octospinosus (Reich) (Hym., Formicidae). Ins. Soc. 1978, 25, 237–245. [Google Scholar] [CrossRef]
- De Fine Licht, H.H.; Schiøtt, M.; Rogowska-Wrzesinska, A.; Nygaard, S.; Roepstorff, P.; Boomsma, J.J. Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts. Proc. Natl. Acad. Sci. USA. 2013, 8, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Aylward, F.O.; Khadempour, L.; Tremmel, D.M.; McDonald, B.R.; Nicora, C.D.; Wu, S.; Moore, R.J.; Orton, D.J.; Monroe, M.E.; Piehowski, P.D.; et al. Enrichment and broad representation of plant biomass-degrading enzymes in the specialized hyphal swellings of Leucoagaricus gongylophorus, the fungal symbiont of leaf-cutter ants. PLoS ONE 2015, 10, e0134752. [Google Scholar] [CrossRef] [PubMed]
- Khadempour, L.; Burnum-Johnson, K.E.; Baker, E.S.; Nicora, C.D.; Webb-Robertson, B.M.; White, R.A., 3rd; Monroe, M.E.; Huang, E.L.; Smith, R.D.; Currie, C.R. The fungal cultivar of leaf-cutter ants produces specific enzymes in response to different plant substrates. Mol. Ecol. 2016, 25, 5795–5805. [Google Scholar] [CrossRef]
- Conlon, B.H.; O’Tuama, D.; Michelsen, A.; Crumière, A.J.J.; Shik, J.Z. A fungal symbiont converts provisioned cellulose into edible yield for its leafcutter ant farmers. Biol. Lett. 2022, 18, 20220022. [Google Scholar] [CrossRef]
- Currie, C.R.; Mueller, U.G.; Malloch, D. The agricultural pathology of ant fungus gardens. Proc. Natl. Acad. Sci. USA 1999, 96, 7998–8002. [Google Scholar] [CrossRef]
- Barke, J.; Seipke, R.F.; Grüschow, S.; Heavens, D.; Drou, N.; Bibb, M.J.; Goss, R.J.M.; Yu, D.W.; Hutchings, M.I. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol. 2010, 8, 109. [Google Scholar] [CrossRef]
- Santos, A.V.; Dillon, R.J.; Dillon, V.M.; Reynolds, S.E.; Samuels, R.I. Ocurrence of the antibiotic producing bacterium Burkholderia sp. in colonies of the leaf-cutting ant Atta sexdens rubropilosa. FEMS Microbiol. Lett. 2004, 239, 319–323. [Google Scholar] [CrossRef]
- Khadempour, L.; Fan, H.; Keefover-Ring, K.; Carlos-Shanley, C.; Nagamoto, N.S.; Dam, M.A.; Pupo, M.T.; Currie, C.R. Metagenomics reveals diet-specific specialization of bacterial communities in fungus gardens of grass- and dicot-cutter ants. Front. Microbiol. 2020, 11, 570770. [Google Scholar] [CrossRef]
- Barcoto, M.O.; Carlos-Shanley, C.; Fan, H.; Ferro, M.; Nagamoto, N.S.; Bacci, M., Jr.; Currie, C.R.; Rodrigues, A. Fungus-growing insects host a distinctive microbiota apparently adapted to the fungiculture environment. Sci. Rep. 2020, 10, 12384. [Google Scholar] [CrossRef]
- Li, H.; Young, S.E.; Poulsen, M.; Currie, C.R. Symbiont-mediated digestion of plant biomass in fungus-farming insects. Annu. Rev. Entomol. 2021, 66, 297–316. [Google Scholar] [CrossRef]
- Pagnocca, F.C.; Rodrigues, A.; Nagamoto, N.S.; Bacci, M., Jr. Yeasts and filamentous fungi carried by the gynes of leaf-cutting ants. Antonie Van Leeuwenhoek 2008, 94, 517–526. [Google Scholar] [CrossRef]
- Masiulionis, V.E.; Pagnocca, F.C. Wickerhamomyces spegazzinii sp. nov., an ascomycetous yeast isolated from the fungus garden of Acromyrmex lundii nest (Hymenoptera: Formicidae). Int. J. Syst. Evol. Microbiol. 2016, 66, 2141–2145. [Google Scholar] [CrossRef]
- Masiulionis, V.E.; Pagnocca, F.C. Rhodosporidiobolus geoffroeae sp. nov., a basidiomycetous yeast isolated from the waste deposit of the attine ant Acromyrmex lundii. Int. J. Syst. Evol. Microbiol. 2017, 67, 1028–1032. [Google Scholar] [CrossRef]
- Giraldo, C.; Chaves-López, C.; Tofalo, R.; Angrisani, R.; Rodrigues, A.; Montoya-Lerma, J. Yeasts associated with the worker caste of the leaf-cutting ant Atta cephalotes under experimental conditions in Colombia. Arch. Microbiol. 2022, 204, 284. [Google Scholar] [CrossRef]
- Guedes, F.L.A.; Attili-Angelis, D.; Pagnocca, F.C. Selective isolation of dematiaceous fungi from the workers of Atta laevigata (Formicidae: Attini). Folia Microbiol. 2012, 57, 21–26. [Google Scholar] [CrossRef]
- Duarte, A.P.; Ferro, M.; Rodrigues, A.; Bacci, M., Jr.; Nagamoto, N.S.; Forti, L.C.; Pagnocca, F.C. Prevalence of the genus Cladosporium on the integument of leaf-cutting ants characterized by 454 pyrosequencing. Antonie Van Leeuwenhoek 2016, 109, 1235–1243. [Google Scholar] [CrossRef]
- Duarte, A.P.M.; Attili-Angelis, D.; Baron, N.C.; Groenewald, J.Z.; Crous, P.W.; Pagnocca, F.C. Riding with the ants. Persoonia 2017, 38, 81–99. [Google Scholar] [CrossRef]
- Fisher, P.J.; Stradling, D.J.; Sutton, B.C.; Petrini, L.E. Microfungi in the fungus gardens of the leaf-cutting ant Atta cephalotes: A preliminary study. Mycol. Res. 1996, 100, 541–546. [Google Scholar] [CrossRef]
- Pagnocca, F.C.; Masiulionis, V.E.; Rodrigues, A. Specialized fungal parasites and opportunistic fungi in gardens of attine ants. Psyche 2012, 905109. [Google Scholar] [CrossRef]
- Marfetán, J.A.; Folgarait, P.J. Diversity of mycobiota in colonies of different species of leafcutting ants and sampling sites across Argentina. Ecol. Austral 2017, 27, 3. [Google Scholar]
- Alves, S.B. Controle Microbiano de Insetos, 2nd ed.; Biblioteca de Ciências Agrárias Luiz de Queiroz: Piracicaba, Brasil, 1998; p. 424. [Google Scholar]
- Hughes, W.O.; Thomsen, L.; Eilenberg, J.; Boomsma, J.J. Diversity of entomopathogenic fungi near leaf-cutting ant nests in a neotropical forest, with particular reference to Metarhizium anisopliae var. anisopliae. J. Invertebr. Pathol. 2004, 85, 46–53. [Google Scholar] [CrossRef]
- Goffré, D.; Folgarait, P.J. Purpureocillium lilacinum, potential agent for biological control of the leaf-cutting ant Acromyrmex lundii. J. Invertebr. Pathol. 2015, 130, 107–115. [Google Scholar] [CrossRef]
- Goffré, D.; Jensen, A.B.; Lopez Lastra, C.C.; Humber, R.A.; Folgarait, P.J. Conidiobolus lunulus, a new entomophthoralean species isolated from leafcutter ants. Mycologia 2021, 113, 56–64. [Google Scholar] [CrossRef]
- Rødsgaard-Jørgensen, A.; Leal-Dutra, C.A.; de Santana, S.F.; Jensen, A.R.; Marques, R.E.; Aguiar, E.R.G.R.; Shik, J.Z. Two +ssRNA mycoviruses cohabiting the fungal cultivar of leafcutter ants. Virol. J. 2024, 21, 211. [Google Scholar] [CrossRef] [PubMed]
- Montoya, Q.V.; Meirelles, L.A.; Chaverri, P.; Rodrigues, A. Unraveling Trichoderma species in the attine ant environment: Description of three new taxa. Antonie Van Leeuwenhoek 2016, 109, 633–651. [Google Scholar] [CrossRef]
- Armando, N.G.; Marfetán, J.A.; Folgarait, P.J. Trichoderma species associated with Acromyrmex ant nests from Argentina and first report of Trichoderma lentiforme for the country. Darwiniana Nueva Ser. 2017, 5, 72–82. [Google Scholar] [CrossRef]
- Augustin, J.O.; Groenewald, J.Z.; Nascimento, R.J.; Mizubuti, E.S.; Barreto, R.W.; Elliot, S.L.; Evans, H.C. Yet more “weeds” in the garden: Fungal novelties from nests of leaf-cutting ants. PLoS ONE 2013, 8, e82265. [Google Scholar] [CrossRef]
- Masiulionis, V.E.; Cabello, M.N.; Seifert, K.A.; Pagnocca, F.C. Escovopsis trichodermoides sp. nov., isolated from a nest of the lower attine ant Mycocepurus goeldii. Antonie Van Leeuwenhoek 2015, 107, 731–740. [Google Scholar] [CrossRef]
- Marfetán, J.A.; Romero, A.I.; Cafaro, M.J.; Folgarait, P.J. Five new Escovopsis species from Argentina. Mycotaxon 2018, 133, 569–589. [Google Scholar] [CrossRef]
- Montoya, Q.V.; Martiarena, M.J.S.; Rodrigues, A. Taxonomy and systematics of the fungus-growing ant associate Escovopsis (Hypocreaceae). Stud. Mycol. 2023, 106, 349–397. [Google Scholar] [CrossRef]
- Kronauer, D.J.; Pierce, N.E. Myrmecophiles. Curr. Biol. 2011, 21, R208–R209. [Google Scholar] [CrossRef]
- Krantz, G.W.; Moser, J.C. A new genus and species of Macrochelidae (Acari: Mesostigmata) associated with the Texas leaf-cutting ant, Atta texana (Buckley) in Louisiana, USA. Int. J. Acarol. 2012, 38, 576–582. [Google Scholar] [CrossRef]
- Peralta, L.; Martínez, P.A. Ensambles de ácaros oribátidos en hormigueros de Acromyrmex spp. (Hymenoptera, Formicidae). Ecol. Austral 2013, 23, 209–217. [Google Scholar] [CrossRef]
- Marquez-Luna, J.; Navarette-Heredia, J.L. Especies de Staphylinidae (Insecta: Coleoptera) asociadas a detritos de Atta mexicana (F. Smith) (Hymenoptera: Formicidae) en dos localidades de Morelos, Mexico. Folia Entomol. Mex. 1994, 90, 31–46. [Google Scholar]
- Navarrete-Heredia, J.L. Beetles associated with Atta and Acromyrmex ants (Hymenoptera: Formicidae: Attini). Trans. Am. Entomol. Soc. 2001, 127, 381–429. [Google Scholar]
- Sánchez-Peña, S.R.; Davis, D.R.; Mueller, U.G. A gregarious, mycophagous, myrmecophilous moth, Amydria anceps Walsingham (Lepidoptera: Acrolophidae), living in Atta mexicana (F. Smith) (Hymenoptera: Formicidae) spent fungal culture accumulations. Proc. Entomol. Soc. Wash. 2003, 105, 186–194. [Google Scholar]
- Wheeler, W.M. A new myrmecophile from the mushroom gardens of the Texan leaf-cutting ant. Amer. Natural. 1900, 34, 851–862. [Google Scholar] [CrossRef]
- Martínez, R.J.; Guzmán, G.A.; Villegas, D.I.; Emmen, D. Associated pseudoscorpions (Arachnida: Pseudoscorpiones) with waste heaps of Atta colombica (Guérin-Méneville, 1844) (Hymenoptera: Formicidae) in Panama. Rev. Chil. Entomol. 2021, 47, 67–74. [Google Scholar] [CrossRef]
- Erthal, M.; Tonhasca, A. Attacobius attarum spiders (Corinnidae): Myrmecophilous predators of immature forms of the leaf-cutting ant Atta sexdens (Formicidae). Biotropica 2001, 33, 374–376. [Google Scholar] [CrossRef]
- Bruch, C. Descripción de dos himenópteros mirmecófilos. Physis 1915, 2, 19–23. [Google Scholar]
- Moser, J.C. Contents and structure of Atta texana nest in summer. Ann. Entomol. Soc. Am. 1963, 56, 286–291. [Google Scholar] [CrossRef]
- Araújo, M.S.; Pereira, J.M.M.; Gandra, L.C.; Ribeiro, M.M.R.; Oliveira, M.A. Predadores e outros organismos associados aos ninhas de formigas cortadeiras. In Formigas Cortadeiras da Bioecologia ao Manejo; Della Lucia, T.C.M., Ed.; UFV: Viçosa, Brasil, 2011; pp. 311–320. [Google Scholar]
- Schlüter, A.; Regös, J. Lithodytes lineatus (Schneider, 1799) (Amphibia: Leptodactylidae) as a dweller in nests of the leaf cutting ant Atta cephalotes (Linnaeus, 1758) (Hymenoptera: Attini). Amphibia-Reptilia 1981, 2, 117–121. [Google Scholar] [CrossRef]
- Sierra-Serrano, O.; Salcedo-Rivera, G.; Marmolejo-Vargas, A.; Jiménez Bolaño, J.D. Use of leaf-cutter ant fungus gardens as nurseries for eggs of Ashmead’s banded cat-eyed snakes, Leptodeira ashmeadii (Hallowell 1845). Reptiles Amphib. 2023, 30, e18149. [Google Scholar] [CrossRef]
- Kermarrec, A.; Decharme, M.; Febvay, G. Leaf-cutting symbiotic fungi: A synthesis of recent research. In Fire Ants and Leaf-Cutting Ants (Studies in Insect Biology); Clifford, S., Vander Meer, R.K., Eds.; Westview Press: New York, NY, USA, 1986; pp. 231–246. [Google Scholar]
- Schmid-Hempel, P. Parasites in Social Insects; Princeton University Press: Princeton, NJ, USA, 1998; p. 392. [Google Scholar]
- Holldobler, B.; Wilson, E.O. The Superorganism: The Beauty Elegance and Strangeness of Insect Societies; WW Norton & Company: New York, NY, USA, 2009; p. 544. [Google Scholar]
- Meunier, J. Social immunity and the evolution of group living in insects. Phil. Trans. R. Soc. 2015, 370, 20140102. [Google Scholar] [CrossRef]
- Cremer, S.; Pull, C.D.; Fürst, M.A. Social immunity: Emergence and evolution of colony-level disease protection. Annu. Rev. Entomol. 2018, 63, 105–123. [Google Scholar] [CrossRef]
- Abbot, P. Defense in social insects: Diversity, division of labor, and evolution. Annu. Rev. Entomol. 2022, 67, 407–436. [Google Scholar] [CrossRef]
- Kermarrec, A. Étude des relations synécologiques entre les nématodes et la fourmi-manioc: Acromyrmex octospinosus. Ann. Zool. Ecol. Anim. 1975, 7, 27–44. [Google Scholar]
- Gehrig, R.; Knight, S. Formation of 2-heptanone from caprylic acid by spores of various filamentous fungi. Nature 1961, 192, 1185. [Google Scholar] [CrossRef]
- van der Schaft, P.H.; ter Burg, N.; van den Bosch, S.; Cohen, A.M. Fed-batch production of 2-heptanone by Fusarium poae. Appl. Microbiol. Biotechnol. 1992, 36, 709–711. [Google Scholar] [CrossRef]
- Speckbacher, V.; Zeilinger, S.; Zimmermann, S.; Mayhew, C.A.; Wiesenhofer, H.; Ruzsanyi, V. Monitoring the volatile language of fungi using gas chromatography-ion mobility spectrometry. Anal. Bioanal. Chem. 2021, 413, 3055–3067. [Google Scholar] [CrossRef]
- Brandstaetter, A.S.; Kleineidam, C.J. Distributed representation of social odors indicates parallel processing in the antennal lobe of ants. J. Neurophysiol. 2011, 106, 2437–2449. [Google Scholar] [CrossRef]
- Brandstaetter, A.S.; Rössler, W.; Kleineidam, C.J. Friends and foes from an ant brain’s point of view—Neuronal correlates of colony odors in a social insect. PLoS ONE 2011, 6, e21383. [Google Scholar] [CrossRef]
- Kelber, C.; Rössler, W.; Roces, F.; Kleineidam, C.J. The antennal lobes of fungus-growing ants (Attini): Neuroanatomical traits and evolutionary trends. Brain Behav. Evol. 2009, 73, 273–284. [Google Scholar] [CrossRef]
- Wraight, S.P.; Butt, T.M.; Galaini-Wraight, S.; Allee, L.L.; Soper, R.S.; Roberts, D.W. Germination and infection processes of the entomophthoralean fungus Erynia radicans on the potato leafhopper, Empoasca fabae. J. Invertebr. Pathol. 1990, 56, 157–174. [Google Scholar] [CrossRef]
- Dubovskiy, I.M.; Whitten, M.M.; Yaroslavtseva, O.N.; Greig, C.; Kryukov, V.Y.; Grizanova, E.V.; Mukherjee, K.; Vilcinskas, A.; Glupov, V.V.; Butt, T.M. Can insects develop resistance to insect pathogenic fungi? PLoS ONE 2013, 8, e60248, Erratum in PLoS ONE 2014, 9, 1. [Google Scholar] [CrossRef]
- Bailey, I.W. Some relations between ants and fungi. Ecology 1920, 1, 174–189. [Google Scholar] [CrossRef]
- Eisner, T.; Happ, G.M. The infrabuccal pocket of a Formicine ant: A social filtration device. Psyche 1962, 69, 025068. [Google Scholar] [CrossRef]
- Febvay, G.; Decharme, M.; Kermanac, A. Digestion of chitin by the labial glands of Acromyrmex octospinosus Reich (Hymenoptera: Formicidae). Can. J. Zool. 1984, 62, 229–234. [Google Scholar] [CrossRef]
- Little, A.E.; Murakami, T.; Mueller, U.G.; Currie, C.R. Defending against parasites: Fungus-growing ants combine specialized behaviours and microbial symbionts to protect their fungus gardens. Biol. Lett. 2006, 2, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Ortius-Lechner, D.; Maile, R.; Morgan, E.D.; Boomsma, J.J. Metapleural gland secretion of the leaf-cutter ant Acromyrmex octospinosus: New compounds and their functional significance. J. Chem. Ecol. 2000, 26, 1667–1683. [Google Scholar] [CrossRef]
- Marsaro, L., Jr.; Della Lucia, T.M.; Barbosa, L.C.A.; Maffia, L.A.; Morandi, M.A.B. Efeito das secrecões da glândula mandibular de Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae) sobre a germinação de conídios de Botrytis cinerea. Pers. Fr. Neotrop. Entomol. 2001, 30, 403–406. [Google Scholar] [CrossRef]
- Fernández-Marín, H.; Zimmerman, J.K.; Nash, D.R.; Boomsma, J.J.; Wcislo, W.T. Reduced biological control and enhanced chemical pest management in the evolution of fungus-farming in ants. Proc. R. Soc. B 2009, 276, 2263–2269. [Google Scholar] [CrossRef]
- Yek, S.H.; Nash, D.R.; Jensen, A.B.; Boomsma, J.J. Regulation and specificity of antifungal metapleural gland secretion in leaf-cutting ants. Proc. R. Soc. B 2012, 279, 4215–4222. [Google Scholar] [CrossRef]
- Currie, C.R.; Poulsen, M.; Mendenhall, J.; Boomsma, J.J.; Billen, J. Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 2006, 311, 81–83. [Google Scholar] [CrossRef]
- Haeder, S.; Wirth, R.; Herz, H.; Spiteller, D. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc. Natl. Acad. Sci. USA 2009, 106, 4742–4746. [Google Scholar] [CrossRef]
- Seipke, R.F.; Barke, J.; Brearley, C.; Hill, L.; Yu, D.W.; Goss, R.J.M.; Matthew, I.; Hutchings, M.I. A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus. PLoS ONE 2011, 6, e22028. [Google Scholar] [CrossRef]
- Dhodary, B.; Spiteller, D. Ammonia production by Streptomyces symbionts of Acromyrmex leaf-cutting ants strongly inhibits the fungal pathogen Escovopsis. Microorganisms 2021, 9, 1622. [Google Scholar] [CrossRef]
- Ortega, H.E.; Ferreira, L.L.G.; Melo, W.G.P.; Oliveira, A.L.L.; Ramos Alvarenga, R.F.; Lopes, N.P.; Bugni, T.S.; Andricopulo, A.D.; Pupo, M.T. Antifungal compounds from Streptomyces associated with attine ants also inhibit Leishmania donovani. PLoS Negl. Trop. Dis. 2019, 13, e0007643. [Google Scholar] [CrossRef]
- Mattoso, T.C.; Moreira, D.D.; Samuels, R.I. Symbiotic bacteria on the cuticle of the leaf-cutting ant Acromyrmex subterraneus subterraneus protect workers from attack by entomopathogenic fungi. Biol. Lett. 2012, 8, 461–464. [Google Scholar] [CrossRef]
- Bruner-Montero, G.; Wood, M.; Horn, H.A.; Gemperline, E.; Li, L.; Currie, C.R. Symbiont-mediated protection of Acromyrmex leaf-cutter ants from the entomopathogenic fungus Metarhizium anisopliae. mBio 2021, 12, e0188521. [Google Scholar] [CrossRef]
- Maurice-Lira, J.V.; Romero-Nápoles, J.; Pérez-Cárcamo, J.; Martínez-Cerón, D.M.; Flores-Maldonado, K.Y.; Morales-Rodríguez, S.; Pérez-Moreno, J. Antimicrobial-producing microorganisms in fungus-farming ants: A critical review on insights into a natural biological defense with biotechnological potential. Ann. Entomol. Soc. Am. 2025, 118, 1–15. [Google Scholar] [CrossRef]
- Rodrigues, A.; Cable, R.N.; Mueller, U.G.; Bacci, M., Jr.; Pagnocca, F.C. Antagonistic interactions between garden yeasts and microfungal garden pathogens of leaf-cutting ants. Antonie Van Leeuwenhoek 2009, 96, 331–342. [Google Scholar] [CrossRef]
- Hervey, A.; Nair, M.S.R. Antibiotic metabolite of a fungus cultivated by gardening ants. Mycologia 1979, 71, 1064–1066. [Google Scholar] [CrossRef]
- Kermarrec, A.; Febvay, G.; Decharme, M. Protection of leaf-cutting ants from biohazards: Is there a future for microbiological control? In Fire Ants and Leaf-Cutting Ants (Studies in Insect Biology); Clifford, S., Vander Meer, R.K., Eds.; Westview Press: New York, NY, USA, 1986; pp. 339–356. [Google Scholar]
- Motta, A.C.Q.; Avelino, D.S.; Marinho, C.G.S.; Fadini, M.A.M.; Melo, J.O.F. Leucoagaricus gongylophorus confere proteção para Atta sexdens contra extratos vegetais. Ciênc. Florest. 2022, 32, 86–101. [Google Scholar] [CrossRef]
- Masiulionis, V.E.; Pagnocca, F.C. In vitro study of volatile organic compounds produced by the mutualistic fungus of leaf-cutter ants and the antagonist Escovopsis. Fungal Ecol. 2020, 48, 100986. [Google Scholar] [CrossRef]
- Delabie, J.; Masson, C.; Febvay, G. Neurobiological basis of chemical communication in the fungus-growing ant, Acromyrmex octospinosus. In Fire Ants and Leaf-Cutting Ants (Studies in Insect Biology); Clifford, S., Vander Meer, R.K., Eds.; Westview Press: New York, NY, USA, 1986; pp. 302–315. [Google Scholar]
- Cremer, S. Social immunity in insects. Curr. Biol. 2019, 29, R458–R463. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, X.-Y.; Tang, Q.-B.; Lei, C.-L.; Huang, Q.-Y. The mechanisms of social immunity against fungal infections in eusocial insects. Toxins 2019, 11, 244. [Google Scholar] [CrossRef]
- Böröczky, K.; Wada-Katsumata, A.; Batchelor, D.; Zhukovskaya, M.; Schal, C. Insects groom their antennae to enhance olfactory acuity. Proc. Natl. Acad. Sci. USA 2013, 110, 3615–3620. [Google Scholar] [CrossRef]
- Mizutani, H.; Tagai, K.; Habe, S.; Takaku, Y.; Uebi, T.; Kimura, T.; Hariyama, T.; Ozaki, M. Antenna cleaning is essential for precise behavioral response to alarm pheromone and nestmate-non-nestmate discrimination in japanese carpenter ants (Camponotus japonicus). Insects 2021, 12, 773. [Google Scholar] [CrossRef] [PubMed]
- Basibuyuk, H.H.; Quicke, D.L.J. Gross morphology of multiporous plate sensilla in the Hymenoptera (Insecta). Zool. Scr. 1999, 28, 51–67. [Google Scholar] [CrossRef]
- Fladerer, J.P.; Bucar, F. Behavioral specialization of workers of the leafcutter ant Acromyrmex octospinosus (Hymenoptera: Formicidae) with an external bacterial layer. J. Insect Behav. 2022, 35, 127–135. [Google Scholar] [CrossRef]
- Hart, B.L. Behavioral adaptations to pathogens and parasites: Five strategies. Neurosci. Biobehav. Rev. 1990, 14, 273–294. [Google Scholar] [CrossRef]
- Cremer, S.; Armitage, S.A.O.; Schmid-Hempel, P. Social immunity. Curr. Biol. 2007, 17, R693–R702. [Google Scholar] [CrossRef]
- Zhukovskaya, M.; Yanagawa, A.; Forschler, B.T. Grooming behavior as a mechanism of insect disease defense. Insects 2013, 4, 609–630. [Google Scholar] [CrossRef]
- Weber, N.A. Weeding as a factor in fungus culture by ants. Anat. Rec. 1957, 128, 638. [Google Scholar]
- Currie, C.R.; Stuart, A.E. Weeding and grooming of pathogens in agriculture by ants. Proc. Biol. Sci. 2001, 268, 1033–1039. [Google Scholar] [CrossRef]
- Mighell, K.; Van Bael, S.A. Selective elimination of microfungi in leaf-cutting ant gardens. Fungal Ecol. 2016, 24, 15–20. [Google Scholar] [CrossRef]
- Bonadies, E.; Wcislo, W.T.; Gálvez, D.; Hughes, W.O.H.; Fernández-Marín, H. Hygiene defense behaviors used by a fungus-growing ant depend on the fungal pathogen stages. Insects 2019, 10, 130. [Google Scholar] [CrossRef]
- Fischer, M. Forest Health: Leaf-Cutting Ant; Texas A&M Forest Service: Lufkin, TX, USA, 2015; Available online: http://texasforestservice.tamu.edu/LeafCuttingAnt/ (accessed on 26 March 2023).
- Zanetti, R.; Zanuncio, J.C.; Mayhé-Nunes, A.J.; Medeiros, A.G.B.; Souza-Silva, A. Combate sistemático de formigas-cortadeiras com iscas granuladas, em eucaliptais com cultivo mínimo. Revista Árvore 2003, 27, 387–392. [Google Scholar] [CrossRef]
- Della Lucia, T.M.C.; Souza, D.J. Importância e história de vida das formigas cortadeiras. In Formigas Cortadeiras da Bioecologia ao Manejo; Della Lucia, T.C.M., Ed.; UFV: Viçosa, Brasil, 2011; pp. 13–26. [Google Scholar]
- Souza, A.; Zanetti, R.; Calegario, N. Nível de dano econômico para formigas-cortadeiras em função do índice de produtividade florestal de eucaliptais em uma região de Mata Atlântica. Neotrop. Entomol. 2011, 40, 483–488. [Google Scholar]
- Nickele, M.A.; Reis Filho, W.; Penteado, S.d.R.C.; de Queiroz, E.C.; Schaitza, E.G.; Pie, M.R. Potential damage by Acromyrmex ant species in pine plantations in southern Brazil. Agr. Forest. Entomol. 2021, 23, 32–40. [Google Scholar] [CrossRef]
- Reis Filho, W.; Iede, E.T.; Nickele, M.A.; Caldato, N.; Ferreira, A.C. Reconhecimento dos Danos Causados por Formigas Cortadeiras do Gênero Acromyrmex em Plantios Iniciais de Pinus taeda no Sul do Brasil. Comunicado Técnico, 189; Embrapa Florestas: Colombo, Sri Lanka, 2007; p. 4. [Google Scholar]
- Nickele, M.A.; Reis Filho, W.; Oliveira, E.B.; Iede, E.T.; Caldato, N.; Strapasson, P. Attack of leaf-cutting ants in initial pine plantations and growth of plants artificially defoliated. Pesq. Agropec. Bras. 2012, 47, 892–899. [Google Scholar] [CrossRef]
- Cantarelli, E.B.; Costa, E.C.; Pezzutti, R.V.; Zanetti, R.; Fleck, M.D. Damage by Acromyrmex spp. to an initial Pinus taeda L. planting. Floram 2019, 26, e20160060. [Google Scholar] [CrossRef]
- Scherf, A.N.; Corley, J.C.; Gioia, C.D.; Eskiviski, E.R.; Carazzo, C.; Patzer, H.R.; Dimarco, R.D. Impact of a leaf-cutting ant (Atta sexdens L.) on a Pinus taeda plantation: A 6 year-long study. J. Appl. Entomol. 2022, 146, 1178–1184. [Google Scholar] [CrossRef]
- Casa, J.; Carissimi Boff, M.I.; Dresch Rech, T.; Boff, P. Danos e preferência de forrageamento de formigas cortadeiras em vimeiros. Agropec. Catarin. 2008, 21, 74–78. [Google Scholar]
- Jiménez, N.L.; Fosco, I.R.; Nassar, G.C.; Sánchez-Restrepo, A.F.; Danna, M.S.; Calcaterra, L.A. Economic injury level and economic threshold as required by forest stewardship council for management of leaf-cutting ants in forest plantations. Agr. Forest Entomol. 2021, 23, 87–96. [Google Scholar] [CrossRef]
- Jiménez, N.L.; Farji-Brener, A.G.; Calcaterra, L.A. Long-term quantification of leaf-cutting ant damage in willow forestations in the lower delta of the Paraná River, Argentina. Agr. Forest Entomol. 2022, 24, 432–445. [Google Scholar] [CrossRef]
- Jiménez, N.L.; Sánchez-Restrepo, A.F.; Guala, M.E.; Battagliotti, C.; Farji-Brener, A.G.; Calcaterra, L.A. Biomass consumption, foraging activity and harvesting patterns in two sympatric leaf-cutting ant species in a Salicaceae plantation in Argentina. Agric. Forest Entomol. 2024, 1–13. [Google Scholar] [CrossRef]
- Abreu, J.M.; Delabie, J.H.C. Controle das formigas-cortadeiras em plantios de cacau. Rev. Theobroma 1986, 16, 199–211. [Google Scholar]
- Cáseres, S. Guía Práctica Para la Identificación y el Manejo de las Plagas de Citrus, 1st ed.; INTA: Buenos Aires, Argentina, 2006; p. 96. [Google Scholar]
- Saluso, A.; Ermácora, O.; Anglada, M.; Toledo, C.; Borguesan, C. Principales invertebrados plagas de la soja y técnicas utilizadas en la toma de decisiones (Campaña agrícola 2006–2007). Rev. Cient. Agropec. 2007, 11, 153–158. [Google Scholar]
- Dans, D.; Anglada, M.; Maidana, A. Caracterización del daño de hormigas cortadoras en el cultivo de sorgo (Sorghum spp.). Rev. Cient. Agropec. 2009, 13, 7–15. [Google Scholar]
- Formolo, R.; Rufato, L.; Botton, M.; Machota, R., Jr. Diagnóstico da área cultivada com uva fina de mesa (Vitis vinifera L.) sob cobertura plástica e do manejo de pragas. Rev. Bras. Frutic. 2011, 33, 103–110. [Google Scholar] [CrossRef]
- Donatti Ricalde, M.G.; Enimar Loeck, A.; Perrone Ricalde, M. Ocorrência de ninhos de formigas cortadeiras em área de vinhedo no Rio Grande do Sul, Brasil. Bol. San. Veg. Plagas 2012, 38, 47–57. [Google Scholar]
- Anglada, M.M.; Saluso, A.; Ermácora, O.; Maidana, A.; Dans, D.; Decuyper, C. Hormigas podadoras: Estudios bioecológicos y alternativas de manejo en sistemas agrícolas y vegetación de monte en Entre Ríos. Cienc. Docencia Y Tecnol. 2013, 3, 1–19. [Google Scholar]
- Sodré, G.A. Cultivo do Cacaueiro No Estado da Bahía; MAPA/Ceplac/Cepec: Ilhéus, Brasil, 2017; p. 126. [Google Scholar]
- Dagatti, C.; Bernabé, A.; Rossi, L.; Becerra, V. Actividad forrajera de Acromyrmex striatus (Roger,1863) (Formicidae: Attini) en un viñedo orgánico en Mendoza, Argentina. Rev. De Investig. Agropecu. 2019, 45, 191–195. [Google Scholar]
- Dagatti, C.V.; Vargas, G.A. Actividad forrajera y de mantenimiento de nido de la hormiga cortadora de hojas Acromyrmex lobicornis (Hymenoptera: Formicidae) en un viñedo orgánico inserto en el desierto de Monte en Mendoza, Argentina. Rev. Soc. Entomol. Argent. 2021, 80, 120–128. [Google Scholar] [CrossRef]
- Dow Agrosciences. Controle de Formigas Cortadeiras. Manual Técnico; Lakree: São Paulo, Brasil, 2000; p. 9. [Google Scholar]
- Stingel, E. Controle de formigas cortadeiras na cultura da cana-de-açúcar. Biológico 2007, 69 (Suppl. S2), 81. [Google Scholar]
- Copello, A. La reina y demás población de un gran hormiguero. Rev. Soc. Entomol. Argent. 1927, 3, 17–20. [Google Scholar]
- Amante, E. Saúva tira boi da pastagem. Coopercotia 1967, 23, 38–40. [Google Scholar]
- Amante, E. A formiga sauva Atta capiguara, pragadas pastagens. O Biológico 1967, 33, 113–120. [Google Scholar]
- Nascimento, D., Jr. Pragas das pastagens: Uma análise crítica. In Disciplina ZOO 650-Forragicultura; Universidade Federal de Viçosa: Viçosa, Brasil, 1997; Available online: https://sites.usp.br/gefepfzea/wp-content/uploads/sites/134/2014/05/Pragas-de-pastagens.pdf (accessed on 24 March 2023).
- Costa, W.B.; Barboza, A.R.D.; Paulo Francisco, J.P.; Lopes, A.D. Survey and registration of the occurrence of leaf-cutting ants in grassland areas. Sci. Agrar. Parana. 2022, 21, 305–313. [Google Scholar] [CrossRef]
- Robinson, S.W.; Fowler, H.G. Foraging and pest potential of Paraguayan grass-cutting ants (Atta and Acromyrmex) to the cattle industry. J. Appl. Entomol. 1982, 93, 42–54. [Google Scholar] [CrossRef]
- Montoya-Lerma, J.; Giraldo-Echeverri, C.; Armbrecht, I.; Farji-Brener, A.; Calle, Z. Leaf-cutting ants revisited: Towards rational management and control. Int. J. Pest Manag. 2012, 58, 225–247. [Google Scholar] [CrossRef]
- Della Lucia, T.M.C.; Vilela, E.F. Métodos atuais de controle e perspectivas. In As Formigas Cortadeiras; Della Lucia, T.M.C., Ed.; Folha de Viçosa: Viçosa, Brasil, 1993; pp. 163–179. [Google Scholar]
- Moressi, M.; Neto, M.A.; Crepaldi, R.A.; Carbonari, V.; Demétrio, M.F.; Silvestre, R. Eficiência do controle mecânico de formigas cortadeiras (Atta laevigata) no reflorestamento com espécies nativas. O Biológico 2007, 69, 471–473. [Google Scholar]
- Oliveira, M.A.; Araújo, M.S.; Marinho, C.G.S.; Ribeiro, M.M.R.; Della Lucia, T.M.C. Manejo de formigas cortadeiras. In Formigas Cortadeiras da Bioecologia ao Manejo; Della Lucia, T.C.M., Ed.; UFV: Viçosa, Brasil, 2011; pp. 400–419. [Google Scholar]
- Hebling, M.J.A.; Maroti, P.P.S.; Bueno, O.C.; Silva, A.O.; Pagnocca, F.C. Efeito das folhas de Ipomea batata (batata-doce) no desenvolvimento de formigueiros de Atta sexdens rubropilosa Forel, 1908 em laboratório. In Anais do Congresso Brasileiro de Entomologia; Sociedade Entomologica do Brasil: Piracicaba, Brasil, 1993; p. 230. [Google Scholar]
- Saverschek, N.; Roces, F. Foraging leafcutter ants: Olfactory memory underlies delayed avoidance of plants unsuitable for the symbiotic fungus. Anim. Behav. 2011, 82, 453–458. [Google Scholar] [CrossRef]
- Della Lucia, T.M.C.; Araújo, M.S. Formigas-cortadeiras: Atualidades no combate. In Manejo Integrado—Doenças, Pragas e Plantas Daninhas; Editora UFV: Viçosa, Brasil, 2000; pp. 245–273. [Google Scholar]
- Anjos, N.S.; Della Lucia, T.M.C.; Mayhé-Nunes, A.J. Guia Prático Sobre Formigas Cortadeiras em Reflorestamentos; Graff Cor: Ponte nova, Brasil, 1998; p. 100. [Google Scholar]
- Salvador, S.A. Hormigas isaú (Atta Vollenweideri) en la alimentación de algunas aves de Villa María, Córdoba, Argentina. Nuestras Aves 2013, 58, 63–64. [Google Scholar] [CrossRef]
- Poinar, G. Nematode parasites and associates of ants: Past and present. Psyche 2012, 192017. [Google Scholar] [CrossRef]
- Swartz, M.B. Predation on an Atta cephalotes colony by an army ant Nomamyrmex esenbecki. Biotropica 1998, 30, 682–684. [Google Scholar] [CrossRef]
- Powell, S.; Clark, E. Combat between large derived societies: A subterranean army ant established as a predator of mature leaf-cutting ant colonies. Insect. Soc. 2004, 51, 342–351. [Google Scholar] [CrossRef]
- Bragança, M.A.L.; Della Lucia, T.M.C.; Tonhasca, A., Jr. First record of phorid parasitoids (Diptera: Phoridae) of the leaf-cutting ant Atta bisphaerica Forel (Hymenoptera: Formicidae). Neotrop. Entomol. 2003, 32, 169–171. [Google Scholar] [CrossRef]
- Pereira, R.C.; Bailez, O.; Vieira-Júnior, J.O.L.; Silva, G.A.; Arêdes, A.; Viana-Bailez, A.M. Host size preference of the leafcutter ant parasitoid Eibesfeldtphora tonhascai (Diptera: Phoridae). Neotrop. Entomol. 2022, 51, 593–599. [Google Scholar] [CrossRef]
- Pimentel, F.A.; Bailez, O.; Pereira, R.C.; Viana-Bailez, A.M. Phorid parasitoids of the leaf-cutting ant Atta laevigata in the Atlantic Forest: Occurrence, parasitism rate, and host size. Entomol. Exp. Appl. 2022, 170, 495–504. [Google Scholar] [CrossRef]
- Castilho, A.M.C.; Fraga, M.E.; Aguiar-Menezes, E.L.; Rosa, C.A.R. Seleção de isolados de Metarhizium anisopliae e Beauveria bassiana patrogênicos a soldados de Atta bisphaerica e Atta sexdens rubropilosa em condições de laboratório. Cienc. Rural 2010, 40, 1243–1249. [Google Scholar] [CrossRef]
- Augustin, J.O.; Diehl, E.; Samuels, R.I.; Elliot, S.L. Fungos parasitas de formigas cortadeiras e do seu fungo mutualístico. In Formigas Cortadeiras da Bioecologia ao Manejo; Della Lucia, T.C.M., Ed. UFV: Viçosa, Brasil, 2011; pp. 284–310. [Google Scholar]
- Ribeiro, M.M.; Amaral, K.D.; Seide, V.E.; Souza, B.M.; Della Lucia, T.M.C.M.; Kasuya, M.C.M.; Souza, D.J. Diversity of fungi associated with Atta bisphaerica (Hymenoptera: Formicidae): The activity of Aspergillus ochraceus and Beauveria bassiana. Psyche 2012, 389806. [Google Scholar] [CrossRef]
- Folgarait, P.J.; Goffré, D. Conidiobolus lunulus, a newly discovered entomophthoralean species, pathogenic and specific to leaf-cutter ants. J. Invertebr. Pathol. 2021, 186, 107685. [Google Scholar] [CrossRef]
- Stefanelli, L.E.P.; Mota Filho, T.M.M.; Camargo, R.d.S.; Matos, C.A.O.d.; Forti, L.C. Effects of entomopathogenic fungi on individuals as well as groups of workers and immatures of Atta sexdens rubropilosa leaf-cutting ants. Insects 2021, 12, 10. [Google Scholar] [CrossRef]
- Mota Filho, T.M.M.; Stefanelli, L.E.P.; Camargo, R.S.; Matos, C.A.O.; Forti, L.C. Biological control in leaf-cutting ants, Atta sexdens (Hymenoptera: Formicidae), using pathogenic fungi. Rev. Árvore 2021, 45, e4516. [Google Scholar] [CrossRef]
- Loureiro, E.S.; Busarello, G.D.; Pessoa, L.G.A.; Uchoa-Fernandes, M.A.; Amaral, T.S.; Pessoa, M.B. Pathogenicity of Beauveria bassiana to Atta sexdens rubropilosa (Hymenoptera: Formicidae) in laboratory conditions. Res. Soc. Dev. 2022, 11, e41011225831. [Google Scholar] [CrossRef]
- Pinto, L.M.N.; Azambuja, A.O.; Diehl, E.; Fiuza, L.M. Pathogenicity of Bacillus thuringiensis isolated from two species of Acromyrmex (Hymenoptera, Formicidae). Braz. J. Biol. 2003, 63, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Uribe Londoño, M.; Romero-Tabarez, M.; Ortiz-Reyes, A. Bacterial extracts for the control of Atta cephalotes (Hymenoptera: Formicidae) and its symbiotic fungus Leucoagaricus gongylophorus (Agaricales: Agaricaceae). Rev. Biol. Trop. 2019, 67, 1010–1022. [Google Scholar] [CrossRef]
- Ferreira-Filho, P.J.; Wilcken, C.F.; Neves, D.A.; Pogetto, M.H.; Carmo, J.B.; Guerreiro, J.C.; Serrão, J.E.; Zanuncio, J.C. Does diatomaceous earth control leaf-cutter ants (Hymenoptera: Formicidae) in the Eucalyptus plantations? J. Econ. Entomol. 2015, 108, 1124–1128. [Google Scholar] [CrossRef] [PubMed]
- Athanassiou, C.G.; Kavallieratos, N.G.; Chiriloaie, A.; Vassilakos, T.N.; Fătu, V.; Drosu, S.; Ciobanu, M.; Dudoiu, R. Insecticidal efficacy of natural diatomaceous earth deposits from Greece and Romania against four stored grain beetles: The effect of temperature and relative humidity. Bull. Insectology 2016, 69, 25–34. [Google Scholar]
- Stadler, T.; López García, G.P.; Gitto, J.G.; Buteler, M. Nanostructured alumina: Biocidal properties and mechanism of action of a novel insecticide powder. Bull. Insectology 2017, 70, 17–25. [Google Scholar]
- Buteler, M.; Lopez Garcia, G.; Stadler, T. Potential of nanostructured alumina for leaf-cutting ants Acromyrmex lobicornis (Hymenoptera: Formicidae) management. Aust. Entomol. 2018, 57, 292–296. [Google Scholar] [CrossRef]
- Cherrett, J.M. Chemical control and bait formulations for leaf-cutting ants. In Fire Ants and Leaf-Cutting Ants (Studies in Insect Biology); Clifford, S., Vander Meer, R.K., Eds.; Westview Press: New York, NY, USA, 1986; pp. 357–368. [Google Scholar]
- Boaretto, M.A.; Forti, L.C. Perspectivas no controle de formigas cortadeiras. Série Técnica IPEF 1997, 11, 31–46. [Google Scholar]
- Laranjeiro, A.J.; Lousada, R.M. Manejo de formigas cortadeiras em florestas. Inst. De Pesqui. E Estud. Florestais 2000, 13, 115–124. [Google Scholar]
- Vilela, E.F. Status of leaf-cutting ant control in forest plantation in Brazil. In Fire Ants and Leaf-Cutting Ants (Studies in Insect Biology); Clifford, S., Vander Meer, R.K., Eds.; Westview Press: New York, NY, USA, 1986; pp. 399–408. [Google Scholar]
- dos Santos, A.; Zanetti, R.; Zanuncio, J.C.; Lúcia Aparecida Mendonça, L.A.; Souza-Silva, A.; Medeiros, A.G.B. Eficiência e custo de controle de ninhos de Atta spp. (Hymenoptera: Formicidae) com termonebulização. Cerne 2007, 13, 23–27. [Google Scholar]
- Zanetti, R.; Zanuncio, J.C.; Souza Silva, A.; Mendonça, L.A.; Mattos, J.O.S.; Rizental, M.S. Eficiência de produtos termonebulígenos no controle de Atta laevigata (Hymenoptera: Formicidae) em plantio de eucalipto. Ciência E Agrotecnol. 2008, 32, 1313–1316. [Google Scholar] [CrossRef]
- Forti, L.C.; Della Lucia, T.M.C.; Yassu, W.K.; Bento, J.M.; Pinhão, M.A. Metodologias para experimentos com iscas granuladas para formigas cortadeira. In As Formigas Cortadeiras; Della Lucia, T.M.C., Ed.; Folha de Viçosa: Viçosa, Brasil, 1993; pp. 191–211. [Google Scholar]
- Antunes, E.C.; Guedes, R.N.C.; Della Lucia, T.M.; Serrão, J.E. Sub-lethal effects of abamectin suppressing colonies of the leaf-cutting ant Acromyrmex subterraneus subterraneus. Pest Manag. Sci. 2000, 56, 1059–1064. [Google Scholar] [CrossRef]
- Britto, J.S.; Forti, L.C.; de Oliveira, M.A.; Bonetti Filho, R.Z.; Wilcken, C.F.; Zanuncio, J.C.; Loeck, A.E.; Caldato, N.; Nagamoto, N.S.; Alves, P.G.L.; et al. Use of alternatives to PFOS, its salts and PFOSF for the control of leaf-cutting ants Atta and Acromyrmex. Int. J. Environ. Stud. 2016, 3, 11–92. [Google Scholar]
- Mota Filho, T.M.M.; Camargo, R.S.; Zanuncio, J.C.; Stefanelli, L.E.P.; de Matos, C.A.O.; Forti, L.C. Contamination routes and mortality of the leaf-cutting ant Atta sexdens (Hymenoptera: Formicidae) by the insecticides fipronil and sulfluramid through social interactions. Pest Manag. Sci. 2021, 77, 4411–4417. [Google Scholar] [CrossRef]
- Scudillio, T.; Camargo, R.D.; Mota Filho, T.M.M.; Matos, C.A.O.; Zanuncio, J.C.; Julian Alberto Sabattini, J.A.; Forti, L.C. Contamination and mortality of leaf-cutting ant workers by the quinone inside inhibitor fungicide after social interactions. Sci. Rep. 2023, 13, 6169. [Google Scholar] [CrossRef]
- Hubbel, S.P.; Wiemer, D.F. Host plant selection by an attine ant. In Social Insects in the Tropics; Jaisson, P., Ed.; University of Paris Press: Paris, France, 1983; pp. 133–154. [Google Scholar]
- Marsaro, A.L., Jr.; Souza, R.C.; Della Lucia, T.M.C.; Fernandes, J.B.; Silva, M.F.G.F.; Vieira, P.C. Behavioral changes in workers of the leaf-cutting ant Atta sexdens rubropilosa induced by chemical components of Eucalyptus maculata leaves. J. Chem. Ecol. 2004, 30, 1771–1780. [Google Scholar] [CrossRef]
- Marinho, C.G.S.; Della Lucia, T.M.C.; Ribeiro, M.M.R.; Magalhães, S.T.V.; Jham, G.N. Interference of β-eudesmol in nestmate recognition in Atta sexdens rubropilosa (Hymenoptera: Formicidae). Bull. Entomol. Res. 2008, 98, 467–473. [Google Scholar] [CrossRef]
- Boulogne, I.; Germosen-Robineau, L.; Ozier-Lafontaine, H.; Jacoby-Koaly, C.; Aurela, L.; Loranger-Merciris, G. Acromyrmex octospinosus (Hymenoptera: Formicidae) management. Effects of TRAMIL’s insecticidal plant extracts. Pest Manag. Sci. 2012, 68, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Boulogne, I.; Germosen-Robineau, L.; Ozier-Lafontaine, H.; Desfontaines, L.; Loranger- Merciris, G. Acromyrmex octospinosus (Hymenoptera: Formicidae) management. Effects of TRAMIL’s fungicidal plant extracts. J. Econ. Entomol. 2012, 105, 1224–1233. [Google Scholar] [CrossRef]
- Medina, A.I.; Mangione, A.M.; García, M. Exposure to creosote bush phenolic resin causes avoidance in the leaf-cutting ant Acromyrmex lobicornis (Formicidae: Attini). Rev. Chil. Hist. Nat. 2012, 85, 209–218. [Google Scholar] [CrossRef]
- Defagó, M.T.; Nolli, L.; Napal, G.D.; Palacios, S.M.; Buffa, L.M. Can the extract of Aristolochia argentina Griseb affect the foraging decisions of the leaf cutting ant Acromyrmex lundi (Guérin)? Preliminary assays. Int. J. Pest Manag. 2013, 63, 207–212. [Google Scholar] [CrossRef]
- Marinho, C.G.S.; Della Lucia, T.M.C.; Guedes, R.N.C.; Ribeiro, M.M.R.; Lima, E.R. β-eudesmol-induced agression in the leaf-cutting ant Atta sexdens rubropilosa. Entomol. Exp. Appl. 2005, 117, 89–93. [Google Scholar] [CrossRef]
- Alonso, E.C.; Santos, D.Y. Ricinus communis and Jatropha curcas (Euphorbiaceae) seed oil toxicity against Atta sexdens rubropilosa (Hymenoptera: Formicidae). J. Econ. Entomol. 2013, 106, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Diaz Napal, G.N.; Buffa, L.M.; Nolli, L.C.; Defagó, M.T.; Valladares, G.R.; Carpinella, M.C.; Ruiz, G.; Palacios, S.M. Screening of native plants from central Argentina against the leaf-cutting ant Acromyrmex lundi (Guérin) and its symbiotic fungus. Ind. Crops Prod. 2015, 76, 275–280. [Google Scholar] [CrossRef]
- Lobo-Echeverri, T.; Galindo, V.M.; Aubad, P.; Ortiz-Reyes, A.; Preciado, L.M.; Sánchez, M.; Jiménez, J.; Thomas, O.P. Inhibition of Leucoagaricus gongylophorus with Carica papaya: An alternative to control the leaf-cutter ant Acromyrmex octospinosus. Int. J. Pest Manag. 2019, 66, 201–214. [Google Scholar] [CrossRef]
- Graebin, A.; Amaral, K.D.; Lira, D.C.; Collares, L.J.; Bernardes, R.C.; Turchen, L.M.; Della-Lucia, T.M.C.; Guedes, R.N.C. Nasturtium leaf compounds, diphenyl disulfide and lyral, against Atta sexdens (Hymenoptera: Formicidae) and their symbiotic fungi. J. Econ. Entomol. 2024, 117, 1703–1711. [Google Scholar] [CrossRef]
- Buszewski, B.; Bukowska, M.; Ligor, M.; Staneczko-Baranowska, I. A holistic study of neonicotinoids neuroactive insecticides-properties, applications, occurrence, and analysis. Environ. Sci. Pollut. Res. Int. 2019, 26, 34723–34740. [Google Scholar] [CrossRef]
- Matsuda, K.; Buckingham, S.D.; Kleier, D.; Rauh, J.J.; Grauso, M.; Sattelle, D.B. Neonicotinoids: Insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol. Sci. 2001, 22, 573–580. [Google Scholar] [CrossRef]
- Kimura-Kuroda, J.; Komuta, Y.; Kuroda, Y.; Hayashi, M.; Kawano, H. Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats. PLoS ONE 2012, 7, e32432. [Google Scholar] [CrossRef]
- Casida, J.E.; Durkin, K.A. Neuroactive insecticides: Targets, selectivity, resistance, and secondary effects. Annu. Rev. Entomol. 2013, 58, 99–117. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, Y.L.; Zhao, C.Y.; Li, H.H.; Wang, M.J.; Morris-Natschke, S.L.; Qian, K.; Lee, K.H.; Liu, Y.-Q. Design, synthesis, crystal structure, bioactivity, and molecular docking studies of novel sulfonylamidine-derived neonicotinoid analogs. Med. Chem. Res. 2014, 23, 5043–5057. [Google Scholar] [CrossRef]
- Pisa, L.; Goulson, D.; Yang, E.C.; Gibbons, D.; Sánchez-Bayo, F.; Mitchell, E.; Aebi, A.; van der Sluijs, J.; MacQuarrie, C.J.K.; Giorio, C.; et al. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: Impacts on organisms and ecosystems. Environ. Sci. Pollut. Res. Int. 2021, 28, 11749–11797. [Google Scholar] [CrossRef]
- Ruckert, A.; Allen, L.N.; Ramirez, R.A. Combinations of plant water-stress and neonicotinoids can lead to secondary outbreaks of Banks grass mite (Oligonychus pratensis Banks). PLoS ONE 2018, 13, e0191536. [Google Scholar] [CrossRef]
- Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D.W.; Giorio, C.; Girolami, V.; et al. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. Int. 2015, 22, 5–34. [Google Scholar] [CrossRef]
- Sheets, L.P.; Li, A.A.; Minnema, D.J.; Collier, R.H.; Creek, M.R.; Peffer, R.C. A critical review of neonicotinoid insecticides for developmental neurotoxicity. Crit. Rev. Toxicol. 2016, 46, 153–190. [Google Scholar] [CrossRef] [PubMed]
- Frizzi, F.; Balzani, P.; Frasconi Wendt, C.; Masoni, A.; Carta, E.; Innocenti, M.R.; Santini, G. Effects of starvation on the fighting ability of invasive and autochthonous ants. Entomol. Sci. 2023, 26, e12531. [Google Scholar] [CrossRef]
- Wang, L.; Zeng, L.; Chen, J. Impact of imidacloprid on new queens of imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae). Sci. Rep. 2015, 5, 17938. [Google Scholar] [CrossRef] [PubMed]
- Schläppi, D.; Kettler, N.; Straub, L.; Glauser, G.; Neumann, P. Long-term effects of neonicotinoid insecticides on ants. Commun. Biol. 2020, 3, 335. [Google Scholar] [CrossRef]
- Daane, K.M.; Cooper, M.L.; Sime, K.R.; Nelson, E.H.; Battany, M.C.; Rust, M.K. Testing baits to control Argentine ants (Hymenoptera: Formicidae) in vineyards. J. Econ. Entomol. 2008, 101, 699–709. [Google Scholar] [CrossRef]
- Blight, O.; Orgeas, J.; Renucci, M.; Provost, E. Imidacloprid gel bait effective in Argentine ant control at nest scale. Sociobiology 2011, 58, 23–30. [Google Scholar]
- Thiel, S.; Köhler, H.R. A sublethal imidacloprid concentration alters foraging and competition behaviour of ants. Ecotoxicology 2016, 25, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Sappington, J.D. Imidacloprid alters ant sociobehavioral traits at environmentally relevant concentrations. Ecotoxicology 2018, 27, 1179–1187. [Google Scholar] [CrossRef]
- Straub, L.; Villamar-Bouza, L.; Bruckner, S.; Chantawannakul, P.; Kolari, E.; Maitip, J.; Vidondo, B.; Neumann, P.; Williams, G.R. Negative effects of neonicotinoids on male honeybee survival, behaviour and physiology in the field. J. Appl. Ecol. 2021, 58, 2515–2528. [Google Scholar] [CrossRef]
- Santos, A.V.; de Oliveira, B.L.; Samuels, R.I. Selection of entomopathogenic fungi for use in combination with sub-lethal doses of imidacloprid: Perspectives for the control of the leaf-cutting ant Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae). Mycopathologia 2007, 163, 233–240. [Google Scholar] [CrossRef]
- Sharma, A.; Srivastava, A.; Shukla, A.K.; Srivastava, K.; Srivastava, A.K.; Saxena, A.K. Entomopathogenic fungi: A potential source for biological control of insect pests. In Phytobiomes: Current Insights and Future Vistas; Solanki, M., Kashyap, P., Kumari, B., Eds.; Springer: Singapore, 2020; pp. 225–250. [Google Scholar] [CrossRef]
- Bihal, R.; Al-Khayri, J.M.; Banu, A.N.; Kudesia, N.; Ahmed, F.K.; Sarkar, R.; Arora, A.; Abd-Elsalam, K.A. Entomopathogenic fungi: An eco-friendly synthesis of sustainable nanoparticles and their nanopesticide properties. Microorganisms 2023, 11, 1617. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Guo, L.; Maimaiti, Y.; Mijit, M.; Qiu, D. Entomopathogenic fungi as microbial biocontrol agent. Mol. Plant Breed. 2012, 3, 63–79. [Google Scholar] [CrossRef]
- Jaihan, P.; Sangdee, K.; Sangdee, A. Selection of entomopathogenic fungus for biological control of chili anthracnose disease caused by Colletotrichum spp. Eur. J. Plant Pathol. 2016, 146, 551–564. [Google Scholar] [CrossRef]
- Araújo, J.P.; Hughes, D.P. Diversity of entomopathogenic fungi: Which groups conquered the insect body? Adv. Genet. 2016, 94, 1–39. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Jaronski, S.T. The production and uses of Beauveria bassiana as a microbial insecticide. World J. Microbiol. Biotechnol. 2016, 32, 177. [Google Scholar] [CrossRef]
- Litwin, A.; Nowak, M.; Różalska, S. Entomopathogenic fungi: Unconventional applications. Rev. Environ. Sci. Biotechnol. 2020, 19, 23–42. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Kitsiou, F.; Natsiopoulos, D.; Eliopoulos, P.A. Entomopathogenic fungi: Interactions and applications. Encyclopedia 2022, 2, 646–656. [Google Scholar] [CrossRef]
- Pucheta, D.M.; Macias, A.F.; Navarro, S.R.; Mayra, D.L.T. Mechanism of action of entomopathogenic fungi. Interciencia 2016, 156, 2164–2171. [Google Scholar]
- Liu, D.; Smagghe, G.; Liu, T.X. Interactions between entomopathogenic fungi and insects and prospects with glycans. J. Fungi 2023, 9, 575. [Google Scholar] [CrossRef]
- Skinner, M.; Parker, B.L.; Kim, J.S. Role of entomopathogenic fungi. In Integrated Pest Management; Abrol, D.P., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 169–191. [Google Scholar]
- Goettel, M.S.; Inglis, G.D.; Wraight, S.P. Overview of pathogen groups: Fungi. In Field Manual of Techniques in Invertebrate Pathology; Lacey, L.A., Kaya, H.K., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; p. 255282. [Google Scholar]
- de Crecy, E.; Jaronski, S.; Lyons, B.; Keyhan, N.O. Directed evolution of a filamentous fungus for thermotolerance. BMC Biotechnol. 2009, 9, 74. [Google Scholar] [CrossRef]
- Fang, W.; St Leger, R.J. Enhanced UV resistance and improved killing of Malaria mosquitoes by photolyase transgenic entomopathogenic fungi. PLoS ONE 2012, 7, e43069. [Google Scholar] [CrossRef]
- Quesada-Moraga, E.; González-Mas, N.; Yousef-Yousef, M.; Garrido-Jurado, I.; Fernández-Bravo, M. Key role of environmental competence in successful use of entomopathogenic fungi in microbial pest control. J. Pest Sci. 2024, 97, 1–15. [Google Scholar] [CrossRef]
- Meirelles, L.N.; Mesquita, E.; Corrêa, T.A.; Bitencourt, R.O.B.; Oliveira, J.L.; Fraceto, L.F.; Camargo, M.G.; Bittencourt, V.R.E.P. Encapsulation of entomopathogenic fungal conidia: Evaluation of stability and control potential of Rhipicephalus microplus. Ticks Tick Borne Dis. 2023, 14, 102184. [Google Scholar] [CrossRef] [PubMed]
- Diehl-Fleig, E.; Silva, M.E.; Labres, M.E.V.; Specht, A. Ocorrência natural de Beuaveria bassiana (Bals.) Vuill. no Rio Grande do Sul. Acta Biol. Leopoldensia 1992, 4, 99–104. [Google Scholar]
- Hughes, D.P.; Evans, H.C.; Hywel-Jones, N.; Boomsma, J.J.; Armitage, S.A.O. Novel fungal disease in complex leaf-cutting ant societies. Ecol. Entomol. 2009, 34, 214–220. [Google Scholar] [CrossRef]
- Fernandez-Daza, F.F.; Rodriguez-Roman, G.; Valencia-Rodriguez, M.; Gonzalez-Vargas, I.A.; Cardenas-Heano, H.; Pascol-Cereda, M.; Cuervo-Mulet, R.A. Spores of Beauveria bassiana and Trichoderma lignorum as a bioinsecticide for the control of Atta cephalotes. Biol. Res. 2019, 52, 51. [Google Scholar] [CrossRef]
- Boucias, D.G.; Stockes, C.; Storey, G.; Pendland, J.C. The effects of imidacloprid on the termite Reticulitermes flavipes and its interaction with the mycopathogen Beauveria bassiana. Pflanzenschutz-Nachrichten Bayer 1996, 49, 103–144. [Google Scholar]
- Moino, A., Jr.; Alves, S.B. Efeito de Beauveria bassiana sobre o desenvolvimento de Sitophilus zeamais. Manejo Integr. De Plagas 1998, 50, 51–54. [Google Scholar]
- Niu, J.; Chen, R.; Wang, J.J. RNA interference in insects: The link between antiviral defense and pest control. Insect Sci. 2024, 31, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.H.; Liu, Q.Y.; Xie, Z.M.; Guo, H.S. Exploring the challenges of RNAi-based strategies for crop protection. Adv. Biotechnol. 2024, 2, 23. [Google Scholar] [CrossRef]
- Ortolá, B.; Daròs, J.-A. RNA Interference in insects: From a natural mechanism of gene expression regulation to a biotechnological crop protection promise. Biology 2024, 13, 137. [Google Scholar] [CrossRef] [PubMed]
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef]
- Cedden, D.; Bucher, G. The quest for the best target genes for RNAi-mediated pest control. Insect Mol. Biol. 2024, 1–13. [Google Scholar] [CrossRef]
- Chen, Y.; De Schutter, K. Biosafety aspects of RNAi-based pests’ control. Pest Manag. Sci. 2024, 80, 3697–3706. [Google Scholar] [CrossRef]
- Zamore, P.D.; Tuschl, T.; Sharp, P.A.; Bartel, D.P. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000, 101, 25–33. [Google Scholar] [CrossRef]
- Tijsterman, M.; Plasterk, R.H. Dicers at RISC; the mechanism of RNAi. Cell 2004, 117, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Hotta, I.; Denli, A.M.; Hong, P.; Perrimon, N.; Hannon, G.J. Comparative analysis of argonaute-dependent small RNA pathways in Drosophila. Mol. Cell 2008, 32, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Song, M.S.; Rossi, J.J. Molecular mechanisms of Dicer: Endonuclease and enzymatic activity. Biochem. J. 2017, 474, 1603–1618. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.Y.; Palli, S.R. Mechanisms, applications, and challenges of insect RNA interference. Annu. Rev. Entomol. 2020, 65, 293–311. [Google Scholar] [CrossRef]
- Shabalina, S.A.; Koonin, E.V. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol. 2008, 23, 578–587. [Google Scholar] [CrossRef]
- Agrawal, N.; Dasaradhi, P.V.; Mohmmed, A.; Malhotra, P.; Bhatnagar, R.K.; Mukherjee, S.K. RNA interference: Biology, mechanism, and applications. Microbiol. Mol. Biol. Rev. 2003, 67, 657–685. [Google Scholar] [CrossRef] [PubMed]
- Dowling, D.; Pauli, T.; Donath, A.; Meusemann, K.; Podsiadlowski, L.; Petersen, M.; Peters, R.S.; Mayer, C.; Liu, S.; Zhou, X.; et al. Phylogenetic origin and diversification of RNAi pathway genes in insects. Genome Biol. Evol. 2016, 8, 3784–3793. [Google Scholar] [CrossRef]
- Yu, N.; Christiaens, O.; Liu, J.; Niu, J.; Cappelle, K.; Caccia, S.; Huvenne, H.; Smagghe, G. Delivery of dsRNA for RNAi in insects: An overview and future directions. Insect Sci. 2013, 20, 4–14. [Google Scholar] [CrossRef]
- Lu, Y.; Deng, X.; Zhu, Q.; Wu, D.; Zhong, J.; Wen, L.; Yu, X. The dsRNA delivery, targeting and application in pest control. Agronomy 2023, 13, 714. [Google Scholar] [CrossRef]
- Gospocic, J.; Shields, E.J.; Glastad, K.M.; Lin, Y.; Penick, C.A.; Yan, H.; Mikheyev, A.S.; Linksvayer, T.A.; Garcia, B.A.; Berger, S.L.; et al. The neuropeptide corazonin controls social behavior and caste identity in ants. Cell 2017, 170, 748–759.e12. [Google Scholar] [CrossRef]
- Rajakumar, R.; Koch, S.; Couture, M.; Favé, M.J.; Lillico-Ouachour, A.; Chen, T.; De Blasis, G.; Rajakumar, A.; Ouellette, D.; Abouheif, E. Social regulation of a rudimentary organ generates complex worker-caste systems in ants. Nature 2018, 562, 574–577. [Google Scholar] [CrossRef]
- Ratzka, C.; Gross, R.; Feldhaar, H. Systemic gene knockdown in Camponotus floridanus workers by feeding of dsRNA. Insectes Soc. 2013, 60, 475–484. [Google Scholar] [CrossRef]
- Lu, H.; Vinson, S.; Pietrantonio, P. Oocyte membrane localization of vitellogenin receptor coincides with queen flying age, and receptor silencing by RNAi disrupts egg formation in fire ant virgin queens. FEBS J. 2009, 276, 3110–3123. [Google Scholar] [CrossRef]
- Choi, M.Y.; Vander Meer, R.K.; Coy, M.; Scharf, M.E. Phenotypic impacts of PBAN RNA interference in an ant, Solenopsis invicta, and a moth, Helicoverpa zea. J. Insect Physiol. 2012, 58, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.Y.; Vander Meer, R.K. Ant trail pheromone biosynthesis is triggered by a neuropeptide hormone. PLoS ONE 2012, 7, e50400. [Google Scholar] [CrossRef]
- Castillo Bravo, P.A. Short Neuropeptide F Receptor in the Worker Brain of the Red Imported Fire Ant (Solenopsis invicta Buren) and Methodology for RNA Interference. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2015. [Google Scholar]
- Rydzak, P.M.; Bextine, B.R. Manipulation of viral titers of Solenopsis invicta Virus-1 by RNA interference in laboratory colonies of red imported fire ant. Southwest Entomol. 2016, 41, 379–388. [Google Scholar] [CrossRef]
- Du, Y.; Chen, J. The odorant binding protein, SiOBP5, mediates alarm pheromone olfactory recognition in the red imported fire ant, Solenopsis invicta. Biomolecules 2021, 11, 1595. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, Y.; Lei, Y.; Shi, Q.; Qi, G.; He, Y.; Lyu, L. Role of the foraging gene in worker behavioral transition in the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Pest Manag. Sci. 2022, 78, 2964–2975. [Google Scholar] [CrossRef]
- Wang, J.D.; Chen, Y.H.; Zhang, Y.X.; Lin, J.W.; Gao, S.J.; Tang, B.Z.; Hou, Y.M. Establishment of RNAi-mediated pest control method for red imported fire ant, Solenopsis invicta. J. Agric. Food Chem. 2024, 72, 10936–10943. [Google Scholar] [CrossRef]
- Miyazaki, S.; Okada, Y.; Miyakawa, H.; Tokuda, G.; Cornette, R.; Koshikawa, S.; Maekawa, K.; Miura, T. Sexually dimorphic body color is regulated by sex-specific expression of yellow gene in ponerine ant, Diacamma sp. PLoS ONE 2014, 9, e92875. [Google Scholar] [CrossRef]
- Zhang, J.J.; Xi, G.S. Morphological changes in different caste adult ant specificities of Polyrhachis vicina Roger (Hymenoptera, Formicidae) caused in estrogen-related receptor. Gen. Comp. Endocrinol. 2018, 266, 29–37. [Google Scholar] [CrossRef]
- Xi, G.; Ying, Q.; Xie, H. The functional relevance of oestrogen-related receptor gene to ultraspiracle gene in regulating the development of Polyrhachis vicina (Hymenoptera: Formicidae). Orient. Insects 2019, 53, 362–378. [Google Scholar] [CrossRef]
- Meng, J.; Lei, J.; Davitt, A.; Holt, J.R.; Huang, J.; Gold, R.; Vargo, E.L.; Tarone, A.M.; Zhu-Salzman, K. Suppressing tawny crazy ant (Nylanderia fulva) by RNAi technology. Insect Sci. 2020, 27, 113–121. [Google Scholar] [CrossRef]
- Felden, A.; Dobelmann, J.; Baty, J.W.; McCormick, J.; Haywood, J.; Lester, P.J. Can immune gene silencing via dsRNA feeding promote pathogenic viruses to control the globally invasive Argentine ant? Ecol. Appl. 2023, 33, e2755. [Google Scholar] [CrossRef]
- Bonasio, R.; Zhang, G.; Ye, C.; Mutti, N.S.; Fang, X.; Qin, N.; Donahue, G.; Yang, P.; Li, Q.; Li, C.; et al. Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science 2010, 329, 1068–1071. [Google Scholar] [CrossRef]
- Cheng, D.; Lu, Y.; Zeng, L.; Liang, G.; He, X. Si-CSP9 regulates the integument and moulting process of larvae in the red imported fire ant, Solenopsis invicta. Sci. Rep. 2015, 5, 9245. [Google Scholar] [CrossRef]
- Bramlett, M.; Plaetinck, G.; Maienfisch, P. RNA-based biocontrols—A new paradigm in crop protection. Engineering 2020, 6, 522–527. [Google Scholar] [CrossRef]
- Helms, J.A.; Godfrey, A.P.; Ames, T.; Bridge, E.S. Predator foraging altitudes reveal the structure of aerial insect communities. Sci. Rep. 2016, 6, 28670. [Google Scholar] [CrossRef]
- Zarrabian, M.; Sherif, S.M. Silence is not always golden: A closer look at potential environmental and ecotoxicological impacts of large-scale dsRNA application. Sci. Total Environ. 2024, 950, 175311. [Google Scholar] [CrossRef]
- Rodovalho, C.M.; Ferro, M.; Fonseca, F.P.; Antonio, E.A.; Guilherme, I.R.; Henrique-Silva, F.; Bacci, M., Jr. Expressed sequence tags from Atta laevigata and identification of candidate genes for the control of pest leaf-cutting ants. BMC Res. Notes 2011, 4, 203. [Google Scholar] [CrossRef]
- Taning, C.N.; Arpaia, S.; Christiaens, O.; Dietz-Pfeilstetter, A.; Jones, H.; Mezzetti, B.; Sabbadini, S.; Sorteberg, H.G.; Sweet, J.; Ventura, V.; et al. RNA-based biocontrol compounds: Current status and perspectives to reach the market. Pest Manag. Sci. 2020, 76, 841–845. [Google Scholar] [CrossRef]
- Baldwin, J.; Paula-Moraes, S.V.; Pereira, R. The good side of the bad guys: Predation of lepidopteran pests by Solenopsis invicta Buren (Hymenoptera: Formicidae) in the Florida Panhandle. Florida Entomol. 2020, 103, 68–71. [Google Scholar] [CrossRef]
- Boomsma, J.J.; Brady, S.G.; Dunn, R.R.; Gadau, J.; Heinze, J.; Keller, L.; Moreau, C.S.; Sanders, N.J.; Schrader, L.; Schultz, T.R.; et al. The Global Ant Genomics Alliance (GAGA). Myrmecol. News 2017, 25, 61–66. [Google Scholar]
- Moreira, A.C.; Carneiro, R.L.; Fracola, M.F.; Micocci, K.C.; Bueno, O.C.; Souza, D.H.F. Analysis of the gene expression and RNAi-mediated knockdown of chitin synthase from leaf-cutting ant Atta sexdens. J. Braz. Chem. Soc. 2020, 31, 1979–1990. [Google Scholar] [CrossRef]
- Hare, J.D. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu. Rev. Entomol. 2011, 56, 161–180. [Google Scholar] [CrossRef]
- Jones, W.P.; Kinghorn, A.D. Extraction of Plant Secondary Metabolites. In Natural Products Isolation. Methods in Molecular Biology; Sarker, S., Nahar, L., Eds.; Humana Press: Totowa, NJ, USA, 2012; p. 864. [Google Scholar] [CrossRef]
- Murugan, R.; Mallavarapu, G.R.; Padmashree, K.V.; Rao, R.R.; Livingstone, C. Volatile oil composition of Pogostemon heyneanus and comparison of its composition with patchouli oil. Nat. Prod. Commun. 2010, 5, 1961–1964. [Google Scholar] [CrossRef]
- Divekar, P.A.; Narayana, S.; Divekar, B.A.; Kumar, R.; Gadratagi, B.G.; Ray, A.; Singh, A.K.; Rani, V.; Singh, V.; Singh, A.K.; et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int. J. Mol Sci. 2022, 23, 2690. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, X.; Gong, P.; Wang, R.; Han, A.; Deng, Z.; Qi, Z.; Long, H.; Wang, J.; Yao, W.; et al. Advances in the role and mechanisms of essential oils and plant extracts as natural preservatives to extend the postharvest shelf life of edible mushrooms. Foods 2023, 12, 801. [Google Scholar] [CrossRef]
- Lengai, G.M.W.; Muthomi, J.W.; Mbega, E.R. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. Afr. 2020, 7, e00239. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Erb, M.; Kliebenstein, D.J. Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Banadka, A.; Nandhini, M.; Nagella, P.; Al-Mssallem, M.Q.; Alessa, F.M. Essential oil from Coriandrum sativum: A review on its phytochemistry and biological activity. Molecules 2023, 28, 696. [Google Scholar] [CrossRef]
- Murcia-Meseguer, A.; Alves, T.J.S.; Budia, F.; Antonio Ortiz, A.; Medina, P. Insecticidal toxicity of thirteen commercial plant essential oils against Spodoptera exigua (Lepidoptera: Noctuidae). Phytoparasitica 2018, 46, 233–245. [Google Scholar] [CrossRef]
- Bacci, L.; Lima, J.K.A.; Araújo, A.P.A.; Blank, A.F.; Silva, I.M.A.; Santos, A.A.; Santos, A.C.C.; Alves, P.B.; Picanço, M.C. Toxicity, behavior impairment, and repellence of essential oils from pepper-rosmarin and patchouli to termites. Entomol. Exp. Appl. 2015, 156, 66–76. [Google Scholar] [CrossRef]
- Bagade, R.P.; Jadhav, A.D.; Chavan, R.V. Toxicity and repellency of four plant essential oils against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Int. J. Trop. Insect Sci. 2021, 41, 1505–1512. [Google Scholar] [CrossRef]
- Santos, M.I.S.; Marques, C.; Mota, J.; Pedroso, L.; Lima, A. Applications of essential oils as antibacterial agents in minimally processed fruits and vegetables—A review. Microorganisms 2022, 10, 760. [Google Scholar] [CrossRef]
- Costa, T.L.; Santos, R.C.; Santos, A.A.; Pimentel, E.S.; Lima, E.; Batista, C.V.; Bacci, L.; Freitas, D.R.; Picanço, M.C. Lethal and sublethal effects of an essential oil-based emulsion of patchouli, Pogostemon cablin (Lamiaceae), on the tomato leafminer. Agriculture 2023, 13, 1540. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, A.; Singh, P.P.; Prakash, B. Pesticidal efficacy, mode of action and safety limits profile of essential oils based nanoformulation against Callosobruchus chinensis and Aspergillus flavus. Pestic. Biochem. Physiol. 2021, 175, 104813. [Google Scholar] [CrossRef]
- Wani, S.; Rajput, A.; Pingale, P. Herbal nanoformulations: A magical remedy for management of fungal diseases. J. Herb. Med. 2023, 42, 100810. [Google Scholar] [CrossRef]
- Popescu, I.E.; Gostin, I.N.; Blidar, C.F. An overview of the mechanisms of action and administration technologies of the essential oils used as green insecticides. Agri. Eng. 2024, 6, 1195–1217. [Google Scholar] [CrossRef]
- Karabörklü, S.; Ayvaz, A. A comprehensive review of effective essential oil components in stored-product pest management. J. Plant Dis. Prot. 2023, 130, 449–481. [Google Scholar] [CrossRef]
- Jankowska, M.; Rogalska, J.; Wyszkowska, J.; Stankiewicz, M. Molecular targets for components of essential oils in the insect nervous system-A review. Molecules 2017, 23, 34. [Google Scholar] [CrossRef]
- Sakthivel, S.; Mohideen, H.S.; Raman, C.; Mohamad, S.B. Potential acetylcholinesterase inhibitor acting on the pesticide resistant and susceptible cotton pests. ACS Omega 2022, 7, 20515–20527. [Google Scholar] [CrossRef]
- Fan Tong, F.; Coats, J.R. Effects of monoterpenoid insecticides on [3H]-TBOB binding in house fly GABA receptor and 36Cl− uptake in American cockroach ventral nerve cord. Pestic. Biochem. Physiol. 2010, 98, 317–324. [Google Scholar] [CrossRef]
- Ozoe, Y.; Kita, T.; Ozoe, F.; Nakao, T.; Sato, K.; Hirase, K. Insecticidal 3-benzamido-N-phenylbenzamides specifically bind with high affinity to a novel allosteric site in housefly GABA receptors. Pestic. Biochem. Physiol. 2013, 107, 285–292. [Google Scholar] [CrossRef]
- El Hassani, A.K.; Schuster, S.; Dyck, Y.; Demares, F.; Leboulle, G.; Armengaud, C. Identification, localization and function of glutamate-gated chloride channel receptors in the honeybee brain. Eur. J. Neurosci. 2012, 36, 2409–2420. [Google Scholar] [CrossRef]
- Lynagh, T.; Cromer, B.A.; Dufour, V.; Laube, B. Comparative pharmacology of flatworm and roundworm glutamate-gated chloride channels: Implications for potential anthelmintics. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 244–255. [Google Scholar] [CrossRef]
- Qian, K.; Jiang, C.; Guan, D.; Zhuang, A.; Meng, X.; Wang, J. Characterization of glutamate-gated chloride channel in Tribolium castaneum. Insects 2023, 14, 580. [Google Scholar] [CrossRef]
- Kostyukovsky, M.; Rafaeli, A.; Gileadi, C.; Demchenko, N.; Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manag. Sci. 2002, 58, 1101–1106. [Google Scholar] [CrossRef]
- Evans, P.D.; Maqueira, B. Insect octopamine receptors: A new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invert. Neurosci. 2005, 5, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Roeder, T. Tyramine and octopamine: Ruling behavior and metabolism. Annu. Rev. Entomol. 2005, 50, 447–477. [Google Scholar] [CrossRef] [PubMed]
- Pauls, D.; Blechschmidt, C.; Frantzmann, F.; El Jundi, B.; Selcho, M. A comprehensive anatomical map of the peripheral octopaminergic/tyraminergic system of Drosophila melanogaster. Sci. Rep. 2018, 8, 15314. [Google Scholar] [CrossRef]
- Finetti, L.; Orchard, I.; Lange, A.B. The octopamine receptor OAα1 influences oogenesis and reproductive performance in Rhodnius prolixus. PLoS ONE 2023, 18, e0296463. [Google Scholar] [CrossRef]
- Ramos, S.E.; Bakhtiari, M.; Castañeda-Zárate, M.; Iriart, V.; Ashman, T.L. Herbicides and their potential to disrupt plant–insect chemical communication. J. Syst. Evol. 2023, 61, 550–560. [Google Scholar] [CrossRef]
- Corrêa, E.J.A.; Carvalho, F.C.; Castro Oliveira, J.A.; Bertolucci, S.K.V.; Scotti, M.T.; Silveira, C.H.; Guedes, F.C.; Melo, J.O.F.; Melo-Minardi, R.C.; Lima, L.H.F. Elucidating the molecular mechanisms of essential oils’ insecticidal action using a novel cheminformatics protocol. Sci. Rep. 2023, 13, 4598. [Google Scholar] [CrossRef]
- Bass, C.; Jones, C.M. Mosquitoes boost body armor to resist insecticide attack. Proc. Natl. Acad. Sci. USA 2016, 113, 9145–9147. [Google Scholar] [CrossRef]
- Kim, S.; Yoon, J.; Tak, J.-H. Synergistic mechanism of insecticidal activity in basil and mandarin essential oils against the tobacco cutworm. J. Pest Sci. 2021, 94, 1119–1131. [Google Scholar] [CrossRef]
- Gao, L.; Qiao, H.; Wei, P.; Moussian, B.; Wang, Y. Xenobiotic responses in insects. Arch. Insect Biochem. Physiol. 2022, 109, e21869. [Google Scholar] [CrossRef]
- Kolawole, A.O.; Olajuyigbe, F.M.; Ajele, J.O.; Adedire, C.O. Activity of the antioxidant defense system in a typical bioinsecticide and synthetic insecticide-treated cowpea storage beetle Callosobrochus maculatus F. (Coleoptera: Chrysomelidae). Int. J. Insect. Sci. 2014, 6, IJIS.S19434. [Google Scholar] [CrossRef] [PubMed]
- Isman, M.B. Plant essential oils for pest and disease management. Crop Prot. 2000, 19, 603–608. [Google Scholar] [CrossRef]
- Miresmailli, S.; Isman, M.B. Botanical insecticides inspired by plant–herbivore chemical interactions. Trends Plant Sci. 2014, 19, 29–35. [Google Scholar] [CrossRef]
- Oliveira, B.M.S.; Melo, C.R.; Alves, P.B.; Santos, A.A.; Santos, A.C.C.; Santana, A.D.S.; Araújo, A.P.A.; Nascimento, P.E.S.; Blank, A.F.; Bacci, L. Essential oil of Aristolochia trilobata: Synthesis, routes of exposure, acute toxicity, binary mixtures and behavioral effects on leaf-cutting ants. Molecules 2017, 22, 335. [Google Scholar] [CrossRef]
- Melo, C.R.; Oliveira, B.M.S.; Santos, A.C.C.; Silva, J.E.; Ribeiro, G.T.; Blank, A.F.; Araújo, A.P.A.; Bacci, L. Synergistic effect of aromatic plant essential oils on the ant Acromyrmex balzani (Hymenoptera: Formicidae) and antifungal activity on its symbiotic fungus Leucoagaricus gongylophorus (Agaricales: Agaricaceae). Environ. Sci. Pollut. Res. Int. 2020, 27, 17303–17313. [Google Scholar] [CrossRef]
- Brito, F.A.; Bacci, L.; Santana, A.S.; Silva, J.E.; Nizio, D.A.C.; Nogueira, P.C.L.; Arrigoni-Blank, M.F.; Melo, C.R.; Melo, J.O.; Blank, A.F. Toxicity and behavioral alterations caused by essential oils of Croton tetradenius and their major compounds on Acromyrmex balzani. Crop Prot. 2020, 137, 105259. [Google Scholar] [CrossRef]
- Meneghetti, C.; Rebelo, R.A.; Vitorino, M.D. Efeito do óleo essencial das folhas de Drimys angustifolia em colônias de Acromyrmex spp. em plantio de Pinus taeda. Floresta 2015, 45, 755–768. [Google Scholar] [CrossRef]
- Silva, D.C.; Arrigoni-Blank, M.F.; Bacci, L.; Blank, A.F.; Faro, R.R.N.; Pinto, J.A.O.; Pereira, K.L.G. Toxicity and behavioral alterations of essential oils of Eplingiella fruticosa genotypes and their major compounds to Acromyrmex balzani. Crop Prot. 2019, 116, 181–187. [Google Scholar] [CrossRef]
- Batista-Pereira, L.G.; Fernandes, J.B.; Silva, M.F.G.F.; Vieira, P.C.; Bueno, O.C.; Corrêa, A.G. Electrophysiological responses of Atta sexdens rubropilosa workers to essential oils of Eucalyptus and its chemical composition. Z. Für Naturforschung C 2006, 61, 749–755. [Google Scholar] [CrossRef]
- Jung, P.H.; Silveira, A.C.; Nieri, E.M.; Potrich, M.; Silva, E.R.L.; Refatti, M. Atividade inseticida de Eugenia uniflora L. e Melia azedarach L. sobre Atta laevigata Smith. Floresta Ambiente 2013, 20, 191–196. [Google Scholar] [CrossRef]
- Feitosa-Alcantara, R.B.; Bacci, L.; Blank, A.F.; Alves, P.B.; Silva, I.M.D.A.; Soares, C.A.; Sampaio, T.S.; Nogueira, P.C.D.L.; Arrigoni-Blank, M.D.F. Essential oils of Hyptis pectinata chemotypes: Isolation, binary mixtures and acute toxicity on leaf-cutting ants. Molecules 2017, 22, 621. [Google Scholar] [CrossRef] [PubMed]
- Dantas, J.O.; Cavalcanti, S.C.H.; Araújo, A.P.A.; Silva, J.E.; Brito, T.B.; Andrade, V.S.; Pinheiro, H.S.S.; Tavares, S.R.S.A.; Blank, A.F.; Bacci, L. Formicidal potential of thymol derivatives: Adverse effects on the survival and behavior of Acromyrmex balzani. Agriculture 2023, 13, 1410. [Google Scholar] [CrossRef]
- Buteler, M.; Alma, A.M.; Herrera, M.L.; Gorosito, N.B.; Fernández, P.C. Novel organic repellent for leaf-cutting ants: Tea tree oil and its potential use as a management tool. Int. J. Pest Manag. 2021, 67, 1–9. [Google Scholar] [CrossRef]
- Melo, C.R.; Blank, A.F.; Oliveira, B.M.S.; Santos, A.C.C.; Cristaldo, P.F.; Araújo, A.P.A.; Bacci, L. Formicidal activity of essential oils of Myrcia lundiana chemotypes on Acromyrmex balzani. Crop Prot. 2021, 139, 105343. [Google Scholar] [CrossRef]
- Salazar, L.C.; Ortiz-Reyes, A.; Rosero, D.M.; Lobo-Echeverri, T. Dillapiole in Piper holtonii as an inhibitor of the symbiotic fungus Leucoagaricus gongylophorus of leaf-cutting ants. J. Chem. Ecol. 2020, 46, 668–674. [Google Scholar] [CrossRef]
- Perri, D.; Gorosito, N.; Fernandez, P.; Buteler, M. Plant-based compounds with potential as push-pull stimuli to manage behavior of leaf-cutting ants. Entomol. Exp. Appl. 2017, 163, 150–159. [Google Scholar] [CrossRef]
- Alma, A.M.; Arenas, A.; Carina Fernandez, P.; Buteler, M. The refuse dump provides information that influences the foraging preferences of leaf-cutting ants. Ecol. Entomol. 2024, 50, 84–92. [Google Scholar] [CrossRef]
- Rocha, A.G.; Oliveira, B.M.S.; Melo, C.R.; Sampaio, T.S.; Blank, A.F.; Lima, A.D.; Nunes, R.S.; Araújo, A.P.A.; Cristaldo, P.F.; Bacci, L. Lethal effect and behavioral responses of leaf-cutting ants to essential oil of Pogostemon cablin (Lamiaceae) and its nanoformulation. Neotrop. Entomol. 2018, 47, 769–779. [Google Scholar] [CrossRef]
- Ribeiro, R.C.; Fouad, H.A. Potential use of essential oils to control the leaf-cutting ants; Atta sexdens rubropilosa and Acromyrmex subterraneus molestans (Hymenoptera: Formicidae). Int. J. Indust. Entomol. 2016, 32, 26–34. [Google Scholar] [CrossRef]
- Wheeler, W.M. The ant-colony as an organism. J. Morphol. 1911, 22, 307–325. [Google Scholar] [CrossRef]
- Gillooly, J.F.; Hou, C.; Kaspari, M. Eusocial insects as superorganisms: Insights from metabolic theory. Commun. Integr. Biol. 2010, 3, 360–362. [Google Scholar] [CrossRef]
Microbiota | Some Identified Genera | Isolation Source | References | |
---|---|---|---|---|
Bacteria | Actinomycetota | Amycolatopsis, Nocardiopsis, Pseudonocardia, Streptomyces, Tsukamurella | FG, B | [90,91] |
Pseudomonadota | Acinetobacter, Burkholderia, Enterobacter, Klebsiella, Pantoea, Pseudomonas | FG, B, DS | [92,93,94,95] | |
Fungi | Yeasts | Aureobasidium, Candida, Cryptococcus, Rhodosporidiobolus, Sporobolomyces, Starmerella, Tremella, Trichosporon, Wickerhamomyces | FG, B | [96,97,98,99] |
Black yeast-like fungi | Alternaria, Bipolaris, Cladophialophora, Cladosporium, Exophiala, Ochroconis, Paraphaeosphaeria, Phaeococcomyces, Phialophora, Penidiella | B | [100,101,102] | |
Filamentous fungi | Aspergillus, Chaetomium, Cunninghamella, Fusarium, Escovopsis, Monilia, Mucor, Penicillium, Phomopsis, Rhizomucor, Rhizopus, Syncephalastrum, Trichoderma | FG, B | [96,103,104,105] | |
Entomopathogenic fungi | Aspergillus, Beauveria, Clonostachys, Conidiobolus, Fusarium, Isaria, Metarhizium, Ophiocordyceps, Paecilomyces, Purpureocillium | FG, B | [106,107,108,109] | |
Virus | Mycovirus | LgTlV1 §, LgMV1 § | FG | [110] |
Target | Injury Caused | References | |
---|---|---|---|
Forest plantations | Eucaliptus | The damage caused, up to the third cycle, constitutes up to 30% of plantation management expenses. The total defoliation of the trees causes a reduction of 11 mm in diameter and 0.7 m in height, translating to a 13% loss in wood volume at the end of a seven-year rotation, and also resulting in uneven tree growth. Newly planted seedlings are the most vulnerable, often leading to their death. The characteristic of the plant most affected by defoliation is the diameter, when compared to the height. In plantations with ant nest densities of 2.76 m2 (loose soil per hectare), there was a reduction of 0.87% in wood volume. | [182,183,184] |
Pinus | Attacks on newly planted seedlings can cause different levels of defoliation, which can reach 100%, affecting the apical meristem. This mostly happens in the first month after planting, causing the death of 7.5% of the seedlings. Wood volume loss can reach 43% (compared to controls that did not undergo defoliation), with levels of greater than 75% defoliation 30 days after planting. Acromyrmex species caused losses in seedlings of 20.8% 65 days after planting. A six-year study found significant reductions in total height, diameter, and wood volume, with a mortality rate of 31.2%. | [185,186,187,188,189] | |
Salix | The damage produced by Acromyrmex species showed a reduction in wood volume of up to 90%. The weight, diameter, and volume losses of wood in commercial clones of Salix nigra over four years were 70% (wt), 40% (diam), and a 51% to 93% loss of wood volume, depending on the variety of the clone. | [190,191,192,193] | |
Other plantations and crops | Citrus, vineyards, cocoa, soybean, alfalfa, sunflower, sorghum, alfalfa, flax wheat, maize | Attack in the initial stage of crops, seedlings, caused delays in development and/or losses of seedlings. | [194,195,196,197,198,199,200,201,202,203] |
Sugarcane plantations | The losses were calculated at 1.74 tons of sugarcane per ant colony per hectare, in each cycle, with a 30% reduction in the sucrose content of the raw material harvested. A reduction of 3.6 tons of sugarcane per year is equivalent to the loss of 450 Kg of sugar or 300 L of alcohol, as a result of one adult ant colony per hectare. | [43,183,204,205,206] | |
Pastures | Ten colonies per hectare can consume 52.5 Kg of grass/day, which is equivalent to the daily rations for three oxen. Another type of damage is produced by turning the earth and forming foraging trails. | [28,68,207,208,209,210] | |
Indirect damage | Environmental pollution caused by the indiscriminate use of pesticides. Structural damage to highways, dams, bridges, mausoleums, or tombs. Accidents with animals and agricultural machinery, loss of land fertility, and negative effects on the grazing behavior of cattle. Problems of water infiltration for irrigation caused by the presence of nests in sugarcane plantations in Colombia. | [23,28,34,184,211,212] |
Control Method | Description | References | |
---|---|---|---|
Mechanical | Remove the queen ant by digging up the part of the nest with the queen (for nests >4 months old). Plowing during soil preparation. | [213,214] | |
Cultural | Crop rotation, destruction of crop residues, pruning, fertilization, and intercropping. Combine crops with alternative plants with repellent effects (castor beans, grasses, sesame). | [7,215,216,217,218] | |
Physical | Use of fire in forested areas. Flooding in small areas. | [215,219] | |
Biological | Macro- organisms | Wild and domestic birds. Entomopathogenic nematodes. Arthropods: coleopterans, mites, spiders, parasitoids, predatory ants. | [40,128,220,221,222,223,224] |
Among the parasitoids, phorids (Diptera: Phoridae) have been studied for their possible control. These dipterans lay their eggs in foraging workers when they are transporting leaves along the trail or while cutting leaf fragments. | [225,226] | ||
Micro- organisms | The use of microorganisms may be a promising biocontrol tactic, by offering baits containing entomopathogenic fungi, antagonistic fungi of L. gongylophorus, and bacteria. More studies are needed following the promising results obtained in the laboratory so that these techniques can be effectively transferred to the field. | [227,228,229,230,231] | |
Entomopathogenic fungi (baits): Metarhizium anisopliae, Beauveria bassiana, Aspergillus ochraceus, Conidiobolus lunulus, Purpureocillium lilacinum Antagonistic fungi of L. gongylophorus (baits): Trichoderma spp., Escovopsis weberi | [232,233] | ||
Bacteria (extracts): Photorhabdus sp., Serratia marcescens, and Xenorhabdus nematophila, on workers of certain species of Acromyrmex, Atta, and the fungus L. gongylophorus | [234,235] | ||
Nano-insecticides | Diatomaceous earth (DE)/nanostructured alumina (NSA). Inert powders with low toxicity to vertebrates and non-target organisms; low impact on the environment. Mode of action on insects: Interfere with the outer waxy protective layer of the cuticle, making the insects vulnerable to water loss and dehydration. DE is a powder composed of fossilized diatoms, which when used alone against Atta colonies, cause very low worker mortality, due to the complex nest architecture. | [236,237] | |
NSA is a high-purity homogeneous powder resulting from the combustion synthesis of glycine and aluminum nitrate. NSA shows potential for use as a granular insecticide that can be applied directly to Acromyrmex nests. | [238,239] | ||
Synthetic/Chemical insecticides | Powders. An active ingredient with contact action, using talc as an inert and application vehicle (spray-dusting). Nests have more than one chamber and therefore the product does not affect the entire ant nest. Soil moisture negatively affects this type of technique. | [7,240,241] | |
Liquids. Applied directly to the soil. The ants have to be directly exposed to the liquid, so where the nest is deep, penetration can be poor and there is a loss of the product due to absorption by the soil. | [242,243] | ||
Nebulization. Equipment: A cylindrical steel tank coupled to a hose, with a rod and nozzle suitable for applying the product (an active ingredient diluted in solvent and mixed with gases, butane, and propane) in the nest through the entrance holes. | [7,242] | ||
Thermal-fogging. An efficient technique for combating large nests and in areas of reforestation, where the use of bait is economically not feasible. The application method involves heat atomization of an insecticide carried in diesel or mineral oil, introduced through the holes, using a thermo-nebulizer. | [215,244,245,246] | ||
Toxic bait. Baits contain an attractive substrate and a toxic ingredient (e.g., sulfluramid or fipronil). The toxic compounds are not specific and can cause negative effects on non-target species in addition to water and soil pollution. The workers are contaminated by direct contact during the cultivation of the fungus. | [6,7,181,247,248,249,250] | ||
Natural control | Pheromones and behavioral control. Many pheromones have attractive properties, which makes them a promising means of improving bait attraction. Some substances, such as β-eudesmol or those contained in jatobá leaves (Hymenaea courbaril), have been shown to produce behavioral changes (e.g., agonistic behavior) in workers from Acromyrmex and Atta colonies. | [215,251,252,253,254] | |
Repellents. Plant extracts (PEx): Their low toxicity and persistence make them environmentally safer than pesticides. These extracts can be useful in association with other control tools, such as toxic and attractive types of bait in a “push–pull” strategy. | [255,256,257,258] | ||
Insecticides/Fungicides. PEx with insecticidal and/or fungicidal properties. Insecticidal activity by contact or ingestion: Citrus seed oils, namely Citrus sinensis, Citrus limon, or Citrus reticulate (Rutaceae); PEx of families such as Amaryllidaceae, Aristolochiaceae, Asteraceae, Euphorbiaceae, Fabaceae, Myrtaceae, Rubiaceae, Rutaceae, Simaroubaceae, and Solanaceae. Certain PEx also affect the mutualistic fungus: Piper piresii (Piperaceae), Simarouba versicolor (Simaroubaceae), Raulinoa echinata (Rutaceae), and Coffea spp. (Rutaceae). | [259,260,261,262,263] |
RNAi | Ant Species | Target Gene | Administration Method | Life Stage † | Social Form § | References |
---|---|---|---|---|---|---|
dsRNA | Solenopsis invicta | Vitellogenin receptor | Injection | WP | Q | [322] |
Pheromone biosynthesis activating neuropeptide | Injection, Feeding | B, P, A | Q, W | [323] | ||
Pheromone biosynthesis activating neuropeptide, Pyrokinin-2 receptor | Injection | A | W | [324] | ||
Short neuropeptide F receptor | Feeding | L, A | Q, W | [325] | ||
Solenopsis invicta virus 1 capsid | Feeding | Ain | Ec | [326] | ||
SiOBP1, SiOBP5, SiOBP6, SiOrco | Injection, Feeding | A | W | [327] | ||
Sifor, 8-Br-cGMP | Feeding | A | Q, M, W | [328] | ||
Actin, coatomer subunit beta, arginine kinase, V-type proton ATPase catalytic subunit A, V-type proton ATPase subunit B, V-type proton ATPase subunit E | Feeding | A | Q, M | [329] | ||
Camponotusfloridanus | Peptidoglycan recognition proteins | Feeding | L, A | Ec | [321] | |
Diacamma sp. | Yellow | Injection | WP | M, F | [330] | |
Polyrhachisvicina | Estrogen-related receptor | Feeding | Ain | Ec | [331,332] | |
Pheidolehyatti | Vestigial | Injection | L | W | [320] | |
Nylanderiafulva | Actin, coatomer subunit beta, arginine kinase, V-type proton ATPase catalytic subunit A, V-type proton ATPase subunit B, V-type proton ATPase subunit E | Feeding | A | W | [333] | |
Linepithemahumile | Spaetzle, Dicer-1 | Feeding | A | Q, W | [334] | |
siRNA | Camponotusfloridanus | cGMP-dependent protein kinase | Injection | A | W | [335] |
Solenopsisinvicta | Chemosensory protein 9, protein kinase | Feeding | L | W | [336] | |
Harpegnathossaltator | Corozonin receptor, vitellogenin | Injection | A | Q | [319] |
Plant Species Source of the EO | Target Species | Application Method | Experimental Context | Effects † | Reference |
---|---|---|---|---|---|
Aristolochia trilobata (Aristolochiaceae) | A. balzani, A. sexdens | Topical application, fumigation | Lab | In | [383] |
A. balzani/L. gongylophorus | Fumigation | Lab | In/Fc, Fl | ||
Croton tetradenius (Euphorbiaceae) | A. balzani | Volatile exposure | Lab | In, Re, Bm | [384] |
Drimys angustifolia (Winteraceae) | A. hispidus, A. crassispinus | Spraying | Field | Bm | [385] |
Eplingiella fruticose (Lamiaceae) | A. balzani | Volatile exposure, fumigation | Lab | Re, Bm | [386] |
Eucalyptus spp. (Myrtaceae) | A. sexdens | Volatile exposure | Lab | Sar | [387] |
Eucaliptus maculate * (Myrtaceae) | A. sexdens | Volatile exposure | Lab | Bm | [252] |
A. sexdens rubropilosa | Volatile exposure | Lab | Bm | [258] | |
A. sexdens rubropilosa, A. laevigata, A. bisphaerica | Volatile exposure | Lab | Bm | [253] | |
Eugenia uniflora (Myrtaceae) | A. laevigatta | Spraying | Lab | In | [388] |
Hyptis pectinate (Lamiaceae) | A. balzani, A. sexdens | Direct contact, fumigation | Lab | In | [389] |
Lippia spp. (Verbenaceae) | A. balzani | Topical application | Lab | In, Re, Bm | [390] |
Melaleuca alternifolia (Myrtaceae) | A. ambiguus, A. lobicornis | Volatile exposure | Lab | Re | [391] |
Myrcia lundiana (Myrtaceae) | A. balzani | Fumigation | Lab | In, Bm | [392] |
Piper holtonii (Piperaceae) | L. gongylophorus | Direct contact | Lab | Fc | [393] |
Pittosporum sp./Pluchea sp. (Pittosporaceae/Asteraceae) | A. ambiguus, A. lobicornis | Direct contact, volatile exposure | Lab, Field | Re | [394,395] ** |
Pogostemon cablin (Lamiaceae) | A. opaciceps, A. sexdens | Direct contact, fumigation | Lab | Bm | [396] |
Brassica juncea (Brassicaceae)/Cinnamomum verum (Lauraceae)/Syzygium aromaticum (Myrtaceae) | A. sexdens, A. subterraneus | Direct contact, ingestion | Lab | In | [397] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masiulionis, V.E.; Samuels, R.I. Investigating the Biology of Leaf-Cutting Ants to Support the Development of Alternative Methods for the Control and Management of These Agricultural Pests. Agriculture 2025, 15, 642. https://doi.org/10.3390/agriculture15060642
Masiulionis VE, Samuels RI. Investigating the Biology of Leaf-Cutting Ants to Support the Development of Alternative Methods for the Control and Management of These Agricultural Pests. Agriculture. 2025; 15(6):642. https://doi.org/10.3390/agriculture15060642
Chicago/Turabian StyleMasiulionis, Virginia Elena, and Richard Ian Samuels. 2025. "Investigating the Biology of Leaf-Cutting Ants to Support the Development of Alternative Methods for the Control and Management of These Agricultural Pests" Agriculture 15, no. 6: 642. https://doi.org/10.3390/agriculture15060642
APA StyleMasiulionis, V. E., & Samuels, R. I. (2025). Investigating the Biology of Leaf-Cutting Ants to Support the Development of Alternative Methods for the Control and Management of These Agricultural Pests. Agriculture, 15(6), 642. https://doi.org/10.3390/agriculture15060642