The State of Local Food Systems and Integrated Planning and Policy Research: An Application of the Climate, Biodiversity, Health, and Justice Nexus
Abstract
:1. Introduction
Theoretical Framework
2. Materials and Methods
2.1. Analysis
2.2. Limitations
3. Results
3.1. CBHJ Thematic Analyses
3.1.1. Climate
3.1.2. Biodiversity
3.1.3. Health
3.1.4. Justice
3.1.5. Quantitative vs. Qualitative Indicators
3.1.6. Summary
3.2. Indicator Framework
4. Discussion
4.1. Indicator Gaps
4.2. Scale
4.3. Indicators and Actions for Sustainable Local and Regional Food Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CBHJ | Climate–Biodiversity–Health–Justice Nexus |
References
- Hinrichs, C.C. Transitions to Sustainability: A Change in Thinking about Food Systems Change? Agric. Hum. Values 2014, 31, 143–155. [Google Scholar] [CrossRef]
- Ericksen, P.J. What Is the Vulnerability of a Food System to Global Environmental Change? Ecol. Soc. 2008, 13, 14. [Google Scholar]
- Braswell, T.H. Fresh Food, New Faces: Community Gardening as Ecological Gentrification in St. Louis, Missouri. Agric. Hum. Values 2018, 35, 809–822. [Google Scholar] [CrossRef]
- Tendall, D.M.; Joerin, J.; Kopainsky, B.; Edwards, P.; Shreck, A.; Le, Q.B.; Kruetli, P.; Grant, M.; Six, J. Food System Resilience: Defining the Concept. Glob. Food Secur. 2015, 6, 17–23. [Google Scholar] [CrossRef]
- Clapp, J.; Moseley, W.G. This Food Crisis Is Different: COVID-19 and the Fragility of the Neoliberal Food Security Order. J. Peasant Stud. 2020, 47, 1393–1417. [Google Scholar] [CrossRef]
- Carey, R.; Murphy, M.; Alexandra, L. COVID-19 Highlights the Need to Plan for Healthy, Equitable and Resilient Food Systems. Cities Health 2021, 5, S123–S126. [Google Scholar] [CrossRef]
- Glaros, A.; Alexander, C.; Koberinski, J.; Scott, S.; Quilley, S.; Si, Z. A Systems Approach to Navigating Food Security during COVID-19: Gaps, Opportunities, and Policy Supports. J. Agric. Food Syst. Community Dev. 2021, 10, 211–223. [Google Scholar] [CrossRef]
- Newell, R.; Dring, C.; Newman, L. Reflecting on COVID-19 for Integrated Perspectives on Local and Regional Food Systems Vulnerabilities. Urban Gov. 2022, 2, 316–327. [Google Scholar] [CrossRef]
- Pothukuchi, K.; Kaufman, J.L. Placing the Food System on the Urban Agenda: The Role of Municipal Institutions in Food Systems Planning. Agric. Hum. Values 1999, 16, 213–224. [Google Scholar] [CrossRef]
- Barthel, S.; Isendahl, C. Urban Gardens, Agriculture, and Water Management: Sources of Resilience for Long-Term Food Security in Cities. Ecol. Econ. 2013, 86, 224–234. [Google Scholar] [CrossRef]
- Born, B.; Purcell, M. Avoiding the Local Trap: Scale and Food Systems in Planning Research. J. Plan. Educ. Res. 2006, 26, 195–207. [Google Scholar] [CrossRef]
- Horst, M.; McClintock, N.; Hoey, L. The Intersection of Planning, Urban Agriculture, and Food Justice: A Review of the Literature. In Planning for Equitable Urban Agriculture in the United States: Future Directions for a New Ethic in City Building; Raja, S., Caton Campbell, M., Judelsohn, A., Born, B., Morales, A., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 89–120. ISBN 978-3-031-32076-7. [Google Scholar]
- MUFPP. Milan Urban Food Policy Pact; MUFPP: Milan, Italy, 2015. [Google Scholar]
- Blay-Palmer, A.; Santini, G.; Dubbeling, M.; Renting, H.; Taguchi, M.; Giordano, T. Validating the City Region Food System Approach: Enacting Inclusive, Transformational City Region Food Systems. Sustainability 2018, 10, 1680. [Google Scholar] [CrossRef]
- Mougeot, L. Urban Agriculture: Definition, Presence, Potentials and Risks. International Development Research Centre (IDRC): Ottawa, Canada, 2000; pp. 1–46. [Google Scholar]
- Diehl, J.A.; Sweeney, E.; Wong, B.; Sia, C.S.; Yao, H.; Prabhudesai, M. Feeding Cities: Singapore’s Approach to Land Use Planning for Urban Agriculture. Glob. Food Secur. 2020, 26, 100377. [Google Scholar] [CrossRef]
- Millard, J.; Sturla, A.; Smutná, Z.; Duží, B.; Janssen, M.; Vávra, J. European Food Systems in a Regional Perspective: A Comparative Study of the Effect of COVID-19 on Households and City-Region Food Systems. Front. Sustain. Food Syst. 2022, 6, 844170. [Google Scholar] [CrossRef]
- Allen, T.; Prosperi, P.; Cogill, B.; Padilla, M.; Peri, I. A Delphi Approach to Develop Sustainable Food System Metrics. Soc. Indic. Res. 2019, 141, 1307–1339. [Google Scholar] [CrossRef]
- Issac, J.; Newell, R.; Dring, C.; White, C.; Ghadiri, M.; Pizzirani, S.; Newman, L. Integrated Sustainability Planning and Local Food Systems: Examining Areas of and Gaps in Food Systems Integration in Community Sustainability Plans for Municipalities across British Columbia. Sustainability 2022, 14, 6724. [Google Scholar] [CrossRef]
- Knezevic, I.; Blay-Palmer, A.; Levkoe, C.Z.; Mount, P.; Nelson, E. (Eds.) Nourishing Communities: From Fractured Food Systems to Transformative Pathways; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-56999-4. [Google Scholar]
- Adger, W.N. Social and Ecological Resilience: Are They Related? Prog. Hum. Geogr. 2000, 24, 347–364. [Google Scholar] [CrossRef]
- Homer-Dixon, T.; Walker, B.; Biggs, R.; Crépin, A.-S.; Folke, C.; Lambin, E.; Peterson, G.; Rockström, J.; Scheffer, M.; Steffen, W.; et al. Synchronous Failure: The Emerging Causal Architecture of Global Crisis. Ecol. Soc. 2015, 20, 6. [Google Scholar] [CrossRef]
- Newell, R.; Picketts, I. Spaces, Places and Possibilities: A Participatory Approach for Developing and Using Integrated Models for Community Planning. City Environ. Interact. 2020, 6, 100040. [Google Scholar] [CrossRef]
- Newell, R. The Climate-Biodiversity-Health Nexus: A Framework for Integrated Community Sustainability Planning in the Anthropocene. Front. Clim. 2023, 5, 1177025. [Google Scholar]
- Galderisi, A. Nexus Approach to Disaster Risk Reduction, Climate Adaptation and Ecosystems’ Management: New Paths for a Sustainable and Resilient Urban Development. In Peri-Urban Areas and Food-Energy-Water Nexus: Sustainability and Resilience Strategies in the Age of Climate Change; Colucci, A., Magoni, M., Menoni, S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 11–21. ISBN 978-3-319-41022-7. [Google Scholar]
- Sperling, J.; Berke, P. Urban Nexus Science for Future Cities: Focus on the Energy-Water-Food-X Nexus. Curr. Sustain./Renew. Energy Rep. 2017, 4, 173–179. [Google Scholar] [CrossRef]
- Ghadiri, M.; Krawchenko, T.; Newell, R. Applying a Climate-Biodiversity-Health Framework to Support Integrated Food Systems Planning and Policy. J. Environ. Manag. 2024, 358, 120769. [Google Scholar] [CrossRef]
- Newell, R.; Issac, J.; Ghadiri, M.; Dring, C.; Dale, A.; King, L.; Krawchenko, T.; Sheldon, T.; Yehia, J.; Das, R. Advancing the Climate-Biodiversity-Health Nexus Social Justice, Scale, and Applications; TRIAS; Royal Roads University: Victoria, Canada, 2023. [Google Scholar] [CrossRef]
- Clapp, J.; Moseley, W.G.; Burlingame, B.; Termine, P. Viewpoint: The Case for a Six-Dimensional Food Security Framework. Food Policy 2022, 106, 102164. [Google Scholar] [CrossRef]
- Dsouza, A.; Newman, L.; Graham, T.; Fraser, E.D.G. Exploring the Landscape of Controlled Environment Agriculture Research: A Systematic Scoping Review of Trends and Topics. Agric. Syst. 2023, 209, 103673. [Google Scholar] [CrossRef]
- Green, A.G.; Abdulai, A.-R.; Duncan, E.; Glaros, A.; Campbell, M.; Newell, R.; Quarshie, P.; KC, K.B.; Newman, L.; Nost, E.; et al. A Scoping Review of the Digital Agricultural Revolution and Ecosystem Services: Implications for Canadian Policy and Research Agendas. FACETS 2021, 6, 1955–1985. [Google Scholar] [CrossRef]
- Bingham, A.J. From Data Management to Actionable Findings: A Five-Phase Process of Qualitative Data Analysis. Int. J. Qual. Methods 2023, 22, 16094069231183620. [Google Scholar] [CrossRef]
- Clarke, V.; Braun, V. Thematic Analysis. J. Posit. Psychol. 2017, 12, 297–298. [Google Scholar] [CrossRef]
- Williams, M.; Moser, T. The Art of Coding and Thematic Exploration in Qualitative Research. Int. Manag. Rev. 2019, 15, 45–55. [Google Scholar]
- Liu, T.; Korthals Altes, W.K.; Melot, R.; Wallet, F. Reterritorialisation of Agricultural Activities in Land-Use and Food Planning: Comparing the Netherlands and France. Eur. Plan. Stud. 2024, 32, 952–972. [Google Scholar] [CrossRef]
- Wopereis, T.M.; Dijkstra, C.; Wierda, J.J.; Rongen, F.C.; Poelman, M.P. Systems Thinking for Local Food Environments: A Participatory Approach Identifying Leverage Points and Actions for Healthy and Sustainable Transformations. Health Res. Policy Syst. 2024, 22, 101. [Google Scholar] [CrossRef]
- Inglis, D.; Pascual, U. On the Links between Nature’s Values and Language. People Nat. 2023, 5, 326–342. [Google Scholar] [CrossRef]
- Sanyal, T.; Thün, G.; Neuhaus, F.; Robertson, N. What Does It Mean for Urban Life to See Livestock Grazing in Post-Industrial American Cities? Architecture_MPS 2023, 25, 1–23. [Google Scholar] [CrossRef]
- Alonge, O.; Shiode, S.; Shiode, N. The Impact of Fast-Food Density on Obesity during the COVID-19 Lockdown in the UK: A Multi-Timepoint Study on British Cohort Data. Sustainability 2023, 15, 8480. [Google Scholar] [CrossRef]
- Landaeta-Díaz, L.; Vergara-Perucich, F.; Aguirre-Nuñez, C.; Cancino-Contreras, F.; Correa-Parra, J.; Ulloa-León, F. Urban Food Deserts and Cardiovascular Health: Evaluating the Impact of Nutritional Inequities on Elderly Populations in Santiago. Appl. Sci. 2024, 14, 7575. [Google Scholar] [CrossRef]
- Maynard, R.; Burkhardt, J.; Quinn, J.C. Sustainability of Lettuce Production: A Comparison of Local and Centralized Food Production. J. Clean. Prod. 2023, 428, 139224. [Google Scholar] [CrossRef]
- Lulovicova, A.; Bouissou, S. Life Cycle Assessment as a Prospective Tool for Sustainable Agriculture and Food Planning at a Local Level. Geogr. Sustain. 2024, 5, 251–264. [Google Scholar] [CrossRef]
- Nuppenau, E.-A. Contribution of Peri-Urban Land Use and Agriculture to Entropy and Food of Mega-Cities: On Sustainability, Planning by Control Theory and Recycling of Organics. PLoS ONE 2023, 18, e0290747. [Google Scholar] [CrossRef]
- Liu, T. Governing the Reterritorialization of Agricultural Activities: An Assessment of Food Planning Policies in France. J. Rural Stud. 2024, 108, 103302. [Google Scholar] [CrossRef]
- Zhong, T.; Crush, J.; Si, Z.; Scott, S. The Nanjing Model: Comprehensive Food System Governance, Localization and Urban Food Security in China. Glob. Food Secur. 2023, 38, 100709. [Google Scholar] [CrossRef]
- Paciarotti, C.; Mazzuto, G.; Torregiani, F.; Fikar, C. Locally Produced Food for Restaurants: A Theoretical Approach for the Supply Chain Network Design. Int. J. Retail Distrib. Manag. 2022, 50, 164–183. [Google Scholar] [CrossRef]
- Hedberg, R.C. An Instrumental-Reflexive Approach to Assessing and Building Food System Resilience. Geogr. Compass 2021, 15, e12581. [Google Scholar] [CrossRef]
- Harder, R.; Giampietro, M.; Smukler, S. Towards a Circular Nutrient Economy. A Novel Way to Analyze the Circularity of Nutrient Flows in Food Systems. Resour. Conserv. Recycl. 2021, 172, 105693. [Google Scholar] [CrossRef]
- Giacomarra, M.; Tulone, A.; Crescimanno, M.; Galati, A. Electric Mobility in the Sicilian Short Food Supply Chain. Stud. Agric. Econ. 2019, 121, 84–93. [Google Scholar] [CrossRef]
- Taylor, J.R. Modeling the Potential Productivity of Urban Agriculture and Its Impacts on Soil Quality Through Experimental Research on Scale-Appropriate Systems. Front. Sustain. Food Syst. 2020, 4, 89. [Google Scholar] [CrossRef]
- Shao, Y.; Zhou, Z.; Chen, H.; Zhang, F.; Cui, Y.; Zhou, Z. The Potential of Urban Family Vertical Farming: A Pilot Study of Shanghai. Sustain. Prod. Consum. 2022, 34, 586–599. [Google Scholar] [CrossRef]
- Thompson, K.L.; Sugg, M.; Barth, M.M. The North Carolina Food Pantry Organizational Capability and Mapping Study: Research Brief and Pilot Study. J. Agric. Food Syst. Community Dev. 2019, 9, 75–87. [Google Scholar] [CrossRef]
- Reis, K.; Desha, C.; Campbell, S.; Liddy, P. Working through Disaster Risk Management to Support Regional Food Resilience: A Case Study in North-Eastern Australia. Sustainability 2022, 14, 2466. [Google Scholar] [CrossRef]
- Donnelly, R.; Sikazwe, G.W.; Gilligan, C.A. Estimating Epidemiological Parameters from Experiments in Vector Access to Host Plants, the Method of Matching Gradients. PLoS Comput. Biol. 2020, 16, e1007724. [Google Scholar] [CrossRef]
- Liu, Q.; Niu, J.; Du, T.; Kang, S. A Full-Scale Optimization of a Crop Spatial Planting Structure and Its Associated Effects. Engineering 2023, 28, 139–152. [Google Scholar] [CrossRef]
- Flores, H.; Villalobos, J.R. A Modeling Framework for the Strategic Design of Local Fresh-Food Systems. Agric. Syst. 2018, 161, 1–15. [Google Scholar] [CrossRef]
- Sylla, M.; Świąder, M.; Vicente-Vicente, J.L.; Arciniegas, G.; Wascher, D. Assessing Food Self-Sufficiency of Selected European Functional Urban Areas vs Metropolitan Areas. Landsc. Urban Plan. 2022, 228, 104584. [Google Scholar] [CrossRef]
- Li, S.; Juhász-Horváth, L.; Pintér, L.; Rounsevell, M.D.A.; Harrison, P.A. Modelling Regional Cropping Patterns under Scenarios of Climate and Socio-Economic Change in Hungary. Sci. Total Environ. 2018, 622–623, 1611–1620. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Iha, K.; Murthy, A.; Lin, D.; Altiok, S.; Rupprecht, C.D.D.; Kiyono, H.; McGreevy, S.R. Decentralization & Local Food: Japan’s Regional Ecological Footprints Indicate Localized Sustainability Strategies. J. Clean. Prod. 2021, 292, 126043. [Google Scholar] [CrossRef]
- Lanner, J.; Kratschmer, S.; Petrović, B.; Gaulhofer, F.; Meimberg, H.; Pachinger, B. City Dwelling Wild Bees: How Communal Gardens Promote Species Richness. Urban Ecosyst. 2020, 23, 271–288. [Google Scholar] [CrossRef]
- Melkonyan, A.; Gruchmann, T.; Lohmar, F.; Kamath, V.; Spinler, S. Sustainability Assessment of Last-Mile Logistics and Distribution Strategies: The Case of Local Food Networks. Int. J. Prod. Econ. 2020, 228, 107746. [Google Scholar] [CrossRef]
- Domingo, A.; Yessis, J.; Charles, K.-A.; Skinner, K.; Hanning, R.M. Integrating Knowledge and Action: Learnings from an Implementation Program for Food Security and Food Sovereignty with First Nations Communities within Canada. Implement. Sci. 2023, 18, 34. [Google Scholar] [CrossRef] [PubMed]
- Schmit, T.M.; Jablonski, B.B.R.; Bonanno, A.; Johnson, T.G. Measuring Stocks of Community Wealth and Their Association with Food Systems Efforts in Rural and Urban Places. Food Policy 2021, 102, 102119. [Google Scholar] [CrossRef]
- McEachern, L.W.; Yessis, J.; Zupko, B.; Yovanovich, J.; Valaitis, R.; Hanning, R.M. Learning Circles: An Adaptive Strategy to Support Food Sovereignty among First Nations Communities in Canada. Appl. Physiol. Nutr. Metab. 2022, 47, 813–825. [Google Scholar] [CrossRef]
- Hermiatin, F.R.; Handayati, Y.; Perdana, T.; Wardhana, D. Creating Food Value Chain Transformations through Regional Food Hubs: A Review Article. Sustainability 2022, 14, 8196. [Google Scholar] [CrossRef]
- De Jong, A.; Varley, P. Food Tourism Policy: Deconstructing Boundaries of Taste and Class. Tour. Manag. 2017, 60, 212–222. [Google Scholar] [CrossRef]
- Ghosh, S. Urban Agriculture Potential of Home Gardens in Residential Land Uses: A Case Study of Regional City of Dubbo, Australia. Land Use Policy 2021, 109, 105686. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, S.; Ren, L.; Yang, L.; Lu, Y. Effects of Built Environment Factors on Obesity Risk across Three Types of Residential Community in Beijing. J. Transp. Health 2022, 25, 101382. [Google Scholar] [CrossRef]
- Kirsch, K.R.; Newman, G.D.; Zhu, R.; McDonald, T.J.; Xu, X.; Horney, J.A. Applying and Integrating Urban Contamination Factors into Community Garden Siting. J. Geovis. Spat. Anal. 2022, 6, 33. [Google Scholar] [CrossRef]
- Liu, X.; Gu, S.; Yang, S.; Deng, J.; Xu, J. Heavy Metals in Soil-Vegetable System around E-Waste Site and the Health Risk Assessment. Sci. Total Environ. 2021, 779, 146438. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Bai, X.; Pang, X. Intercity Variability and Local Factors Influencing the Level of Pesticide Residues in Marketed Fruits and Vegetables of China. Sci. Total Environ. 2020, 700, 134481. [Google Scholar] [CrossRef]
- Tuler, S.P.; Webler, T.; Hansen, R.; Vörösmarty, C.J.; Melillo, J.M.; Wuebbles, D.J. Prospects and Challenges of Regional Modeling Frameworks to Inform Planning for Food, Energy, and Water Systems: Views of Modelers and Stakeholders. Front. Environ. Sci. 2023, 11, 1067559. [Google Scholar] [CrossRef]
- Bruce, A.B.; Castellano, R.L.S. Labor and Alternative Food Networks: Challenges for Farmers and Consumers. Renew. Agric. Food Syst. 2017, 32, 403–416. [Google Scholar] [CrossRef]
- Fletcher, E.I.; Collins, C.M. Urban Agriculture: Declining Opportunity and Increasing Demand—How Observations from London, U.K., Can Inform Effective Response, Strategy and Policy on a Wide Scale. Urban For. Urban Green. 2020, 55, 126823. [Google Scholar] [CrossRef]
- Faulkner, K.; Collins, J.; Gilbertson, H.R.; Porter, J. Local Food Procurement by Hospitals: A Scoping Review. J. Hum. Nutr. Diet. 2023, 36, 2219–2233. [Google Scholar] [CrossRef]
- Iida, A.; Yamazaki, T.; Hino, K.; Yokohari, M. Urban Agriculture in Walkable Neighborhoods Bore Fruit for Health and Food System Resilience during the COVID-19 Pandemic. NPJ Urban Sustain. 2023, 3, 4. [Google Scholar] [CrossRef]
- Iovino, G.; Guadagno, E.; Bagnoli, D. Food for Thoughts: The District Approach to Rural Areas Development—A Case Study in Campania. Sustainability 2023, 15, 16263. [Google Scholar] [CrossRef]
- Manganelli, A.; Moulaert, F. Scaling out Access to Land for Urban Agriculture. Governance Hybridities in the Brussels-Capital Region. Land Use Policy 2019, 82, 391–400. [Google Scholar] [CrossRef]
- Veldhuis, A.J.; Glover, J.; Bradley, D.; Behzadian, K.; López-Avilés, A.; Cottee, J.; Downing, C.; Ingram, J.; Leach, M.; Farmani, R.; et al. Re-Distributed Manufacturing and the Food-Water-Energy Nexus: Opportunities and Challenges. Prod. Plan. Control 2019, 30, 593–609. [Google Scholar] [CrossRef]
- Hansen, O.; Friedrich, H.; Transchel, S. An Inventory Management Approximation for Estimating Aggregated Regional Food Stock Levels. Int. J. Prod. Res. 2020, 58, 5769–5785. [Google Scholar] [CrossRef]
- Orlando, F.; Spigarolo, R.; Alali, S.; Bocchi, S. The Role of Public Mass Catering in Local Foodshed Governance toward Self-Reliance of Metropolitan Regions. Sustain. Cities Soc. 2019, 44, 152–162. [Google Scholar] [CrossRef]
- Vicente-Vicente, J.L.; Sanz-Sanz, E.; Napoléone, C.; Moulery, M.; Piorr, A. Foodshed, Agricultural Diversification and Self-Sufficiency Assessment: Beyond the Isotropic Circle Foodshed—A Case Study from Avignon (France). Agriculture 2021, 11, 143. [Google Scholar] [CrossRef]
- Tong, D.; Crosson, C.; Zhong, Q.; Zhang, Y. Optimize Urban Food Production to Address Food Deserts in Regions with Restricted Water Access. Landsc. Urban Plan. 2020, 202, 103859. [Google Scholar] [CrossRef]
- Marino, D.; Mazzocchi, G.; Pellegrino, D.; Barucci, V. Integrated Multi-Level Assessment of Ecosystem Services (ES): The Case of the Casal Del Marmo Agricultural Park Area in Rome (Italy). Land 2022, 11, 2055. [Google Scholar] [CrossRef]
- Chappell, M.J.; Moore, J.R.; Heckelman, A.A. Participation in a City Food Security Program May Be Linked to Higher Ant Alpha- and Beta-Diversity: An Exploratory Case from Belo Horizonte, Brazil. Agroecol. Sustain. Food Syst. 2016, 40, 804–829. [Google Scholar] [CrossRef]
- Martin, M.; Weidner, T.; Gullström, C. Estimating the Potential of Building Integration and Regional Synergies to Improve the Environmental Performance of Urban Vertical Farming. Front. Sustain. Food Syst. 2022, 6, 849304. [Google Scholar] [CrossRef]
- Mouléry, M.; Sanz Sanz, E.; Debolini, M.; Napoléone, C.; Josselin, D.; Mabire, L.; Vicente-Vicente, J.L. Self-Sufficiency Assessment: Defining the Foodshed Spatial Signature of Supply Chains for Beef in Avignon, France. Agriculture 2022, 12, 419. [Google Scholar] [CrossRef]
- Bivoltsis, A.; Trapp, G.; Knuiman, M.; Hooper, P.; Ambrosini, G.L. The Influence of the Local Food Environment on Diet Following Residential Relocation: Longitudinal Results from RESIDential Environments (RESIDE). Public Health Nutr. 2020, 23, 2132–2144. [Google Scholar] [CrossRef]
- Zhang, Y.; Smith, J.P.; Tong, D.; Turner II, B.L. Optimizing the Co-Benefits of Food Desert and Urban Heat Mitigation through Community Garden Planning. Landsc. Urban Plan. 2022, 226, 104488. [Google Scholar] [CrossRef]
- Cuttler, R.; Evans, R.; McClusky, E.; Purser, L.; Klassen, K.M.; Palermo, C. An Investigation of the Cost of Food in the Geelong Region of Rural Victoria: Essential Data to Support Planning to Improve Access to Nutritious Food. Health Promot. J. Aust. 2019, 30, 124–127. [Google Scholar] [CrossRef]
- Marrero, A.; Tamez, M.; Rodríguez-Orengo, J.F.; Mattei, J. The Association between Purchasing Locally Produced Food and Diet Quality among Adults in Puerto Rico. Public Health Nutr. 2021, 24, 4177–4186. [Google Scholar] [CrossRef]
- Liu, T.; Melot, R.; Wallet, F. Integrating Land and Food Policy to Transform Territorial Food Systems in the Context of Coexisting Agri-Food Models: Case Studies in France. Elem. Sci. Anthr. 2024, 12, 00063. [Google Scholar] [CrossRef]
- Béné, C.; Frankenberger, T.R.; Nelson, S.; Constas, M.A.; Collins, G.; Langworthy, M.; Fox, K. Food System Resilience Measurement: Principles, Framework and Caveats. Food Sec. 2023, 15, 1437–1458. [Google Scholar] [CrossRef]
- Zhong, T.; Si, Z.; Shi, L.; Ma, L.; Liu, S. Impact of State-Led Food Localization on Suburban Districts’ Farmland Use Transformation: Greenhouse Farming Expansion in Nanjing City Region, China. Landsc. Urban Plan. 2020, 202, 103872. [Google Scholar] [CrossRef]
- IPBES. PBES Nexus Assessment: Summary for Policymakers; IPBES: Bonn, Germany, 2024. [Google Scholar]
- Power, A.G. Ecosystem Services and Agriculture: Tradeoffs and Synergies. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2959–2971. [Google Scholar] [CrossRef]
- Wilhelm, J.A.; Smith, R.G. Ecosystem Services and Land Sparing Potential of Urban and Peri-Urban Agriculture: A Review. Renew. Agric. Food Syst. 2018, 33, 481–494. [Google Scholar] [CrossRef]
- Schwarz, N.; Moretti, M.; Bugalho, M.N.; Davies, Z.G.; Haase, D.; Hack, J.; Hof, A.; Melero, Y.; Pett, T.J.; Knapp, S. Understanding Biodiversity-Ecosystem Service Relationships in Urban Areas: A Comprehensive Literature Review. Ecosyst. Serv. 2017, 27, 161–171. [Google Scholar] [CrossRef]
- Gliessman, S. Agroecology and Shifting Paradigms. J. Sustain. Agric. 2012, 36, 499. [Google Scholar] [CrossRef]
- Byerlee, D.; Stevenson, J.; Villoria, N. Does Intensification Slow Crop Land Expansion or Encourage Deforestation? Glob. Food Secur. 2014, 3, 92–98. [Google Scholar] [CrossRef]
- Daghagh Yazd, S.; Wheeler, S.A.; Zuo, A. Key Risk Factors Affecting Farmers’ Mental Health: A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 4849. [Google Scholar] [CrossRef]
- Ericksen, R.; Dring, C.; MacKechnie, M.; Tan, C.X.; Lau, H.; Shepansky, C.; Newell, R.; Heckelman, A.; Topley, A. Just Food Systems Evaluation Framework; Public Health Association of BC: Victoria, BC, Canada, 2024. [Google Scholar]
- Browne, G.R.; Gunn, L.D.; Davern, M. A Framework for Developing Environmental Justice Indicators. Standards 2022, 2, 90–105. [Google Scholar] [CrossRef]
- Mittal, A.; Krejci, C.C. A Hybrid Simulation Modeling Framework for Regional Food Hubs. J. Simul. 2017, 13, 28–43. [Google Scholar] [CrossRef]
- CAPI. The Missing Middle: Policy Intervention on Regional Food Systems; CAPI: Victoria, BC, Canada, 2024. [Google Scholar]
- Ruiz-Almeida, A.; Rivera-Ferre, M.G. Internationally-Based Indicators to Measure Agri-Food Systems Sustainability Using Food Sovereignty as a Conceptual Framework. Food Sec. 2019, 11, 1321–1337. [Google Scholar] [CrossRef]
- Orou Sannou, R.; Kirschke, S.; Günther, E. Integrating the Social Perspective into the Sustainability Assessment of Agri-Food Systems: A Review of Indicators. Sustain. Prod. Consum. 2023, 39, 175–190. [Google Scholar] [CrossRef]
Inclusion Criteria |
|
Exclusion Criteria |
|
CBHJ Dimensions | Indicators | Specific Measures/Sub-Indicators | Relevant Actions |
---|---|---|---|
Climate (mitigation) |
| ||
Climate (adaptation) |
|
| |
Biodiversity (habitat protection) |
| ||
Biodiversity (wildlife health and welfare) |
|
| |
Health (mental) |
|
| |
Health (physical) |
| ||
Justice (distributional) |
|
| |
Justice (procedural) |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glaros, A.; Newell, R. The State of Local Food Systems and Integrated Planning and Policy Research: An Application of the Climate, Biodiversity, Health, and Justice Nexus. Agriculture 2025, 15, 718. https://doi.org/10.3390/agriculture15070718
Glaros A, Newell R. The State of Local Food Systems and Integrated Planning and Policy Research: An Application of the Climate, Biodiversity, Health, and Justice Nexus. Agriculture. 2025; 15(7):718. https://doi.org/10.3390/agriculture15070718
Chicago/Turabian StyleGlaros, Alesandros, and Robert Newell. 2025. "The State of Local Food Systems and Integrated Planning and Policy Research: An Application of the Climate, Biodiversity, Health, and Justice Nexus" Agriculture 15, no. 7: 718. https://doi.org/10.3390/agriculture15070718
APA StyleGlaros, A., & Newell, R. (2025). The State of Local Food Systems and Integrated Planning and Policy Research: An Application of the Climate, Biodiversity, Health, and Justice Nexus. Agriculture, 15(7), 718. https://doi.org/10.3390/agriculture15070718